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Abstract

In this thesis investigations into chemically modified graphene structures are pre-

sented. Chemical functionalization of graphene is the chemical attachment of molecules

or atoms to the graphene surface via covalent or Van der Waals bonds, this process of-

fers a unique way to tailor the properties of graphene to make it useful for a wide range

of device applications. One type of chemical functionalization presented in this thesis

is fluorination of graphene which is the covalent attachment of fluorine to the carbon

atoms of graphene and the resultant material is fluorographene which is a wide band-

gap semiconductor. For low fluorine coverage the low temperature electron transport

is through localized states due to the presence of disorder induced sub-gap states. For

high fluorine coverage the electron transport can be explained by a lightly doped semi-

conductor model where transport is through thermal activation across an energy gap

between an impurity and conduction bands. On the other hand, at low temperatures

the disorder induced sub-gap density of states dominates the electrical properties, and

the conduction takes place via hopping through these localized states. In this thesis it

is also shown that electron beam irradiation can be used to tune the coverage of fluorine

adatoms and therefore control energy gap between the impurity and conduction bands.

Futhermore, electron beam irradiation also offers a valuable way to pattern conductive

structures in fluorinated graphene via the irradiation-induced dissociation of fluorine

from the fluorinated graphene. This technique can be extended to the patterning of

semiconducting nano-ribbons in fluorinated graphene where the spatial localization of

electrons is just a few nm. The second type of chemical functionalization presented in

this thesis is the intercalation of few layer graphene with ferric chloride which greatly

enhances the electrical conductivity of few layer graphene materials making them the

best known transparent conductors.
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Chapter 1

Introduction

Since the advent of the first silicon transistor in the late 1940’s [1] (see, Figure 1.1(a)) the

size of the individual transistor has reduced dramatically resulting in an exponential

increase of the number of devices per chip with time [2](Moore’s law). This means

that the electronics industry has been able to grow rapidly with time (see, 1.1(b))

leading to many world changing innovations, such as the personal computer, mobile

communications and digital display technologies [3].

Although major advances in semiconductor materials have led to world changing

innovations, conventional semiconductor technologies are incompatible with a number

of applications. For example, conventional semiconductor materials (such as, Si and

Ge) which are currently used in many solid state devices are not compatible with future

transparent and flexible technologies since they are brittle and opaque. Therefore, in

recent years a change in emphasis on the materials used in devices has ensued, and new

materials must be chosen based on their mechanical flexibility, high optical transparency

and high electrical conductivity. Atomically thin materials are an emerging new class

of systems which offer the right combination of unique properties able to overcome the

aforementioned limitations of conventional semiconductors.

The most promising of these newly realized materials is graphene, a monolayer of

carbon atoms. Graphene and few layer graphene were isolated in 2004 by researchers

at the University of Manchester by exfoliation from a graphite crystal [4]. As opposed

to other carbon materials (i.e. diamond and graphite which have a 3 dimensional

structure, carbon nanotubes in which electrons are confined in 1 dimension and C60

molecule which is the 0D allotrope) graphene is a perfect 2 dimensional crystal, see

Figure 1.2(a)-(d).

Since its discovery, graphene research has truly expanded at an unprecedented pace
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(a)

(b)

Emitter 

Collector

Base

Semiconductor 

1 cm

Figure 1.1: (a) An image of the first bipolar transistor device studied in 1948. Here
a small current flowing between the base and the emitter can modulate a much larger
current between the collector and emitter. (b) The evolution of Moor’s law with key
processors highlighted in red. (inset) conventional semiconductor elements.

due to the ease with which graphene devices can be manufactured and due to the seem-

ingly endless list of superior properties which enable this material to be of tremendous

importance to future technology. The charge carriers in graphene traverse macroscopic

distances without scattering and have high mobilities, making graphene of interest for

high frequency applications such as analogue transistor [5].This atomically thin mate-
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(c)

(a) (b)

(d)

Figure 1.2: Allotrope’s of carbon (a) 0-Dimensional buckyballs (b) 1-Dimensional
carbon nanotubes (c) 2-Dimensional graphene and (d) 3-Dimensional graphite and
diamond.

rial has high mechanical strength [6] which means it can exist as an isolated membrane

without breaking and it can be used in high frequency resonators [7]. It is highly

transparent, but at the same time it absorbs radiation over a broad band of energies

and is flexible [8]. These properties make graphene a stand out material for flexible

transparent conductors [9] and also for energy harvesting applications, which are of

tremendous importance for social-economic stability due to finite energy and material

resources [10].

Although graphene displays some remarkable properties, it still lacks in a few key

areas which limit its functionality in device applications. Unlike silicon, graphene

has no band-gap with the conduction and valence bands touching each other [11]. A
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consequence of this is that current cannot be switched off by a gate voltage in a graphene

field effect transistor (FET). A potential route in which a band gap may be opened is

via chemical functionalization where atoms may be covalently bonded to graphene [12].

Furthermore, since graphene is a good electrical conductor - better than copper -

and transparent over a wide wavelength range it is expected to become important in

displays, smart phones and solar cells to name a few. To date, Indium Tin Oxide (ITO)

is the most widely used transparent electrical conductor by display industries. ITO

still has a much lower resistivity than pristine graphene or graphene grown by chemical

vapor deposition (CVD). To make graphene a competitive candidate its resistivity

needs to be reduced to values lower than the resistivity of ITO which has an optical

tranparency of T ≈ 85% and Rsq ≈ 15Ω [13]. This thesis demonstrates that a possible

route to achieve this is by chemical doping of graphene or few layer graphene materials

[14]. This process transfers electrons from or to the graphene ultimately leading to an

enhancement of the conductivity due to an increase in carrier density. The strongest

electron transfer mechanism can be achieved by intercalation, where chemical species

can diffuse through the planes of graphene and heavily dope the graphene sheets [15].

The main theme of this thesis is the study of how chemical treatment of graphene

can change its properties and make graphene useful for a wider range of applications.

1.0.1 Fluorinated Graphene

The chemical functionalization of graphene with fluorine ad-atoms is extensively studied

in chapters 4 to 7 [16–18]. The electrical properties of fluorinated graphene are vastly

different compared to the properties of pristine graphene with the material becoming

an insulator for high fluorine contents. Figure 1.3(a) and (b) show the crystal structure

of graphene and of fluorinated graphene respectively. Upon fluorination, the crystal

structure of fluorinated graphene changes from a purely 2-dimensional material to a

3-dimensional material with the carbon atoms being pulled out of the graphene plane.

Because the delocalized electrons are now tightly bound in a covalent bond between

the carbon atom and the fluorine atom the material is transformed into an insulator.

Before commencing this work, only electrical transport experiments have been con-

ducted on hydrogenated graphene and it has not been possible to measure the value

of the intrinsic band-gap [19]. This is due to the presence of disorder induced sub-gap

states which assist the flow of electrical current, therefore masking the direct observa-

tion of a band gap [19]. A possible explanation of the origin of the disorder in this

system is that the random attachment of hydrogen atoms to the graphene and bond
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saturation was not achieved. In this scenario charge transport takes place via localized

states discussed further in Section 2.4. This fact prevents the use of hydrogenated

graphene as an insulating barrier material or as a practical transistor device which will

operate at room temperature. For this reason in this work fluorine is chosen. This

element is expected to saturate graphene with covalent bonds [20] and therefore a band

gap should be realized.

(a) (b)

Figure 1.3: (a) Pristine graphene crystal structure (b) crystal structure of fluorinated
graphene.
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1.0.2 Doped graphene and Intercalated few layer Graphene

(a) (b)

Figure 1.4: Crystal structure of a FeCl3 intercalated few layer graphene flake, with Fe
(red), Cl (green) and C (black).

The research field of graphite intercalation compounds dates back to the early 20

th century [15, 21], with more than 100 known intercalation compounds [15] exhibiting

a large variety of properties including magnetism and intrinsic superconductivity [15]

. To date, there are many known intercalant species and a detailed review of the

various compounds is available [15]. Many of these intercalation molecules are highly

reactive and therefore the resultant graphite intercalation compound will not be stable

in ambient conditions. We found an ideal acceptor molecule -i.e. FeCl3- which gives

an air stable intercalated compound [15]. Figure 1.4(a) and (b) shows pristine few

layer graphene and FeCl3 intercalated few layer graphene. It is found that there is a

large electron charge transfer from the graphene to the FeCl3 layer. This renders the

graphene layers heavily hole doped, with an extremely low Rsq ≈ 8Ω. At the same time

the high optical transparency of graphene is preserved at T ≈ 85% for 5 layer graphene.

This FeCl3 -intercalated few-layer graphene material is air stable on a time scale of 1

year [14]. Detailed studies on this novel few-layer graphene intercalated compound are

presented in Chapter 8 [14].
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Chapter 2

Theoretical Concepts.

2.1 Band Structure of Graphene.

Although graphene was isolated experimentally only in 2004, theoretically its band

structure was first studied in 1947 [11]. The band spectrum for graphene is well cap-

tured by the tight binding approximation as described below [22]. Carbon contains

6 electrons 1s22s22p2. The core 1s2 electrons are tightly bound to the nucleus and

do not interact while the valence electrons 2s22p2 interact with neighbouring carbon

atoms. The electronic properties of graphene can be determined by the valence elec-

trons. Specifically, the valence electrons of carbon form 2s, 2px, 2py and 2pz orbitals.

These electronic orbitals give rise to covalent bonds between neighbouring atoms in

molecules or crystals, in order to create the covalent bonds the 2s orbital hybridizes

with the 2p orbitals to form spn where n = (1,2,3). These three hybridizations can

be seen in the different forms of carbon. The materials of main interest to this thesis

are graphene and fluorographene which have sp2 and sp3 hybridizations respectively

[12, 23, 24].

Figure 2.1 shows the positions of the carbon atoms in the graphene crystal. The

graphene structure is composite and it consists of two sub-lattices of carbon atoms,

indicated by ΓA (red) and ΓB (blue), see Figure 2.1(a). The energy spectrum has

been calculated in [11, 22], here the derivation is followed from [25]. The primitive

translation vectors for the crystal are,

a1 = a

(
3

2
,

√
3

2

)
, a2 = a

(
3

2
,−
√

3

2

)
(2.1)

where a is the inter-atomic separation (C-C = 1.42Å) which we set to unity for

7



2. Theory

further derivation. Any atom of the ΓA sub-lattice at position r = a1n1 + a2n2 where

n1,n2, integers are connected to its nearest neighbours on sub-lattice ΓB by the vectors

δi,

δ1 =
2

3
a1 −

1

3
a2, δ2 =

2

3
a2 −

1

3
a1, δ3 = −δ1 − δ2 = −1

3
a1 −

1

3
a2. (2.2)

A second set of vectors δ
′
i define the nearest neighbour lattice sites from sub-lattice

ΓB such that δ
′
i = −δi + d, where d is a vector from the ΓA sub-lattice to the ΓB

sub-lattice. The reciprocal lattice vectors can be found from ai ·bj = 2πδij and are,

b1 =
2π

3

(
1,
√

3
)
, b2 =

2π

3

(
1,−
√

3
)
, (2.3)

Figure 2.1(b) shows the first Brillouin zone which has hexagonal shape. This gives

rise to the high symmetry points Γ,K
′
,K and M with coordinates (0, 0), (2π

3 ,−
2π

3
√

3
),

(2π
3 ,

2π
3
√

3
) and (2π

3 , 0) respectively.

a1

a2

δ1

δ2

δ3 Kx

Ky

b1

b2

K’ 

K 

M 

(a) (b)

ΓΑ

ΓΒ

δ’
1

δ’
2 δ’

3 Γ

Figure 2.1: (a) Honeycomb structure consisting of two triangular sub-lattices ΓA and
ΓB. The highlighted blue box contains the unit cell. (b) Corresponding Brillouin zone,
the Dirac cones are located at K and K

′

.

The eigenstates for a periodic crystal can be written as Wannier functions where,

Ψnk =
1√
N

∑
i

exp(ik · ri)ξn(r− ri) (2.4)

and the sum runs over all the lattice points i, ri = a1ni + a2ni with n the band

label and k the states in that band.
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The energy levels may be computed via the variational method,

Ek =

∫
dτΨ∗HΨ∫
dτΨ∗Ψ

=

∑
i exp(ik · ri)

∫
dτξ∗(r)Hξ(r− ri)∑

i exp(ik · ri)
∫
dτξ∗(r)ξ(r− ri)

. (2.5)

Taking the normalization of the Wannier functions to be unity, we obtain,

Ek =

∫
dτξ∗(r)Hξ(r) +

∑
NN

exp(ik · ri)

∫
dτξ∗(r)Hξ(r− ri), (2.6)

where NN corresponds to the sum over nearest neighbours only. We can write

a wavefunction composed of a linear combination of identical orbitals ξΓA and ξΓB

localized around each of the before mentioned points of the primitive cell as follows,

ξ(r) = hΓAξΓA(r) + hΓBexp(ik ·d)ξΓB (r− d). (2.7)

By substituting eq. 2.7 into the energy functional eq. 2.6 we obtain,

Ek = h∗ΓAhΓA

∫
dτξ∗ΓA(r)HξΓA(r)

+ h∗ΓBhΓB

∫
dτξ∗ΓA(r− d)HξΓA(r− d)

+ h∗ΓAhΓB

∑
j

exp(ik · δj)

∫
dτξ∗ΓA(r)HξΓB (r− δj)

+ h∗ΓBhΓA

∑
j

exp(ik · δ
′
j)

∫
dτξ∗ΓB (r− d)HξΓA(r− d− δ′j),

(2.8)

which can further be simplified by symmetry considerations as follows,

∫
dτξ∗ΓA(r)HξΓA(r) =

∫
dτξ∗ΓB (r− d)HξΓB (r− d) = β∫

dτξ∗ΓA(r)HξΓB (r− δi) =

∫
dτξ∗ΓB (r− d)HξΓA(r− d− δ′i) = γ

(2.9)

where β is the on-site energy and is defined as zero while γ is the nearest neighbour

hopping parameter ≈ 2.8 eV. Substituting eq. 2.9 into eq. 2.8, it can be shown that
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the energy momentum dispersion can be rewritten as,

Ek =
(
h∗ΓA hΓB

)( 0 γ
∑

j exp(ik · δj)

γ
∑

j exp(ik · δ
′
j) 0

)(
hΓA

hΓB

)
. (2.10)

The dispersion relation Ek can be calculated for the time independent case, HΨ =

EΨ , eigenvalues for this Hamiltonian can be expressed using the relation |HI−EkI| = 0∣∣∣∣∣ −Ek γ
∑

j exp(ik · δj)

γ
∑

j exp(ik · δ
′
j) −Ek

∣∣∣∣∣ = 0. (2.11)

Upon solving the determinant we finally arrive at the energy-momentum dispersion

relation,

Ek = ±γ

√√√√ 3∑
j=1

exp(ik · δj)

3∑
j=1

exp(−ik · δj). (2.12)

Which can be expanded into the form,

Ek = ±γ

√
(1 + 4cos2(

√
3kx
2

) + 4cos(

√
3kx
2

)cos(
3ky
2

)). (2.13)

Figure 2.2: Adapted from [22] Color map of the band spectrum of graphene, showing
the valence and conduction band for −2 ≤ E < 4eV .
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Figure 2.2 shows the energy dispersion for graphene described by eq. 2.13 and

plotted for the first Brillouin zone. The positive solution of 2.13 corresponds to the

conduction band while the negative solution corresponds to the valence band. It can

be seen that the positive and negative solutions of eq. 2.13 meet at specific points

corresponding to Ek = 0. Figure 2.3 shows a 2D colour map for the first Brillouin

zone, it can be seen that there exist 6 points in k-space where the energy becomes zero

(highlighted in red). These zero energy points can be found by setting eq. 2.13 to zero

and solving for kx and ky which exist within the first Brillouin zone.

K±D = ± 2π

3
√

3

(√
3, 1
)
. (2.14)

Where the + corresponds to points in k and − corresponds to k′. These regions

where the conduction and valence bands touch are called Dirac points kD. If we expand

the Hamiltonian eq. 2.11 around the two neighboring Dirac points along the ky axis

by substituting k = kD + ∆k. We arrive at the expression,∣∣∣∣∣ −Ek −3iγ
2 exp(±i2π

3 )(∆kx ∓ i∆ky)
3iγ
2 exp(∓i

2π
3 )(∆kx ± i∆ky) −Ek

∣∣∣∣∣ = 0. (2.15)

Solving 2.15 gives,

Ek = ±3γ

2
|k| = ±vF |k| (2.16)

where vF = 3γ
2 is the Fermi velocity. Therefore the dispersion relation is linear and

as a consequence the effective mass of the charge carriers is zero [26].

 

 

K’

K

K’

K

K’

K

Ky

Ky

Kx

Figure 2.3: A cut through the (Kx,Ky) plane, regions of same colour correspond to
the same energy.
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This means that graphene differs dramatically from conventional parabolic band

materials. This difference in band structure and the realization of Dirac Fermions in

an easily fabricated mesoscopic sample is at the heart of why graphene has received

such great interest over the past 8 years.
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2.2 Band gap opening through Chemical functionalisation

with fluorine and Hydrogen.

As discussed in Section 2.1 graphene has one free electron per carbon site, this allows

for the transformation of graphene through functionalization. Functionalization is the

attachment of atoms or molecules through covalent bonding or Van der Waals forces.

For covalent attachment fluorine and hydrogen are key contenders since they open

a large energy gap in the otherwise gap-less dispersion relation of graphene [20, 21].

Predictions based on ab initio calculations for different crystal configurations show that

graphene fluoride, also known as fluorographene, is expected to have a large band gap

between 3.5 eV and 7.4 eV [12, 23].

π - bands

σ - bands

Figure 2.4: adapted from [23] shows the band structure of graphene along high sym-
metry points. The blue lines correspond to the π bands described above while the red
lines correspond to bands arising from the sigma bonds.

Figure 2.4 shows the band structure of pristine graphene along the high symmetry

points of the Brillouin zone. The blue linear bands called the π bands arise from the

delocalized 2pz electrons whereas the red σ bands arise from the remaining σ electrons.

If the graphene sheet is saturated with hydrogen or fluorine atoms and all available

free electrons are localized, the π bands disappear. Figure 2.5(a) and (b) show the

resultant band structures for hydrogenated and fluorinated graphene respectively. Note

the absence of the π bands and the opening of a large band gap in the case of fully

hydrogenated and fully fluorinated graphene.

Due to the large electro-negativity of the fluorine atom the charge which is localized

in the C−F bond resides mainly on the fluorine atom, and calculations show that charge
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Figure 2.5: adapted from [23] shows the resultant band structures for a) fully hydro-
genated and b) fully fluorinated graphene in the chair configuration.

transfered to the fluorine atom is 0.3e. This charge transfer results in a slight expansion

of the lattice by 0.05Å [27]. At the same time, the hybridization changes from sp2 to

sp3 hybridization and the crystal structure becomes 3-dimensional.

2.3 The lightly doped semiconductor model.

In the previous section it was shown that chemical functionalization of graphene with

fluorine or hydrogen can open a band gap in the energy spectrum therefore creating

a new class of 2-dimensional semiconductors. However, the disorder which originates

from partial coverage of covalently bonded ad-atoms results in a non fully developed

band gap. Electron transport measurements are sensitive to impurity states which

come from missing covalent bonds therefore the fully developed band gap is not seen in

transport measurements. The electrical transport of such materials is described by the

lightly doped semiconductor model. In this model there exists within a larger band-

gap an impurity band of states which come from disorder or impurities in the material.

Figure 2.6 shows a schematic of the energy bands in the lightly doped semiconductor

model. In this model electrons are thermally excited over an energy gap which is much

smaller than the full band gap. Indeed, the important energy scale when considering
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thermally activated transport is ε1 which is the energy between the occupied band of

states and the conduction band.

Conduction Band

Valence Band

ε1

ε3

Impurity bands

µ

Figure 2.6: Energy band schematic for a lightly doped semiconductor. Dark grey
corresponds to occupied states while light grey corresponds to un-occupied states.

At high temperatures semiconductors possess an intrinsic electrical conductivity

due to carriers which are thermally excited over the intrinsic band gap.6 -i.e. energy

gap between the top and bottom of valence and conduction band respectively. The

concentration of carriers which contribute to the conductivity depends on temperature

via the following relation [28],

n = p =
(2π
√
memhkBT )3/2

4π3~3
exp(−Eg/kBT ). (2.17)

Here n and p correspond to the electron and hole carrier concentration while me

and mh are the effective masses of the electrons and holes and Eg is the band gap.

For a large value of Eg the carrier concentration can decrease extremely rapidly with

temperature. At sufficiently low temperatures the concentration of thermally excited

carriers can be less than the concentration contributed by impurities. In this region

transport is totally governed by the the nature of the impurities and is known as the

extrinsic region.

Figure 2.7 shows a schematic of the logarithm of the resistivity for a lightly doped

semiconductor plotted against inverse temperature. Region A (High Temperature) is

known as the intrinsic region. Here electron transport takes place through thermally

activated carriers. Regions (B-D) correspond to extrinsic conduction, in these regions

transport is governed by the specific nature of the impurities.
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A         B         C          D

Figure 2.7: The inverse temperature dependence of the natural logarithm of the resis-
tivity for a typical lightly doped semiconductor.

If the impurities have an ionization energy much smaller than the size of the gap then

there exists a region B where the resistivity is entirely determined by the temperature

dependence of the mobility. In this case a reduction of resistance with decreasing

temperature is often observed and it is commonly attributed to a weaker electron-

phonon scattering for instance.

A further decrease of the temperature leading to region C results in a gradual

freezing out of the impurity electrons. The increase of resistance in this region is due to

a rapid decrease of free electron concentration. In regions (C −D) electron transport

is through hopping conduction through localized states within the impurity band.

Figure 2.8 shows the inverse temperature dependence of a lightly doped sample

of germanium. The temperature dependence of the resistivity can be well fit by the

following expression,

ρ−1(T ) = ρ−1
1 exp(−ε1/kBT ) + ρ−1

3 exp(−ε3/kBT ). (2.18)

The first term of eq. 2.18 corresponds to the extrinsic region A - i.e. band con-

duction - while the second term corresponds to the hopping conduction here ε3 < ε1.

Chapter 7 shows that partially fluorinated graphene is a lightly doped semiconductor

and that good agreement with the above model is found.
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Figure 2.8: Resistivity data for lightly doped Germanium for various doping levels.
Adapted from [28] and references therein.

2.4 Hopping Conduction.

2.4.1 System of independent electrons: Mott hopping

Electron transport in disordered crystals can be explained by Mott variable range hop-

ping (MVRH). In particular partially fluorinated graphene can be considered a disor-

dered crystal. The disorder originates from randomly bonded sp3 fluorine atoms. At

very low fluorine coverage level the scattering of electrons off fluorine ad-atoms leads to

an mobility gap opening in the π bands. Within this gap exists localized states which

can be approximated to a constant density of states g(EF ) which exist within a larger

mobility gap. Contrary to the intrinsic band gap, a mobility gap separates the local-

ized states from the extended states. The electron transport in such a system can be

described by Mott Variable Range Hopping (MVRH). For low temperatures, electrons

have a higher probability of jumping to a site at a larger distance away. As at larger

distances there are more sites and this means the activation energy may be smaller for

distant sites [28, 29]. Considering a system with a constant density of localized states

17



2. Theory

g(EF ) at the Fermi level, the probability for an electron to jump a distance R with an

activation energy Γ and localization radius ξ is,

P ≈ exp(−2R/ξ − Γ/kBT ). (2.19)

Within a sphere of radius R the average spacing in energy Γ between the states

near the Fermi level is Γ = 3/(4πR3g(EF )) [28]. Maximizing P with respect to the

hopping length R gives the equality 2/ξ = 9/(4πg(EF )R4kBT ) and it follows that for

the maximum jump frequency,

Figure 2.9: Left: Construction of a band containing states whose energies are separated
from the Fermi level by less than ε0.Right: showing the Density of states occupied states
are highlighted in gray.

P ≈ σ ≈ exp(−T0/T )1/4 (2.20)

with

T0 = β/kBξ
3g(EF ). (2.21)

Using percolation methods the value of β has been found to be 21.2 [28].

The optimum hopping length RM grows as the temperature is lowered according
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to,

RM (T ) = ξ

(
T0

T

)1/4

. (2.22)

This mechanism of conduction is known as ‘variable range hopping’ because of this

behaviour. The band providing the maximum of conduction has width,

Γ(T ) = kBT (T0/T )1/4. (2.23)

The conductivity is to a good approximation entirely determined by the contribution

of this optimal band.

The Mott law may be generalized to the case of an arbitrary spatial dimensionality

d. This gives,

σ = σ0exp(−T0/T )
1
d+1 . (2.24)

In particular for 2-dimensions,

σ = σ0exp(−T0/T )
1
3 (2.25)

with T0 = β/KBξ
2g(EF ) where β = 13.8. This model assumes a constant density of

localized states which exist within a larger mobility gap, in reality the picture is more

complicated with the density of localized states being irregular throughout the transport

gap. This model however works extremely well for a large variety of disordered crystals.

We will adopt this model to describe the electrical conduction in partially fluorinated

graphene presented in Chapter 4.

2.4.2 System of interacting electrons

When the coverage of fluorine ad-atoms increases in the partially fluorinated graphene,

then electron - electron interactions must be taken into account. This enhancement of

the electron - electron interaction is due to the increased localization of the electrons.

In this scenario, the fluorinated regions will enclose conductive graphene regions and

Coulomb interaction needs to be taken into account for an electron to hop from island

to island. The Mott law is derived for a system which has a constant density of states

at the Fermi surface. The Coulomb field generated by the charge carriers is not taken

into account by the Mott theory of hopping conduction [28]. It was shown that the

electrostatic interaction creates a Coulomb gap in the density of states near the Fermi
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level [28].

In a system in its ground state at zero temperature, the Fermi level separates

occupied and empty states. If the site i is occupied by an electron and site j is vacant,

then moving an electron from site i to site j involves a change in the total energy Eji .

Eji = Ej − Ei −
e2

4πε0εrrij
. (2.26)

The electron can be thought of moving from infinity where the potential is set to

zero. The change of the total energy is equal to −Ei. Then the electron moves from

infinity to site j. This would contribute energy Ej provided that the system was in its

ground state and the site i is occupied. However, this site is now empty and the last

term in eq. 2.26 corresponds to the extra attraction of the electron-hole pair creation.

Figure 2.10: (a-c) Density of states in the presence of a Coulomb gap for various doping
levels. Adapted from [28] and references therein.

Because the system is initially in the ground state a hopping event from site i to

site j will result in an increase of the system energy Eji ≥ 0. This has to be satisfied in

eq. 2.26 given two sites which lie within the Coulomb gap of width E then Ej−Ei < E.

The distance between two sites cannot be smaller than e2/4πε0εrE so the concentration
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cannot be higher than N(E) = (4πε0εrE/e
2)3. Therefore the density of states follows

the inequality,

g =
∂[N(E)]

∂E
< 3(4πε0εr/e

2)3E2 (2.27)

and one arrives at,

g = α3(E − µ)2(4πε0εr/e
2)3 (2.28)

where E is now a single-particle energy and α3 is a constant of order unity. eq. 2.28

is only valid if g(E) < gc ( gc is the density of states without interactions). The width

of the Coulomb gap is defined by g(µ±∆) = gc this gives,

∆ = (gc/α3)1/2(e2/4πε0εr)
3/2. (2.29)

Figure 2.10 shows the density of states for a lightly doped semiconductor in the

presence of a Coulomb gap at different degrees of compensation, the reduction in the

density of states around the chemical potential is due to the Coulomb field generated

by the carriers. In a graphene field effect device the chemical potential µ can be moved

with the application of a gate voltage - see Chapter 4. The same analysis as for 3

dimensions can be repeated for two dimensions,

gDOS = α2|E − µ|(4πε0εr/e2)2 (2.30)

and,

∆ = (gc/α2)(e2/4πε0εr)
2. (2.31)

Calculations give α3 = 3/π and α2 = 2/π for E < ∆ irrespective of the model used.

The Mott law is valid if Γ > ∆, where Γ is the bandwidth given by eq. 2.23. In the

opposite limit -i.e. Γ < ∆ - the relation between Γ and the hopping distance R is given

by Γ ≈ 1/R3D(Γ) ≈ 1/R3Γ2, from which,

Γ ≈ 1/R (2.32)

substituting eq. 2.32 into eq. 2.19 and maximizing in the same way as we did for

the Mott formula we arrive at the formula,

σ = σ0exp(−(T0/T )1/2) (2.33)
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where,

T0 = βde
2/4πε0εrξkB. (2.34)

The width of the band contributing to conduction being,

Γ(T ) ≈ kBT (T0/T )1/2 (2.35)

and the optimum hopping length being,

RM (T ) ≈ ξ(T0/T )1/2. (2.36)

The equations for hopping conduction in the presence of Coulomb interactions are

also valid in two dimensions, with β2 = 6.5 while β3 = 2.8 as calculated numerically

[28].

The temperature smears out the Coulomb gap at energies kBT > Γ and therefore

interaction effects are only observed when Γ > kBT .

In disordered systems such as partially fluorinated graphene we see evidence for

both Mott (MVRH) and Efros-Sklovskii (ES-VRH) for different fluorine coverage levels

see chapter 4 and we use this theory to describe the temperature dependence of the

resistivity.

2.5 Quantum Dots

A quantum dot is an artificially structured object which may be produced by electro-

static gates or physical size reduction of conductive structures such that the charge

carriers are well localized. As a result discrete energy levels form within the dot. To

observe such quantum effects, the size of the device must be reduced to sub microm-

eter and the temperature at which measurements are taken should be lower than the

associated quantum level spacing [30, 31].

Quantum dots made from graphene are an attractive prospect for spin qubit ap-

plications as the electron spin-decoherence time in carbon materials is expected to be

long [32].

Let us consider first a small metallic island surrounded by a dielectric environment.

The potential φ follows a linear relation with the charge Q which resides on the island

relative to infinity where the potential is set to zero. The factor of proportionality is

known as the capacitance C of the body, C = Q/φ. The associated electrostatic energy
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is then simply E = Q2/2C.

The associated energy scale for the transfer of a single electron to a metallic island

is Ec = e2/C. Therefore in order to be able to observe the addition of a single electron

the charging energy Ec must be larger than the other associated energy scales, such as

temperature or bias voltage for instance.

For a metallic sphere or disk the capacitance is linearly related to the diameter of

the object C ∝ D. To increase Ec we need to reduce C which can be achieved by

shrinking the spatial dimension of the metallic island.

e-
SOURCE

DRAIN

DOT

Cs

CD
Cg

GATE

Vsd

Vg

Isd

Rs

RD

Figure 2.11: Diagram and equivalent circuit for a quantum dot, showing source and
drain reservoirs connected to a conductive island by a parallel resistor and capacitor.

To probe the electron transport of the charging island one needs to contact the

island with metallic leads, Figure 2.11 shows a schematic for a quantum dot system,

the charging island is separated from reservoirs of electrons by capacitive and resistive

links.

Due to the charging energy the tunneling of electrons can be easily suppressed at low

temperatures, this phenomenon is known as Coulomb blockade. The charging energy

is related to the total capacitance by the following relation,

Ec = e2/CΣ. (2.37)

Where CΣ is the sum of the capacitances CΣ = Cg + Cs + Cd. Another important

quantity is the tunnel resistance Rs, Rd which has to be large in order to observe

Coulomb blockade and the minimum value for this tunnel resistance can be estimated

using the uncertainty principle ∆E∆t > h. We have ∆E = e2/CΣ and ∆t = RtCΣ
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which gives Rt > h/e2 or ≈ 26 KΩ. In order to observe Coulomb blockade Rt must be

significantly larger than h/e2 .

Finally, if confinement effects are large enough in all three dimensions such that

the electron dynamics are governed by quantum effects then the system can be called

a quantum dot.

The model which describes the electron dynamics in these systems is known as the

constant interaction model, which is based on three assumptions. Firstly the Coulomb

interactions of the electrons on the dot and the environment are parameterized by

a single capacitance CΣ which is the sum of the capacitances in the system. The

second assumption is that the single particle energy spectrum δε is independent of the

Coulomb interactions. The third assumption is that the tunnel barriers which connect

the quantum dot to the source and drain reservoirs be large such that the conductance

is less than 2e2/h, this ensures that the charge on the dot is quantized [30].

Using these assumptions the total energy of a single dot with N electrons in the

ground state is given by [30],

U(N) =
(−|e|(N −N0) + CSVS + CDVD + CGVG)2

2CΣ
+

N∑
n=1

εn (2.38)

here e is the electron charge, eN0 is the charge on the quantum dot due to the

positive background of the donors. VS , VD and VG are the potentials applied to the

source, drain and gate electrodes. The last term is the sum over single particle energy

levels εn which depends on the characteristics of the confinement potential and nature

of the carriers which is determined by the crystal’s material properties.

The electrochemical potential of the dot µ(N) is defined as the energy required to

add the Nth electron to the dot with (N − 1) electrons,

µ(N) = U(N)−U(N−1) = (N−N0−1/2)Ec−Ec/e(CSVS+CDVD+CGVG)+εN (2.39)

where Ec = e2/CΣ is the charging energy. The addition energy i.e. the energy

required to add an additional electron to the quantum dot is given by,

Eadd = µ(N + 1)− µ(N) = Ec + δε. (2.40)

In this expression we have a classical term Ec and a quantum term δε . For instance

in a system of massive carriers δε ≈ h2/8mD2 where D is the diameter of the quantum

dot and m is the effective mass of the carriers. In a graphene quantum dot (where the
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carriers are massless) the quantum level spacing is δε ≈ vFh/2D where vF is the Fermi

velocity of the charge carriers. Therefore, for a 200 nm island we have δε ≈ 10 meV

while a similar size GaAs island only gives δε ≈ 0.1 meV at a realistic 2DES electron

density. This makes graphene interesting for quantum applications where quantum

behaviour exists at higher temperatures. The physics of graphene quantum dots is at

the focus of chapter 5.

Figure 2.12: (a) Transport is blocked when no level lies between the chemical potentials
of the source and drain electrodes (b) when a level is moved between the source and
drain chemical potential by application of a gate voltage then current can flow through
the dot. (c) Measured current through the quantum dot as a function of gate voltage.
Adapted from [30]

Figure 2.12(a) shows the quantum dot energy level diagram with the source elec-

trode at chemical potential µs, the drain electrode is at µD and the energy levels due to

spatial confinement. In the zero bias regime (where the excitation voltage eVb < kBT )

we require the e(µS−µD) < kBT . The ladder of discrete levels which exists within the

dot may be shifted by means of an external gate voltage. When a level exists between

µS and µD, electrons can flow through the dot as shown in Figure 2.12(b). On the

other hand, if the levels are outside this energy window µs − µd the current is blocked
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Figure 2.12(a). This process of conduction is known as Coulomb blockade. Figure

2.12(c) shows the current through the quantum dot as a function of gate voltage, the

peaks in the current exist when a level is aligned and these conductance resonance’s

follow the line-shape [33],

G = G0cosh
−2(eαGδVG/2.5kBTe) (2.41)

where αG is the back gate lever arm and is defined as αG = Cg/CΣ. δVG is the

distance in VG between successive conductance resonances and Te is the electron tem-

perature in the system.

Figure 2.13: (a) A disordered quantum dot the transport here is diffusive and the
electron scatters off impurities before passing to the drain electrode. (b) A ballistic
quantum dot where the electron scatters off the walls of the dot and not from impurity’s
within the bulk of the dot. Adapted from [31].

For quantum dots consisting of just a few electrons the addition spectrum will

exhibit maxima at N = 2, 6 and 12 corresponding to completely filled shells analogous

to shells in atoms. The single-particle model plus constant charging energy as described

above is in good agreement when compared to calculations of a few electron system
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[31].

While calculations are feasible in small dots, they become impractical for dots with

several hundred electrons as all inter-particle interactions must be taken into account.

Dots with no particular geometric symmetry with large N lead to chaotic single-particle

dynamics due to scattering from irregular edges or impurities. Therefore the con-

ductance through dots of this type fluctuates randomly when various parameters are

altered, this is known as the statistical regime.

Classical chaos is the exponential sensitivity of the time evolution of a dynamical

system to its initial conditions and is well understood [31]. The link between classical

and quantum chaos is known as the Bohigas - Giannoni - Schmit (BGS) conjecture,

that the statistical quantal fluctuations of a classically chaotic system are described

by random matrix theory (RMT) [34]. In RMT the only relevant information is the

system’s fundamental space-time symmetries. The only physical parameter is δε the

mean level spacing, and this leads to universal predictions.

Figure 2.13(a) shows a quantum dot in the diffusive regime - i.e. l < L (l is the

mean free path while L is quantum dots characteristic size) where the electron scatters

off impurities inside the dot, the associated energy scale in this system is known as the

Thouless energy, Et = ~/τD where τD is the diffusion time. Figure 2.13(b) shows a

ballistic dot where the electron passes from source to drain electrode without scattering.

When the boundaries are irregular, the electron’s dynamics are mostly chaotic. The

relevant time scale in ballistic dots is the ergodic time τC which is roughly the time of

flight across the dot. The related energy scale ET = ~/τC which is termed the ballistic

Thouless energy.

The chaotic nature of the classical motion can only be revealed if the electron

scatters off the boundaries several times before escaping. For the predictions of RMT

to hold we require that τescape > τc - i.e. the time for the electron to escape must

be longer than the ergodic time, this is only possible if the electron scatters from the

boundaries. Equivalently the width of a level Γ in the dot must be small compared to

ET . For a diffusive dot a similar condition Γ < EC is required.

The level repulsion due to electrons inside the dot leads to statistical dynamics

which are well described by (RMT) and the type of distribution describing the level

fluctuations depend only on the symmetries of the system. If there is no repulsion the

levels would move randomly relative to each other and so they will show a Poisson-

distribution as the peak probability would occur for zero shift away from Ec [31]

P (S) = a exp (−bS) (2.42)
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where S is the normalized level spacing S = (∆E−Ec)
<δε> , and the constants can

be determined from the normalization conditions < S >=< SP (S) >= 1. For the

Poisson distribution a = b = 1. If however we turn on repulsion in the system then the

probability for zero energy shift would be small.

In fact the distributions which represent the level spacing fluctuations depend only

on the symmetry of the system and they are represented by: Gaussian orthogonal

(GOE), Gaussian unitary (GUE) and Gaussian symplectic (GSE) ensembles,

PGOE(S) =
π

2
S exp (−πS

2

4
),

PGUE(S) =
32

π2
S2 exp (−4S2

π
),

PGSE(S) =
218

36π3
S4 exp (−64S2

9π
).

(2.43)

These distributions are observed when the following symmetry conditions are obeyed.

For the (GOE) distribution the system must have time inversion + int. spin or time

inversion + space rotation symmetry, while for the (GUE) has no time inversion sym-

metry and the (GSE) has only time inversion symmetry. Orthogonal, unitary and

symplectic correspond to the allowed transformations [31].

Distribution function Space time Symmetries

GOE time inversion + int. spin or time

inversion + space rotation

GUE no time inversion

GSE time inversion

The differences between the functions are not dramatic so a large ensemble is re-

quired to differentiate between the various statistics.

The quantum dot is composed of electrons - i.e. Fermions. We should therefore

expect in our quantum dot a parity effect due to the number occupancy on the dot.

If there is an even number of electrons then the energy cost to add an extra electron

on the dot is Ec + δε while if there is an odd number of electrons on the dot then the

energy cost to add an electron onto the dot is Ec. Taking this into account the full

distribution for level spacings on a quantum dot is,

P (S) = 1/2[δ(S) + P i(S)] (2.44)
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where the delta function is centred on EC . This function is then convolved with a

Gaussian function to take into account thermal broadening. Observations of this bi-

modal distribution are rare and have been reported in CdSe and GaAs quantum dots

with small gas parameter (The ratio of the Coulomb repulsion to the kinetic energy

of an electron at the Fermi surface, rs = Ee−e/EF ) [35, 36]. The reason that this bi-

modal structure has not been observed is due to small statistical ensemble and secondly

is thought to be due to large gas parameter where the electron-electron repulsion of the

electrons on the dot ‘scrambles’ the neighbouring levels, so no bi-modal distribution

will be observed. [37].

2.6 Electron transport in a perpendicular magnetic field.

2.6.1 Classical Hall effect

It may be important in some circumstances to have knowledge of the carrier concen-

tration of the material. The Hall effect is a simple method which is used to estimate

the carrier concentration. This method becomes important when characterizing heavily

doped materials, for instance heavily doped graphene where the carrier concentration

cannot be estimated by the gate dependence of the resistance.

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - 

B 

jx
Ey vx

Ex

Figure 2.14: Schematic of the Hall effect.

Figure 2.14 shows a schematic for the classical Hall effect for a material which has

a free electron gas with electrons traveling in the x direction with a current density

jx which are accelerated by an electric field Ex and have associated with them a drift

velocity −vx. If one applies a perpendicular magnetic field in the z direction, the trajec-
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tory of the electrons will be bent due to the Lorentz force and electrons will accumulate

on one side of the conductor while holes on the opposite side of the conductor. This

charge accumulation creates an electric field Ey which will balance out the Lorentz

force. The force acting on the electron is,

F = q[E + (v ×B)]. (2.45)

Charge will build up on opposite sides of the conductor until the forces will balance

- i.e. F = 0 then,

qEy = qvxB. (2.46)

The Hall resistivity is defined as

ρxy =
Ey
jx

= RHB, (2.47)

where RH is the Hall coefficient. In eq 2.47 we have the current density in a material

with a carrier concentration n with a unit electrical charge e which is expressed as,

jx = −nevx. (2.48)

Substituting eq. 2.48 into RH = vx
jx

we have an expression for the Hall coefficient

in terms of the carrier concentration and charge of the electron,

RH = − 1

en
. (2.49)

This is a useful tool to determine the majority carrier concentration. Indeed the

measurement of Hall resistivity should be ρxy ∝ B for a constant carrier concentration

n.

Upon increasing the external magnetic field, charge carriers can finally traverse

a cyclotron orbit without experiencing scattering. At this value of magnetic field,

quantum effects play a central role as it will be apparent in the following section.

2.6.2 Shubnikov de Haas effect of the electrons in graphene.

In the previous section, it was concluded that the Hall resistivity ρxy ∝ B. Figure 2.15

shows the longitudinal resistance and Hall resistance as a function of magnetic field

for a mono-layer graphene sample. It can be seen that for low magnetic field the Hall

resistance is indeed proportional to the magnetic field and the conclusions of section
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2.6.1 hold.

However, experimentally it is apparent that at intermediate magnetic fields 1 <

B < 2 T oscillations occur in the longitudinal resistance. While for higher magnetic

fields B > 2 T, plateaus develop in the Hall resistivity and these plateaus correspond

to oscillations in the longitudinal resistance.

(a)

Figure 2.15: Observation of the quantum Hall effect in graphene, adapted from [38].
The red curve corresponds to the longitudinal resistance of the graphene sample as
a function of magnetic field while the black curve corresponds to the Hall resistance
measured using voltage probes at opposite sides of the graphene sheet.

To understand the high magnetic field behaviour of the magneto-conductance, we

have to go beyond the classical Hall effect introduced in section 2.6.1 and consider

the quantum nature of the charge carriers. The Lorentz force causes a bending of the

trajectory of the charge carriers, which are now localized on cyclotron orbits. These

orbits are quantized following the Bohr-Sommerfeld relation,∮
p · dr = (n+ 1/2)2πh. (2.50)

Where p is the momentum and n is an integer. From this assumption it can be

shown that the flux Φ through the orbit is,

Φ = (n+ 1/2)(2π~/e). (2.51)

The area in real space An of the orbital is related to the area in k space Sn by,

An = (~/eB2)Sn. The flux through one orbital Φn = BA = (~/e)2Sn/B can then be

31



2. Theory

equated to eq. 2.51 to give,

Sn = (n+ 1/2)(2π/~)B. (2.52)

If the magnetic field is then incremented by ∆B which is enough to give two suc-

cessive orbits at levels n and n+ 1 then,

Sn (1/Bn+1 − 1/Bn) = 2πe/~. (2.53)

This important result shows that the oscillations in longitudinal resistance with

magnetic fields can be related to the area of the Fermi surface S = πk2
F . If one has

knowledge of the density of states of the material the frequency of the oscillations can

then shed light on the carrier concentration of the material as discussed below for the

case of graphene.

The low energy expansion of the Hamiltonian is shown in eq. 2.10, this equation

can be rearranged in the presence of a magnetic field directed perpendicular to the flow

of current such that the magnetic vector potential has coordinates A = (0,−Bx, 0),

(
−Ek (−i~ ∂

∂y − eBx+ ~ ∂
∂x)vF

(−i~ ∂
∂y − eBx− ~ ∂

∂x)vF −Ek

)(
hΓA(x)

hΓB (x)

)
exp(ikyy) = 0

(2.54)

substituting λ = EklB
~vF (where lB =

√
~/eB is the magnetic length) into eq. 2.54

and writing it out as two separate linear equations,

~vF
lB

(
−λhΓA(x) +

(
kylB −

x

lB

)
hΓB (x) + lB

dhΓB (x)

dx

)
= 0

~vF
lB

(
−λhΓB (x) +

(
kylB −

x

lB

)
hΓA(x)− lB

dhΓA(x)

dx

)
= 0

(2.55)

making the substitution ψ = x
lB
− kxlB then eq. 2.55 can be simplified to,

− λhΓA(x)− ψhΓB (x) +
dhΓB (x)

dψ
= 0

− λhΓB (x)− ψhΓA(x)− dhΓA(x)

dψ
= 0

(2.56)
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solving simultaneously eq 2.56 we arrive at the second order differential equation

where we have eliminated hΓB ,

−d
2hΓA

dψ2
+ ψ2hΓA = (λ2 + 1)hΓA (2.57)

The harmonic oscillator equation is,

− ~2

2m

d2ξ

dx2
+
kx2

2
ξ = Eξ (2.58)

rearranging and substituting in k = ω2m where ω = eB/m then eq. 2.58 becomes,

−d
2ξ

dx2
+ x2

(
m2ω2

~2

)
ξ =

2mE

~2
ξ. (2.59)

Then making the substitution x→ x/lB and simplifying this equation becomes,

− d2ξ

d(x/lB)2
+ (x/lB)2ξ =

2E

~ω
ξ (2.60)

One can then directly compare equations 2.60 with equation 2.57 to produce the

solutions for the quantized levels in graphene,

λ2 + 1 =
2E

~ω
= 2N + 1, (2.61)

where N = 0,1,2, ..... so λ = ±
√

2N remembering we made the substitution λ =
EklB
~vF so substituting back in for λ we get the quantized energy levels for graphene in a

magnetic field which are known as Landau Levels,

EN = ±~vF
lB

√
2N = ±VF

√
2eB~N. (2.62)

The Shubnikov de Haas effect is observed as the periodic oscillations of the longitu-

dinal conductivity with inverse magnetic field, the frequency of this oscillation allows

accurate determination of the carrier concentration. To obtain a expression relating

the frequency in inverse magnetic field to the carrier concentration we consider two

adjacent Landau levels at magnetic field BN and BN+1 which coincide with the Fermi

energy Ef , using eq. 2.62 this leads to two equations,

EF = vF
√

2eBN~N

EF = vF
√

2eBN+1~(N + 1).
(2.63)
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Rearranging both the above equations for N and solving simultaneously gives,

1 =
~k2

F

2e

(
1

1/BN+1 − 1/BN

)
. (2.64)

Finally we must consider the density of states of graphene in order to rearrange eq.

2.64 in terms of carrier concentration. The density of states is defined as the number

of states per interval of energy at each energy level that are available to be occupied

by electrons which is written down as simply g(E) = dN/dE, for graphene the density

of states is therefore,

g(E) =
2EA

π(kF )2
(2.65)

where A is the area and the factor 2 comes from the valley degeneracy. The density

of states for graphene is linear with energy which is in contrast to conventional 2

dimensional semiconductors where the density of states is constant. Upon integrating

up to the Fermi energy EF it can be shown that the carrier concentration in graphene

is related to the Fermi wavevector by πn = k2
F , substituting this into eq. 2.64 then one

arrives at,

n =
4e

h

(
1

1/BN+1 − 1/BN

)
=

4e

h
fSdHO (2.66)

where fSdHO corresponds to the Shubnikov de Haas oscillation frequency. This is

a very useful tool especially when characterizing an electron system with majority and

minority carrier types. This characterization tool plays a crucial role in the structural

determination of few layer graphene flakes intercalated with FeCl3 shown in Chapter

8

Further information can be extracted from the amplitude decay of the Shubnikov

de Haas oscillations with increasing temperature. Thermal activation of carriers at

higher temperatures lead to a washing out of the oscillations at higher temperatures.

The temperature dependence of the amplitude decay of the oscillations follows the

expression,

A(T ) =
T

sinh (2π2kBTmc/eB)
(2.67)

where A is the amplitude of the oscillation, T is the temperature of the system and

mc is the cyclotron mass. This equation was derived for massive electrons by [39] and

interestingly it is also found to be valid for electrons in graphene [38]. This expression

34



2. Theory

allows one to extract the cyclotron mass of the carriers in a material by fitting eq.

2.67 with the free variable mc. It allows us to distinguish between massless carriers of

mono-layer graphene and massive carriers of bi-layer graphene in intercalated 5-layer

graphene, where electron transport takes place though parallel bi-layer and monolayer

electron systems, see Chapter 8.
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Chapter 3

Experimental Techniques.

3.1 Graphene Characterisation

3.1.1 Optical contrast

Interestingly graphene which is a single atomic layer of carbon atoms absorbs a striking

amount of electromagnetic radiation and shows universal absorbance of πα ≈ 2.293 % (

where α is the fine structure constant), or equivalently a universal optical conductance

of σ = πG0/4 (where G0 = 2e2/h [40] is the quantum of conductance). This is illus-

trated in Figure 3.1 which shows that the measured absorbance and sheet conductivity

do not depend on the photon energy due to the absence of a band gap in graphene [41].

Figure 3.2 shows the measured wavelength dependence of the optical contrast of

graphene placed on a conventional Si++ (inf) / SiO2 (275 nm) substrate for up to 5

layers. The peak in the optical contrast shown in in Figure 3.2 sits at ≈ 525 nm or green

light. This maximum of the optical contrast occurs due to interference effects in the

SiO2 cavity and can be explained simply by the application of the Frenel equations [42].

Therefore selecting a green filter when identifying graphene flakes enhances the observed

contrast. Optical contrast provides an accurate method for identifying graphene flakes

up to 3L thick, for accurate identification of graphene flakes for more than 4L, we need

to make use of Raman spectroscopy.
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Figure 3.1: Universal optical conductivity of graphene for three separate mono layer
graphene samples. Adapted from [40]

Figure 3.2: Measured optical contrast for graphene layers up to 5 on Si/SiO2.
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3. Experimental Techniques.

3.1.2 Raman Spectroscopy

Raman spectroscopy is a useful non invasive tool used to characterize graphene and can

provide information such as layer number determination, doping level and disorder level.

Below is a short introduction to the principles of Raman spectroscopy of graphene.

When light is irradiated onto graphene it excites electrons into the conduction band.

The excited electron then scatters off a phonon before recombining to emit a photon of

lower energy. The reduction in energy of the emitted photon from the incident photon

is a measure of the particular phonon energy, expressed in units of wavenumber ν cm−1

which can be converted into phonon energy hcν J .

Therefore, Raman spectroscopy grants easy access to the phonon spectrum of a

material. For the case of graphene the unit cell of graphene consists of two atoms

one of sub-lattice A and one of sub-lattice B as such there exists 6 phonon branches,

in which three acoustic (A) and three optical (O). For one acoustic branch (A) and

one optic (O) phonon branch, the atomic vibrations are perpendicular to the atomic

plane and they correspond to the out of plane phonon modes (o). For the two acoustic

and two optic phonon branches , the vibrations are in-plane (i). The directions of

the phonon modes are considered relative to the nearest carbon-carbon atoms and are

therefore classified as the longitudinal (L) transverse (T). Therefore, along the high

symmetry directions ΓM and ΓK, the six phonon dispersion curves are assigned to

LO, iTO, oTO, LA, iTA and oTA phonon modes, Figure 3.3(a).

Figure 3.3(b) shows the Raman processes responsible for the characteristic Raman

spectrum shown in Figure 3.3(c).

The most prominent feature of the Raman spectrum are the G (1580 cm−1 ) and

G’(2D) (2700 cm−1) bands and if the sample is defected - i.e. due to missing atoms

or other short range impurities such as sp3 bonded carbon - a D band is seen at (1350

cm−1).

The G - band is associated with doubly degenerate (iTO and LO) phonon mode

at the Brillouin zone center. This is the only band originated by a normal first order

Raman process, while the G’(2D) comes from either a doubly resonant Raman process

with an iTO phonon or a triply resonant process.

The D and the D’ bands do not exist in pristine graphene, instead to activate this

band a defect is required. The band originates from a phonon at the K point of the BZ.

In order to observe the D band, an interaction with a defect must occur, the excited

electron can then be scattered off a defect elastically in order to recombine [43].
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(a)

(b)

(c)

Figure 3.3: (a) Phonon spectrum of graphene. (b) (left) First order G - band process
and (centre) one - phonon second order DR process for the D - band (Inter-valley)
(top) and for the D’ process (Intra-valley) (bottom). (Right) two-phonon second order
resonance Raman spectral process (top) and for double resonance (G’ or 2D), and (bot-
tom) for the triple resonance (G’ or 2D) band process (TR) for mono-layer graphene.
(c) Typical Raman spectrum for a graphene sample with disorder such that the D -
resonance is activated. Adapted from [43]
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3.1.2.1 Layer number Determination

Interestingly one can use Raman spectroscopy to determine more accurately the number

of layers present in a graphene sample by using the ratio of the integrated intensity

of the G-band to the integrated intensity of the Si-band of the substrate. Intuitively

this is obvious as the more graphene there is the more signal one gets from sp2 bonded

carbon atoms while the amount of light that gets to the silicon is reduced. Therefore

with increasing the numbers of layers, a reduction of the intensity of the silicon peak

and an increase of the intensity of G peak are observed [44] see Figure 3.4.

Figure 3.4: (a) Ratio of the integrated intensity of the G to the Si peak in multi-layer
graphene for a large ensemble of flakes for tox = 104 nm and (b) for 280 nm. Adapted
from [44]
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3.1.2.2 Defect Level

Raman spectroscopy can be used to identify the level of disorder in a graphene flake,

this is particularly important when characterizing partially fluorinated graphene. Upon

fluorination we introduce a certain level of disorder or short range defects in the form

of sp3 bonded carbon, which behaves similarly to defects such as missing carbon atoms

caused by ion bombardment. These defects give rise to the D-band as discussed above.

The ratio of the integrated intensity of the D band to that of the G band gives infor-

mation on the size of the defect radius [45].

Figure 3.5(a-d) shows the development of the Raman spectrum for mono-layer

graphene irradiated to 5 different levels of ion-bombardment which correspond to 5

different inter defect distance LD. The ratio of the integrated intensity for these sam-

ples is plotted in Figure 3.5(e) with the solid lines being fits to the following equation

[45],

ID
IG

= CA
(r2
A − r2

S)

(r2
A − 2r2

S)
[e−πr

2
S/L

2
D − e−π(r2A−r

2
S)/L2

D ] (3.1)

Where rA and rS in eq 3.1 are length scales that determine the region where the D

band scattering takes place. More precisely rS determines the radius of the structurally

disordered region caused by the ion bombardment and rA is defined as the radius of the

area surrounding the point defect in which the D band scattering takes place. Extracted

values for rS and rA are 1 nm and 3.1 nm. From this information we can determine

the inter defect distance and it will be used in in Chapter 4.
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(a) (b) (c) (d)

(e)

Figure 3.5: (a-c) Raman spectra for an ion-bombarded graphene flake at 3 different
lase energies. (d) Raman spectra for LD = 7 nm obtained using three different laser
energies.(e) ID/IG vs LD for all single layer samples. Adapted from [45]

3.1.2.3 Doping Level

Finally Raman spectroscopy is also valuable when identifying the doping level in graphene

materials. This can be done by monitoring the position of the G-peak in graphene. In

the undoped state the G-peak lies at 1585 cm−1 wavenumber. Upon doping its energy

up shifts -this is also known as ‘stiffening’ of the Raman mode [46]. Figure 3.6 shows

the shift of the G-mode for varying degrees of doping achieved by means of a gate in

this system. It can be seen that both electron and hole doping lead to an energy up

shift of the Raman G-peak. However for electron doping levels > 1014 cm−2 strong

non-adiabatic effects become important and a strong softening of the Raman G - peak

is seen [47].

The stiffening of the G-peak is a useful tool to characterize few-layer intercalated

graphene as it will be shown in Chapter 8.
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Figure 3.6: Shows the position of the G-peak in graphene as a function of doping level.
Adapted from [46]

3.2 Graphene transistor

The chemical potential in graphene can be shifted by the application of an electric field,

which allows for the possibility of varying the carrier concentration in graphene. This

electric field is experimentally easy to control when embedding graphene in a transistor

structure with graphene placed on a thin dielectric (e.g. native SiO2) separating a

metallic plate (See Appendix for detailed description of graphene device preparation).

Typically the silicon wafers that are used in our experiments are heavily p-doped

silicon coated by a 300nm thick SiO2 layer. We have then a plane plate capacitor,

with the capacitance being, C = Q/Vg where Q = Ne (N is the total electrons in the

graphene sheet and Vg is the voltage applied to the p-doped silicon with respect to the

graphene flake.

This gives,

n[cm−2] = cgVg. (3.2)

Using the parallel plate capacitance relation cg = C/A = εrε0/de where d is the

oxide thickness, εr is the relative permittivity of the SiO2 (εr = 3.9) and ε0 is the

permittivity of free space. From this it can be shown that the carrier concentration on

the flake is related to the gate voltage Vg by,

n[cm−2] = 7.19× 1010
·Vg. (3.3)

43



3. Experimental Techniques.

The density of states for graphene is dN/dE = g(E) = 2E/π~2v2
F where vF ≈ 106

ms−1 is the Fermi velocity. This relation can be integrated up to the Fermi level and

rearranged for EF to give,

EF = 31 ·
√

(Vg)[meV ]. (3.4)

For accurate carrier concentration determination the gate voltage must be correlated

with Shubnikov de Haas measurements as discussed in Section 2.6.2.
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Chapter 4

Electron properties of fluorinated

graphene transistors.

4.1 Abstract

We have fabricated transistor structures using fluorinated single-layer graphene flakes

and studied their electronic properties at different temperatures. Compared with pris-

tine graphene, fluorinated graphene has a very large and strongly temperature depen-

dent resistance in the electro-neutrality region. We show that fluorination creates a

mobility gap in graphene’s spectrum where electron transport takes place via localized

electron states, furthermore by tuning the fluorine coverage it was found that there is

a transition from Mott variable range hopping (VRH) to Efros-Sklovskii (VRH) where

electron - electron interaction creates a Coulomb gap in the density of states.

4.2 Introduction

In this first experimental chapter we have succeeded in fabricating transistor structures

with fluorinated graphene mono-layers and studied their transport properties at tem-

peratures from 4.2 to 300 K. Fluorinated graphene flakes were separated by mechanical

exfoliation [26] from fluorinated graphite with fluorine contents between 24% and 100%.

They are then processed into transistor structures which have shown a strong increase

The results in this Chapter have been published as F. Withers, M. Dubois and A. K. Savchenko,
Phys. Rev. B 82, 073403 (2010) and F. Withers, S. Russo, M. Dubois and M. F. Craciun, Nanoscale
Res. Lett. 6, 526 (2011).
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4. Electron properties of fluorinated graphene transistors

of the resistance in the electro-neutrality region, caused by the opening of a mobility

gap in the graphene spectrum.

4.3 Experimental details

4.3.1 Device fabrication

There are two main ways to produce fluorinated graphite [20, 48–50]. In the first

graphite is heated in the presence of F2 to temperatures in excess of 300◦C, so that

covalent C-F bonds are formed and modify the carbon hybridisation. The layered

structure of graphite is then transformed into a three-dimensional arrangement of car-

bon atoms. In the second, graphite is exposed to a fluorinating agent, XeF2, and the

process is performed at a temperature lower than 120◦C as XeF2 easily decomposes on

the graphite surface into atomic fluorine. Due to its reactivity and diffusion, the fluo-

rination results in a homogeneous dispersion of fluorine atoms that become covalently

bonded to carbon atoms [49, 51]. At low fluorine content (F/C atomic ratio ≤ 0.4),

conjugated C-C double bonds in the non-fluorinated parts and covalent C-F bonds in

corrugated fluorocarbon regions coexist [50, 52], with the concentration of the covalent

bonds increasing with concentration of fluorine.

In this work we use both methods of fluorination of the original graphite material.

We first considered fully fluorinated HOPG graphite (CF)n as a starting material.

The flakes are mechanically exfoliated from the fluorinated graphite onto conventional

Si/SiO2(275nm) substrates. The produced flakes are noticeably smaller (∼1µm in

size) than the flakes fabricated by the same method from non-fluorinated graphite.

They contain more than 10 mono-layers. After optical identification the flakes are

electrically contacted into transistor structures by electron beam lithography followed

by the evaporation of 5 nm Crome (Cr) followed by 50 nm of Gold (Au).

4.3.2 Raman spectroscopy

The many-layer exfoliated flakes were first characterised by Raman spectroscopy using

excitation light with a wavelength of 532 nm and a spot size of 1.5 µm in diameter. An

incident power of ∼5 mW was used. We ensured that this power does not damage the

graphene by performing Raman measurements on a similarly sized pristine graphene

flake which shows the common spectra of mechanically exfoliated graphene: the G and

2D bands at 1580 cm−1 and 2700 cm−1, see Figure 4.1(a).

In fully fluorinated graphene, a D-peak appears at 1350 cm−1 and its intensity is
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Figure 4.1: Raman spectra for (a) pristine graphene, (b) multi-layer fully fluorinated
multi-layer graphene, (c) fluorinated graphene mono-layer exfoliated from CF0.24 and
(d) fluorinated graphene mono-layer exfoliated from CF0.28.

larger than that of the G and 2D peaks, see Figure 4.1(b). As the D resonance requires

a defect for its activation, its presence is associated with an increased degree of disor-

der [53–55]. Various defects can contribute to the D-peak, such as bond dislocations,

missing atoms at the edges of the sample and sp3 hybridized carbon atoms. Previ-

ous studies demonstrated that the intensity of the D-peak produced from the edges

of a graphene flake is relatively small compared to the G peak [56]. Our experiments

consistently show that the D-peak of pristine graphene flakes with similar size as fully

fluorinated graphene is below the resolution of the measurement, see Figure 4.1(a).

This suggests that the edges of the fully fluorinated flakes give minimal contribution

to the D-peak in Figure 4.1(b). Furthermore, structural studies [20] of the bulk fully

fluorinated graphite material show that the defects are sp3 bonded carbon atoms and

not bond dislocations. Therefore, we expect the main contribution to the D-peak of
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fully fluorinated graphene to come from sp3 bonded carbon atoms. Electrical transport

measurements were taken in either 2 - terminal or 4 - terminal configuration in either

constant voltage or constant current regime. The voltage drop across the sample was

carefully varied in order to prevent electron overheating - i.e. Vb < kBT/e.

4.4 Results

4.4.1 Properties of flakes exfoliated from (CF)

Several transistor structures have been fabricated (See section 3.2 and Appendix). All

the studied devices show very large resistance (more that 1 TΩ) and no gate-voltage

control of the resistance, typical of a wide band gap semiconductor material. Recent

works [27, 57] have shown that the I/V characteristics of fully fluorinated graphene are

strongly non-linear with a nearly gate independent resistance value higher than 1 GΩ,

suggesting the presence of a band gap. The purpose of this work is to produce tran-

sistor structures with a large on/off ratio of the current. To this end, we reduced the

fluorine content by annealing the samples at ∼ 300◦C in a 10% atmosphere of H2/Ar

for 2 hrs. The resistance is decreased and a partial gate-voltage control is achieved, Fig-

ure 4.2(a). The annealing, however, has not noticeably changed the Raman spectrum

in Figure 4.1(b).

Resistance measurements of the fully fluorinated flakes after annealing show a strong

temperature dependence, Figure 4.2(a). To examine the presence of the energy gap,

we analyzed ρ(T ) at the highest gate voltage Vg =50 V, (which is still far from the

Dirac point) by an exponential law describing thermal activation of carriers across the

energy gap ∆ε: ρ = ρ0 exp(∆ε/2kBT ), Figure 4.2(b). The resulting value of ∆ε found

at high temperatures is only ∼25 meV, which is significantly smaller than the expected

energy gap for fully fluorinated graphene. It is also seen that the slope of ln ρ(1/T )

dependence decreases with decreasing T , which is a signature of hopping conduction via

localized states [28]. The fact that in the whole range of studied temperatures electron

transport is not due to thermal activation across the gap but due to hopping, has been

confirmed by re-analyzing the temperature dependence in terms of two-dimensional

hopping: ρ(T ) = ρ0 exp
(
(T0/T )1/3

)
, where kBT0 = 13.6/a2g(µ), g is the density of

localized states at the Fermi level µ and a is the localization length [28]. The results

are found to be in good agreement with this expression, Figure 4.2(b), with the value

of T0 =20000 K. This confirms that the previously found activation energy of 25 meV

is not the activation energy ∆ε that separates the localized states from extended states
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Figure 4.2: (a) Resistivity as a function of gate voltage for a fully fluorinated device.
Inset: Optical image of the device (scale bar is 1 µm). (b) Resistivity plotted against
T−1 and T−1/3 at Vg=+50 V. (c) A diagram of the energy dependence of the density
of electron states, with the Fermi level at zero energy and localized states shown by the
shaded area. (Dense shading shows occupied localized states.)

at the mobility edge, but is an activation energy δε of hopping between localized states

within the mobility gap, Figure 4.2(c). Although not measured, the value of ∆ε in

these samples seems to be larger than that in hydrogenated graphene, as the obtained

value of T0 is ∼100 times larger than in [19], indicating a smaller density of localized

states and smaller localization length.

4.4.2 Properties of flakes exfoliated from (CF0.24)

To achieve good Vg-control of fluorinated graphene transistors, one needs to fabricate

mono-layer flakes. To do this, we have used the second method of fluorination, by

gaseous XeF2. The mixture of natural graphite and XeF2 was prepared in a glove box in
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an Ar atmosphere. The reactor was then kept at 120◦C for 48 hrs, which gave a fluorine

content of 24% as measured by mass uptake. Mechanical exfoliation of the partially

fluorinated graphite is carried out under ambient conditions. Flakes are located using

an optical microscope and mono-layer flakes with an optical contrast of ∼ 5 − 7% in

green light were selected for processing into transistor structures. (We noticed that the

contrast of fluorinated mono-layers is ∼ 2% lower than that of pristine graphene on

Si/SiO2(275nm) substrates). The flakes were confirmed to be mono-layer by Raman

spectroscopy. The 2D peak which is well fitted by a single Lorentzian function, and has

a FWHM in the region of 20-30 cm−1 is typical for pristine mono-layer graphene [53].

The Raman spectrum of partially fluorinated mono-layer graphene, Figure 4.1(c),

shows much narrower D, G and 2D peaks compared with thicker layers made from

fully fluorinated graphite, Figure 4.1(b). This made it possible to detect additional

features in the Raman spectrum that also arise in hydrogenated graphene [19]: the D′

peak at ≈ 1620 cm−1, which also requires a defect for its activation, and a combination

mode (D + D′) at ≈ 2950 cm−1. It is interesting to note that in our fluorinated

graphene the ratio of the integrated intensities ID/IG = 3.8 by using eq. 3.1 [45] we

estimate the inter-defect distance of LD ≈ 5.3 nm, which we note is larger than that

found in partially (on one side) hydrogenated sample, and is comparable to that in the

samples hydrogenated on both sides [19]. This can be the result of the fact that in the

mono-layer flakes fabricated by exfoliation from fluorinated (intercalated) graphite the

probability of fluorination is equal for both sides of the plane.

Figure 4.3(a) shows the resistance as a function of gate voltage measured for a

range of temperatures. Due to the small size of the samples, ∼ 4µm2 in area, the

resistance shows strong mesoscopic fluctuations [58], and thus the R(Vg) dependences

were smoothed for the subsequent analysis using a moving average filter.

The curves in Figure 4.3(a) have been offset along the Vg-axis to account for doping,

which is detected as a shift of the maximum resistance (the Dirac point) from Vg = 0.

The partially fluorinated samples were found to be doped to Vg =+10 V (n = 0.74×1012

cm−2). This level of doping is similar to that seen in conventional (pristine) graphene

devices, which we attribute to doping by atmospheric water. Unlike pristine graphene

devices with very weak temperature dependence of the resistance, in the range of Vg =

±20 V around the Dirac point the resistivity of fluorinated samples is seen to grow by

two orders of magnitude as T decreases from 300 K to 4.2 K. Outside this region the

temperature dependence remains weak, with the mobility of carriers ∼ 150 cm2V−1s−1.

We analyze the temperature dependence of the resistance in terms of the activation

law described in section 2.3, ρ = ρ0 exp(∆ε/2kBT ), showing that it is not applicable
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Figure 4.3: (a) Resistivity of fluorinated mono-layer graphene as a function of gate
voltage. Inset: false color SEM image of the mono-layer device (scale bar is 1 µm).
Resistivity in the Dirac region plotted as a function of (b) T−1 and (c) T−1/3.

for the whole temperature range and at high temperatures gives an activation energy

of ∼ 7 meV at the neutrality point. Similarly to the fully fluorinated layers, the

resistivity ρ(T ) is fitted well by variable range hopping theory described in section 2.4,

ρ(T ) = ρ0 exp
(
(T0/T )1/3

)
, Figure 4.3(c). Figure 1.4 shows the hopping parameter T0

as a function of carrier concentration. The value of T0 approaches zero at a carrier

concentration of ±1.2× 1012 cm−2. This value gives the concentration of the localized

electron states in the energy range from ε = 0 to the mobility edge. The mobility edge
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Figure 4.4: The value of the hopping parameter T0 as a function of the carrier density.
Arrows indicate the concentration at which T0 approaches zero and the conduction
becomes metallic.

occurs at Vg ' ±20 V and indicates the transition from hopping to metallic conduction,

Figure 4.2(c).

In order to relate the obtained concentration of the localized states to the energy

gap ∆ε, one needs to know the exact energy dependence of the density of states in the

gap. For estimations, we will use the linear relation for the density of extended states

above the mobility edge, g(ε) = 2ε/π~2v2 (v = 106 ms−1 is the Fermi velocity) and a

constant value for the density of localized states below the mobility edge, Figure 4.2(c).

This gives an estimation ∆ε ∼ 60 meV and twice this value for the full mobility gap.

In this approximation the density of the localized states in the gap is estimated as 1036

J−1m−2. Using the obtained value of the hopping parameter T0 ∼500 K in the Dirac

point, one can then estimate the localization length at ε = 0 as a ∼ 40 nm.

The presence of localized states in the electro-neutrality region is clearly the result of

disorder, due to the random positions of F atoms on graphene in the partial fluorination.

The current experiment does not allow us to establish whether these states exist in the

band gap produced by fluorination, or are simply the result of a ‘smearing’ of the linear

density of states of graphene (as sketched in Figure 4.2(c)). Taking into account the

relatively small value of the parameter T0 and large localization radius a, it seems that
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4. Electron properties of fluorinated graphene transistors

the latter case is most probable and there is no large band gap created in the spectrum.

For future applications, however, it is only an increase of the resistance in the electro-

neutrality region which matters, and this is achieved in both scenarios of creation

of the mobility gap. Our results show that in order to achieve large resistances in

graphene transistors at room temperature, future efforts should be aimed at decreasing

the density of localized states in the mobility gap and decreasing the localization length,

which can be done by partial fluorination with the fluorine content in the range between

our studied values of 24% and 100%.

4.4.3 Properties of flakes exfoliated from (CF0.28)

To this end we exfoliated mono-layer flakes from CF0.28 material which is produced via

the same method at the CF0.24 flakes. Figure 4.5 shows the electron transport data for

a typical sample fabricated from this material.
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Figure 4.5: Back gate dependence of the conductance for several different temperatures,
a clear transport gap at low temperatures can be seen where conductance resonances
can be seen. This is an indication of charging behaviour within the flakes.

Figure 4.6 shows a high resolution measurement of the temperature dependence used

for further analysis. Unlike partially fluorinated flakes which exhibit Mott (VRH), a

good agreement with Efros-Sklovskii variable range hopping (ES-VRH) is seen. In this

scenario a coulomb gap is opened in the density of states due to coulomb repusion.

The conductance follows the relation G ∝ exp(−(T0/T )1/2) which can be seen by the

linear fit shown in Figure 4.6(b). The value of T0 can be extracted and is found

to be 410 K. T0 is related to the localization radius through the following relation
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T0 = 6.5e2/4πε0εrξkB . The value for the localization is then ξ ≈ 106±7 nm using and

εr ≈ (εSiO2 + 1)/2 ≈ 2.5 - i.e. the average of the local dielectrics above and below the

flake. The Raman spectrum for the flake is shown in Figure 4.1(d) and exhibits the

same features as seen in the CF0.24 flakes. The inter-defect size can again be extracted

and is found to be LD ≈ 2 nm (See [45]). The flake has spacial dimensions of L ≈ 2 µm

and width W ≈ 1 µ m which is much larger than the localization size, thus the flake

can be thought of as consisting of an array of charging islands - ie. sp2 regions isolated

by insulating fluorinated sp3 hybridized carbon.
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Figure 4.6: (a) Shows a higher resolution measurement of the conductance for the
same sample shown in Figure 4.5 (b) The average conductance over this gate voltage
range plotted in terms of Efros sklovskii Variable range hopping (ES-VRH)

4.5 Conclusion

In conclusion, the possibility of fabricating a transistor structure using fluorinated

mono-layer graphene has been demonstrated. Fluorination has been shown to cause

a significant increase of the resistance in the electro-neutrality region, which is a con-

sequence of the creation of the mobility gap in the electron spectrum where electron

transport is through localized states. For flakes exfoliated from CF0.24 fluorinated us-

ing a fluorinating agent XeF2 the electron transport can be described by Mott variable

range hopping while when one increases the fluorine coverage to 28 % the electron

transport is best described by ES-VRH, where the flake can be thought of as consisting

of an array of charging islands. For a correlation between defects probed by Raman

spectroscopy and electrical transport a greater ensemble of devices is required to draw
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4. Electron properties of fluorinated graphene transistors

any conclusions. This is due to the variation of the fluorine coverage of micron sized

flakes exfoliated from bulk fluorinated graphite. The following chapter will be ded-

icated to the isolation of smaller partially fluorinated flakes exfoliated from natural

graphite fluorinated to 28 % with fluorinating agent XeF2, with the hope to probe a

single charging island.
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Chapter 5

Level spacing statistics of a

graphene quantum dot enclosed

within fluorinated graphene.

5.1 Introduction

As described in section 2.5 due to the nature of these relativistic Dirac electrons and

the absence of a band gap in graphene one cannot switch off the current and con-

fine electrons by means of an electrostatic gate [59]. A promising route to open up a

band gap in graphene and confine electrons is through chemical functionalization with

fluorine, and this indeed leads to a stable wide band semiconductor [57, 60–63]. Alterna-

tively one may etch nanostructures such as graphene nanoribbons and quantum dots in

graphene using a plasma. These systems have an energy gap due to spacial localization

of the electron wave function and may be used in future integrated electronics [64–68].

Interestingly graphene nanostructures are promising for use as components in future

quantum computing devices, due to the large quantum level spacing δε ≈ hvF /2D [64].

This experimental chapter is dedicated to the investigation of the spectral statistics

of the nearest neighbour conductance peak separations (NNS) of a graphene quantum

dot enclosed within insulating fluorinated graphene and compare this with predictions of

Random Matrix theory (RMT)[31] and with recent numerical calculations for graphene

quantum dots[69, 70]. Our quantum dot device differs from conventional graphene

quantum dots in that the boundaries or edges are terminated by fluorinated graphene

instead of etched graphene. Interestingly, unlike in conventionally etched graphene

quantum dots, here we show an impressive number of conductance resonances (> 1000)
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which constitutes the largest statistical ensemble of NNS for a quantum dot in the

quantum chaotic regime [31].

5.2 Methods

Graphene quantum dots insulated by fluorinated graphene are prepared by micro-

mechanical cleavage of partially fluorinated graphite (28 %) onto SiO2 (275 nm) /

Si++ substrates. The heavily doped silicon acts as a gate which is modulated to change

the occupancy on the dot. In Chapter 4 it was shown that charging effects play an

important role in the electron transport through partially fluorinated graphene and

that the system can be thought of as an array of conductive charging islands isolated

by fluorinated regions of graphene. The challenge here is to reduce the number of

charging islands to one and to study Coulomb blockade effects. To this end we select

small flakes (0.5 - 1 µm). This enables us to probe only a few quantum dots or even a

single quantum dot which can be confirmed by the stability diagram (see section 2.5).
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Figure 5.1: (a) Crystal structure of fluorinated graphene (green = fluorine, black = car-
bon) along with a band diagram for a wide band semiconductor typical for fluorinated
graphene. (b) Possible configuration of the graphene dot enclosed within fluorinated
graphene. (c) differential conductance vs back gate voltage taken at T = 2 K with an
excitation voltage of 125 µV (Inset : false color SEM image of the device. scale bar is
500 nm).
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Figure 5.1(a) and (b) shows the crystalline structure for fluorinated graphene and

how the graphene quantum dot is realized within the fluorinated graphene. Given the

random nature of the fluorination process we still expect the interior of the graphene

dot to be ‘peppered’ with fluorine ad-atoms [16, 17, 20].

Figure 5.1(c) shows the 2 terminal differential conductance measured at 2 K at B

= 0 T with an excitation voltage of 125 µV. The dependence is typical for graphene

quantum dot and nanoribbon devices where localized resonances within a transport

gap are seen [65, 66]. The transport gap exists in the back gate range from -10 to 25

V, within this gap exists a large number of conductance resonances are clearly visible.

5.3 Results

The observed conductance peaks are due to the Coulomb blockade effect discussed in

Chapter 2.5 and occur when the ladder of discrete energy levels are shifted by the

gate voltage, with respect to the chemical potential of the source electrode. When

these levels pass between the chemical potential of the source and drain contacts the

resonant transport occurs [31]. The energy difference between adjacent peaks is known

as the nearest neighbour level spacing (NNS) and is defined as,

∆E = Ec + δε.

Where Ec is the charging energy and is a classical term which depends on the sum

of the capacitances of the system in the following way, Ec = e2/2CΣ as was introduced

in section 2.5. δε is the quantum level spacing energy and is approximated to δε

≈ (0.2 − 1)/D eV · nm for Dirac Fermions in a disk size D [64]. This large level

spacing energy enables one to resolve the quantum level spacing energy at much higher

temperatures and for much larger quantum dots than any previous massive electron

system, this makes graphene an ideal system for testing the predictions of Random

Matrix Theory (RMT) [31].

Figure 5.2(a) shows the temperature evolution of a few conductance resonances

at T = 4 K. The conductance resonances transform into Coulomb oscillations which

occur when the capacitance between the source and drain becomes negligible compared

to the back gate capacitance. From T = 6 K measurement shown in Figure 5.2(a)

(dark blue) the separation of adjacent peaks will yield the back gate capacitance Cg ≈
e/ < δVg >≈ 3.08 aF. Therefore, using the standard Disk-Plate capacitance relation

Cbg = πεSiO2ε0D
2/4a where a is the thickness of silicon dioxide and D is the diameter of
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the graphene quantum dot we obtain D = 183 nm. The Coulomb oscillations disappear

at T ≈ 15 K which corresponds to the charging energy of the quantum dot Ec ≈ 1.3

meV so the total capacitance CΣ = 62 aF yields a back gate lever arm αbg = 0.05

[64, 71].
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Figure 5.2: (a) Temperature dependence of the conductance peaks for a region of Vg
(b) Conductance resonances for a region of gate voltage for B = 0 T and B = 0.5 T,
note the double peak structure of the resonances).

Figure 5.2(b) shows a close-up of some conductance resonances for B = 0 T and B

= 0.5 T. In general, we find that the conductance resonance fits well to the well known

line shape [33],
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G = G0cosh
−2(eαbgδVbg/2.5kBTe),

using αbg = 0.05 we obtain an electron temperature of Te = 2.2 K, which is close

to the bath temperature Tb = 2 K.
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Figure 5.3: (a) Conductance resonances for a region of Vg measured at T = 2 K with
an excitation voltage of 125 µV (b) Stability diagram for the same region of Vg

Figure 5.3(a) shows Coulomb blockade resonances for a wide range Vg and Figure

5.3(b) shows a color plot of the differential conductance as a function of Vg and excita-

tion voltage Vsd, the height in Vsd of the Coulomb diamonds yields the charging energy

for the quantum dot. We find the mean peak height is consistent with the estimate from

the temperature dependence of the conductance resonances. The Coulomb diamonds

are shown to be symmetric which implies that the capacitance of the source and drain

are equivalent [30].

Inside the transport gap exists a large number of conductance resonances, we focus

on the hole side of the transport gap between -9 V and 8 V. Conductance resonances

were analyzed by fitting each peak to ascertain the position of the mid-point. In this

region we obtain 1400, 1425, 1260, 1080 resonances for B = 0, 0.5, 2 and 6 T. The

shifts were converted to energy scale using [30],

∆E = αg∆Vg[eV ].

Random matrix theory (see section 2.5) predicts that the level spacing fluctuations

should follow one of the following distributions, which are based on the symmetries of

the system [31],
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P (S)GOE = (π/2)Sexp(−π/4S2),

P (S)GUE = (32/pi2)S2exp(−4/πS2),
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P (S)GSE = (218/36π3)S4exp(−64/9πS2).

GOE has time inversion, internal spin and spacial rotation symmetry, GUE has no

time inversion symmetry and GSE has only time inversion symmetry, see Chapter 2.5.

It has been shown numerically that as the level of disorder (either edge or internal)

is increased from zero the spectral statistics transform from Poissonian (where there

is no level repulsion) to orthogonal and ensembles with additional symmetries are not

required [69, 70]. So for a clean graphene dot the statistics should follow,

P (S)P = exp(−S)

where S = (∆E − Ec)/ < δε >. Figure 5.4(a) shows the scatter of level spacing

plotted against the investigated back gate range. It is apparent that there are two

regions of high density of points region 1, 0.2 < ∆E < 1.0 meV and region 2, 1.2 <

∆E < 6 meV. A fit of the scatter with a straight line gives information about the

change in capacitance and therefore the shape deformation of the island with changing

gate voltage [72], we find that d(∆Vbg)/dVbg ≈ 10−4 which is a change of 1 mV over

a 10 V range. This value is small when compared to the average level spacing in gate

voltage < Vg >≈ 20 mV.

Figure 5.4(b) highlights the observed oscillatory fluctuations. Finally, Figure 5.4(c-

d) show the bi-modal level spacing. The data can be understood in terms of the

bi-modal Wigner Dyson distributions predicted by random matrix theory (RMT) [31,

36, 37] in the spin resolved case. The first peak represents the thermally broadened

Ec and is represented by a Gaussian function, while the second peak represents the

fluctuating level spacings described by one of the above equations which depend on the

symmetry of the system. Another interpretation of the double peak could be assigned

to a double quantum dot, where transport can pass through each of the two dots leading

to smaller spacings which are an artifact of the double dot structure. Although this

is unlikely as it would require two dots of the same charging energy with their levels

shifted by δε for this to occur, we cannot rule this out currently. The data in Figure

5.4(c-f) are fitted by the following equation,

P (S) = 1/2(δ(S) + P i(S)))

this is then convoluted with a Gaussian function of variance σ to take into account

the fluctuations of the charging energy and also errors which exist in determining
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the exact midpoint of each fitted peak. The data is normalized so that < S >=<

SP (S) >= 1. The only fitting parameters remaining are Ec, δε and σ [35, 36].

For B = 0 T and 0.5 T a best fit for the distribution is achieved for the orthogonal

distribution with Ec = 0.8 meV for B = 0 T and 0.5 T, while σ = 0.22 and δε = 1.15

meV for B = 0 T and δε = 1.19 meV for B = 0.5 T so between 0 T and 0.5 T no

significant change in the level spacing statistics has occurred. This is surprising as the

flux required to break time reversal symmetry B∗ = h/(2eπD2) = 20 mT so one would

expect a transition from the orthogonal distribution to the unitary distribution which

has no time inversion symmetry.

It is observed that as the magnetic field is increased from 0 T to 6 T a transition of

the quantum level spacing distribution from (GOE) to a Poisson distribution occurs.

For instance the B = 2 T best fit is achieved for a (P) although a small shoulder at 2

meV is still visible. This shoulder cannot be accurately fit with (GOE) assuming that

half the probability is assigned to the fluctuating level spacings. The best fit parameters

for the Poissonian are Ec = 0.75 meV σ = 0.26 and < δε > = 1.10 meV for B = 2 T.

For the case of B = 6 T the best fit is achieved again for a Poissonian distribution with

best fit parameters Ec = 0.75 meV σ = 0.26 and < δε > = 1.07 meV.
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Figure 5.5: (a) Stability diagrams for a zoomed in region of Vg for B = 0 T and B =
6 T. (b) Cartoon of how the electron wavefunction is localized in each case. (c) The
average magneto conductance of the Coulomb oscillations.

The fact that we see only a small change in the value of the charging energy leads

us to conclude that the capacitance of the system does not change with magnetic field

up to 6 T.

In summary we observe a clear bimodal shape of the distribution at zero magnetic
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field which gradually evolves into a Poissonian distribution. A bimodal distribution

is expected for systems with a small interaction parameter rs < 1 [37], where the gas

parameter is defined as the ratio of the Coulomb interaction of two electrons separated

by an average distance to its Fermi energy -i.e. rs = Ee−e/EF [31, 36, 72–74]. For

a graphene quantum dot one expects a density independent interaction parameter of

rs ≈ 0.88 which is less than unity. Therefore under these conditions theory predicts

that a parity effect should be observed [37].

The second main observation is the transition of the best fit of the distribution

from (GOE) at zero magnetic field to Poissonian at strong magnetic fields (6 T). We

explain this as a change of the localization length ξ in the dot with magnetic field.

Adatoms on graphene cause localized electrons and this can lead to an effect known

as strong localisation, where two paths of an electron interfere destructively [28]. This

interference condition can be destroyed by the application of a magnetic field. This

effect is seen in much larger graphene flakes with disorder due to adatoms, and this

destructive interference condition can be destroyed by application of a magnetic field.

This is seen as a strong positive magneto-conductance which saturates when φ0 passes

through ξ. Lightly fluorinated graphene flakes have been shown to have localization

radii of a few tens of nm, which is much smaller than our dot size [57, 60].

At B = 0 T the electrons are fully localized. The effect of the magnetic field is to

increase the localization length until the electron wavefunction is delocalized across the

size of the dot. To investigate this further we study the mean magnetoconductance of

the Coulomb peaks and we find the positive magnetoconductance to saturate at 4.5

T which corresponds to a localization radius of ξ ≈ 20 nm consistent with the value

obtained in larger partially fluorinated graphene samples [57, 60]. Figure 5.5(a) shows

a zoomed in region of the stability diagram for B = 0 T and B = 6 T. It can be seen

that diamonds are much sharper at B = 6 T consistent with a reduction in the level of

disorder felt by the electrons.

Numerical simulations of the spectral statistics reveal that in a perfectly clean

graphene quantum dot one should expect a Poissonian distribution while for increased

edge or internal disorder one expects a transition to (GOE). At magnetic fields larger

than 6 T we see patterns in the conductance peaks which have recently been argued

to be due to LL formation inside the dot [71]. Figure 5.5(c) also shows a marked

increase in the magnetoconductance above B = 6 T. This can be explained by a change

in capacitance of the leads to the quantum dot which is seen as a reduction of the

charging energy and an increase of the conductance peak height due to less scattering

of the electrons within the dot at the on resonance positions. This is confirmed from
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stability diagram measurements at 11 T shown in Figure 5.6 which confirms the height

in Vsd is clearly lower than for B = 6 T and B = 0 T.

5.4 Conclusion

In conclusion we study the electron transport through a graphene quantum dot struc-

ture enclosed within fluorinated graphene. These quantum dots show Coulomb blockade

over a large range of Vg with over 1000 resonances observed. The nearest neighbour

level spacing distribution is clearly bi-modal which can be explained in terms of the

spin resolved constant interaction model. The statistics of the quantum level spacings

are best fit with the (GOE) distribution at B = 0 T and this distribution gradually

changes into a Poissonian distribution at B = 6 T, which we argue is due to a tuning of

the localization radius with magnetic field. More samples need to be measured before

arriving at a final conclusion on these results, effects such as internal disorder on the

level spacing as well as studies on parallel double dots need to be ruled out before

finalizing this project.

65



Chapter 6

Nanopatterning of fluorinated

graphene.

6.1 Introduction

As discussed in Chapter 1 the development of flexible and transparent electronic devices

relies on the availability of two types of material systems: semiconducting materials

for the fabrication of active areas and highly conducting materials for use in electrical

wirings [75, 76]. Although organic molecules are promising semiconducting systems

[77, 78], their intrinsic low carrier mobility and the large voltages usually required

to operate organic devices severely limit their utility for high-speed and low-power

applications [79]. Flexible conductors have been developed using metallic microwires

[80] and carbon nanotubes [81], however these materials have usually limited optical

transparency. Therefore, the demands for greater miniaturization, higher speed, lower

power use, all embedded in a transparent device truly require novel materials.

In this experimental chapter we demonstrate a promising way towards all-graphene-

electronics by using fluorinated graphene as an insulating host material. We show

that we can selectively reduce fluorinated-graphene by electron beam irradiation and

create conducting and semiconducting structures, which can be used as future electrical

wirings and active device elements respectively. We find experimentally that the relative

decrease in resistance per square upon electron-irradiation of micro-structures is at

The results in this Chapter have been published as F. Withers, T. H. Bointon, M. Dubois, S.
Russo and M. F. Craciun, Nano Lett., 11, 3912 (2011)
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least seven orders of magnitude (from 1TΩ to 100KΩ) -3 orders of magnitude more

conductive than what was previously reported in reduced graphene oxide patterning

experiments [82]. Further we demonstrate the nano-patterning of ribbons as narrow

as 40nm which exhibit a transport gap in the source-drain bias voltage whose size is

inversely proportional to the ribbon width. In this gap, electrons are localized, and

charge transport is dominated by variable range hopping in the presence of Coulomb-

interactions. The demonstrated electron beam irradiation technology that we use to

pattern nano-channels is easily scaled up to wafer size and it constitutes a step forward

to all-graphene-electronics.

6.2 Experimental details

The fluorination process of graphene is conducted prior to nanofabrication, by exposing

natural graphite to F2 atmosphere at 450◦C, resulting in a fluorine content of 28% as

measured by mass uptake [20]. Subsequently, as detailed in section 4.3.1 few-layer

fluorinated graphene flakes are obtained by mechanical cleavage of fluorinated graphite

onto SiO2 (300nm)/p-doped Si substrate which acts as a back gate. The flakes are

then identified by their low optical contrast, typically 2%− 4%. Electrical contacts are

fabricated by standard electron beam lithography, evaporation of Cr/Au (5 nm/70 nm)

and subsequent lift-off process (see the insets of Figure 6.1).

To investigate the effects of electron beam irradiation on the resistivity of fluorinated

graphene we conducted an in situ electrical characterization in the scanning electron

microscope vacuum chamber (<10−5 mbar) by means of an electrical feedthrough. This

set-up preserves the flakes from any contamination by uncontrolled atmospheric dopant

which can further modify the resistivity of our devices. An incident electron energy

of 10 keV and current of 0.13 nA was selected as it does not affect significantly the

electronic transport properties of pristine few-layer graphene. Figure 6.2 shows the

electrical transport and Raman spectroscopy for irradiated pristine few layer graphene,

the disorder effects from e-beam irradiation saturate around a few mC, this is thought to

be due to chemical functionalisation of the graphene with hydrogen and hydrocarbons

[83]. During the electron beam irradiation, all the electrical contacts and the back gate

were connected to ground.
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Figure 6.1: The plot in (a) shows IV characteristics for the fluorinated graphene device
reported in the inset after different electron beam irradiation doses. Inset: false color
SEM image of a typical fluorinated graphene device, the white bar corresponds to 1µm.
The green area corresponds to the fluorinated graphene flake, whereas the yellow parts
are the Au/Cr electrodes. (b) shows the measured sample resistance per square plotted
against the electron irradiation dose (the dashed black lines is a guideline for the eyes).
The inset shows an illustration of the device configuration under irradiation with a
beam of electrons.

6.3 Results

Figure 6.1(a) shows the evolution of the DC source-drain current versus voltage char-

acteristics for a fluorinated graphene device after a uniform electron beam irradiation

of all the flake area up to a dose of 1 Ccm−2. It is apparent that for low doses the

source-drain IV characteristics are largely non-linear with decreasing non-linearity for

higher doses. A plot of the resistance per square (Rsq) as a function of dose (see 6.1b)

summarizes the experimental finding that electron beam irradiation decreases mono-

tonically the resistivity of fluorinated graphene, up to 7 orders of magnitude from 1TΩ

down to 100 kΩ.

To test the suitability of electron beam irradiation for patterning applications, we

have performed a scaling experiment of the resistance versus width (W ) of the con-

ductive channel. We irradiate in subsequent steps neighbouring strips of 100 nm width
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Figure 6.2: (a) Shows the gate dependence of the resistivity for a bi-layer graphene
device irradiated up to 1 Ccm−2. (b) shows the Raman spectrum for the same bi-layer
graphene device irradiated up to 1 Ccm−2.

(device type a) or 500 nm width (device type b) and 1 µm length, with a dose of

1Ccm−2. 6.3(a) shows representative IV characteristics measured in situ after the pro-

gressive increase of the channel width for device (a). The resistance of the fluorinated

graphene clearly decreases with increasing the number of exposed strips following a

1/W dependence, for both devices type (a) and (b) (see 6.3(b)). These experimental

findings demonstrate that irradiation opens up a conductive channel in the otherwise

insulating fluorinated graphene host. Therefore, electron-irradiation is well suited for

patterning conductive structures on both submicron and micron scale.

Figure 6.5 shows a topographical atomic force microscopy measurement of neigh-

bouring irradiated and non-irradiated fluorinated graphene regions. It is apparent that

the electron irradiation does not cause any structural damage to the graphene mate-

rial (see Figure 6.5 (b)). However, we find a significant change in height between the

irradiated and non-irradiated regions. The height of the exposed region is 0.7nm lower

than the height of the unexposed region, with the latter equal to 2.4 nm measured from

the SiO2 (see Figure 6.5(a)). The experimentally observed reduction in height has to

be expected for electron irradiation assisted defluorination process. Indeed, previous

experiments based on temperature-assisted defluorination [57], demonstrated that the

interatomic layer spacing between atomically flat sp2 graphene layers is smaller than

the spacing between the three-dimensional atomic layers of sp3 hybridized fluorinated
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Figure 6.3: (a) IV characteristics for channels of different widths W patterned in
fluorinated graphene. Graphs in (b) show the sample resistance plotted against inverse
width W for 2 devices types (see main text). The solid lines represent linear fits to the
experimental data points (blue).

graphene [20]. The defluorination process is also consistent with the increase in the

optical contrast that we observed on all the electron irradiated fluorinated graphene

samples. Indeed, the closing of the large energy gap of fluorinated graphene is ex-

pected to increase the optical absorption transitions between conduction and valence

bands. Figure 6.4 shows white light opical images of a fluorinated graphene flake before

and after irradiation, a clear enhancement of the contrast is seen after the irradiation

procedure.

The experimental observation of a significant decrease of Rsq, a reduction of the

height and the increase in the optical contrast of fluorinated graphene upon electron

irradiation suggests that irradiation dissociates the C-F bonds, consistent with previ-

ous experimental reports on electron irradiation of graphite fluoride [84]. Indeed, the

ionization cross section for fluorocarbons has a maximum at an electron energy of 80

eV, with higher electron energies leading to progressively smaller cross sections [85].

Therefore, both backscattered and secondary electrons [86] -the latter produced by pri-

mary and back-scattered electrons- have low enough energy to break the C-F bonds.

However, the secondary electrons produced by back-scattered electrons are unlikely to

70



6. Nanopatterning of fluorinated graphene.

3.3 %

8.6 %

13.4 %

15.9 %

Before Exposure                                After Exposure

4 µm

Figure 6.4: (left) An optical photograph taken at 50 X magnification for a freshly
exfoliated fluorinated graphene flake (right) Optical photograth taken after irradiation
to 1 Ccm−2. A clear enhancement of the optical contrast is observed.
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Figure 6.5: (a) shows an AFM histogram data for the unexposed (orange) and exposed
(red) fluorinated graphene extracted from the topographical AFM image shown in (b)
-yellow corresponds to 2.4 nm measured from the SiO2 substrate. The bottom panel in
(b) illustrates the crystal structure of pristine graphene (grey) and fluorinated graphene
(green).
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play a role in our experiments since the mean free path of backscattered electrons is

larger than the typical size of the studied flakes and much larger than the mean free

path of secondary electrons -just a few tens of nm. The electron irradiation dose of

1 Ccm−2 used in our experiments corresponds to 6.24×1018 electrons/cm2. Since the

concentration of the C-F bonds in our flakes is ∼ 3×1014 cm−2 (CF0.28) with a carbon

atom density of 1015 cm−2, we can estimate the probability of the electron irradiation

assisted defluorination to be 5×10−5.

In order to probe the electronic properties of the nanostructures patterned by elec-

tron irradiation-assisted defluorination, we have conducted electronic transport mea-

surements over a wide temperature range (from room temperature down to 4.2K) for

nanoribbons with 1µm length and 4 different widths (300, 200, 100 and 40nm). The

devices were exposed to 1 Ccm−2 and after exposure were annealed at a temperature

of 200◦C (much lower than the 450◦C characteristic of the fluorination process) in 10 %

H2/Ar gas for 2 hours. This annealing process removes contaminants due to the elec-

tron beam irradiation while leaving the fluorinated graphene insulating. Consequently,

the resistance of the electron irradiated regions approaches the typical values for pris-

tine graphene whereas the fluorinated graphene remains insulating. Figure 6.6 shows

the I/V characteristics before and after annealing for both cases when the flakes are

pristine and when irradiated for two devices in each case. Annealing ultimately restores

the resistivity of irradiated graphene to that of graphene while for the unexposed case

the material remains insulating.

Figure 6.7(a) shows a typical plot of the zero source-drain bias (Vsd = 0) differential

conductance (G = dIsd/dVsd) for a 300nm wide ribbon as a function of gate voltage

Vg at T=4.2K. It is apparent that the electrical transport is suppressed for Vg > 30V ,

suggesting the formation of a transport gap as previously reported in etched graphene

nanoribbons [65, 87–89]. We observe a transport gap for all the studied ribbons whose

value depends on the ribbon width. The temperature and bias dependence of the

differential conductance in the transport gap can shed light on the origin of this gap and

its relation to the level of disorder, to Coulomb interactions and to electron confinement.

A colour plot of the measured differential conductance in the transport gap region

as a function of Vg and Vsd shows that the low bias electrical transport is suppressed

(see Figure 6.7(b) for W = 300nm and Figure 6.8 for measurements on ribbons with

different W ). The differential conductance exhibits diamond-like structures character-

istic of Coulomb blockade, indicating that electrons are confined in small regions of the

nanoribbon with significant charging energy. Consistently, the Isd versus Vsd curves

measured in the transport gap are strongly non-linear, see Figure 6.7(c). In particular,
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Figure 6.6: (Top left) and (top right) I/V characteristics for fluorinated graphene flakes
after being irradiated to 1 Ccm−2 and after being annealed to 200 degrees for 2 hours
the ultimate resistance is similar to that of graphene. (bottom left) and (bottom right)
I/V characteristics for fluorinated graphene before and after anealing to 200 degrees for
2 hours. Note that if there is no irradiation step then the material remains insulating.

a logarithmic scale plot of the IV characteristics highlights more clearly the presence

of a source-drain bias voltage transport gap ∆Vsd associated with a steep decrease of

current for |Vsd| < |∆Vsd| (see Figure 6.7(c)). The corresponding critical electric field

which has to be applied in order to activate the conduction in the disordered ribbon is

therefore ECR = ∆Vsd/L, with L being the ribbon length.

A comparison between the conductance plots for different W reveals that the nar-

rower the nanoribbon is, the wider is ∆Vsd and the larger is ECR, see Figure 6.7(d).

These observations, combined with the fact that the Coulomb diamonds are irregular

and largely overlapping, indicate that the charging regions vary in size. The dependence

of ∆Vsd and ECR on the nanoribbon width suggests that roughness at the edges of the

defluorinated ribbons contributes substantially to create localised states responsible for

the transport gap.

In Chapter 5 we show that graphene quantum dots can be realised within partially
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Figure 6.7: (a) shows the differential conductance (G) measured with Vac = 300µV
excitation voltage as a function of gate voltage (Vg) for zero source-drain bias (Vsd) for
an electron beam irradiated nanoribbon of fluorinated graphene with widthW = 300nm
and length L = 1µm. The colour plot in (b) shows the evolution of G as a function
of Vg and Vsd. (c) is a plot of the source-drain current -Isd (black)- and the absolute
value of Isd (blue) as a function of Vsd measured at Vg=55.5V, with the transport gap
∆Vsd highlighted by the vertical lines. The plot in (d) summarizes the critical electric
field ECR versus the width of the studied nanoribbons. The solid line is a linear fit to
the experimental data points (blue).
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Figure 6.9: A close up of Figure 4(a) showing single electron charging behaviour.
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Figure 6.10: Panels in (a) show the resistance of defluorinated nanoribbons in the
transport gap region plotted as a function of T−1/2 for different ribbons widths. The
solid lines are fits to the experimental data (blue dots) to the Efros-Shklovskii variable
range hopping. Panel (b) is a plot of the localisation length ξ as a function of the
nanoribbon width. The solid line represents a linear fit to the experimental data points
(blue).

fluorinated graphene, Figure 6.9 shows a close up of the 300 nm ribbon. One can

make out diamond like structures which are typical of Coulomb blockade through a

single island. This shows that it may be possible to pattern single quantum dots within

insulating fluorinated graphene. The role of Coulomb interactions on the electrical

transport in these defluorinated nanoribbons is revealed by the temperature depen-

dence of the conductance in the transport gap. Indeed, the logarithm of the zero bias

resistivity fits well to a T−1/2 dependence for all the four nanoribbon widths (see Fig-

ure 6.10(a)). This functional dependence could either correspond to 1D variable range

hopping (VRH) or to 2D VRH in the presence of a Coulomb gap [28, 90]. However,

for all the studied devices, the estimated diameter of the smallest charging island is

always smaller than the width of the nanoribbon, indicating that electrical transport

is through 2D VRH in the presence of Coulomb interactions.
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The temperature dependence in the studied defluorinated nanoribbons is there-

fore described by the Efros-Shklovski VRH relation: G = G0exp(
T0
T )
−1
2 , where T0 =

βe2

4πε0εrkBξ
. Figure 6.10(b) shows the estimated localization length ξ as a function of the

nanoribbon width, using εr = (1 + 4)/2. The fact that in all cases we find ξ < W

confirms that charge transport in these defluorinated ribbons is diffusive and 2D. Fur-

thermore, we find that ξ scales linearly with the width of the nanoribbon, which is in

contrast to the width independent ξ reported in etched graphene nanoribbons [89]. This

experimental observation suggests that, contrary to the case of etched nanoribbons, in

the defluorinated ribbons both roughness at the edges and disorder in the ribbon play

an equally crucial role on the electrons’ localization. However, more theoretical studies

are required to fully understand the origin of the experimentally observed linear scaling

of ξ(W ).

6.4 Conclusion

In conclusion we show that the resistivity of insulating fluorinated graphene can be

progressively decreased by several orders of magnitude simply by electron beam irradi-

ation. The electron irradiated fluorinated graphene ultimately exhibits the resistance

per square of pristine graphene. We attribute the decrease in resistivity to breaking

of C-F bonds induced by electron irradiation. Our results show that standard elec-

tron beam patterning processes can be used to engineer conductive and semiconductive

structures with sizes ranging from few micrometres down to a few tens of nanome-

tres. This opens up new avenues for the fabrication of graphene-based transparent and

flexible electronic devices, with defluorinated graphene channels that can be used as

metallic interconnects or elements of device structures. Furthermore, patterning chan-

nels with different conductivities may lead to novel resistive memory and data storage

applications with multiple byte-levels associated to different resistivities.
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Chapter 7

Tuning the transport gap of

fluorinated graphene via electron

beam irradiation.

7.1 Introduction

In the previous chapter results from the electron beam irradiation effects of fluorinated

graphene are presented. From this work a open question still remained, -i.e. what hap-

pens to the electron transport properties of uniformly irradiated fluorinated graphene

flake for different electron beam doses corresponding to a different fluorine coverage ?

In this chapter it is shown that the energy gap in partially fluorinated graphene

(PFG) can be tuned by changing the coverage of fluorine adatoms simply via electron-

beam irradiation. From a detailed study of the temperature dependence of the resis-

tance (from 4.2K up to room temperature), we find that the electrical conduction in

PFG takes place via thermally activated carriers over the energy gap between the local-

ized states and the mobility edge of the conduction band. We show that in CF0.28 this

energy gap decreases monotonically from ≈ 90 meV (after electron irradiation to 0.02

C/cm−2) to ≈ 30 meV (after electron irradiation to 0.08 C/cm−2). At the same time

we find that PFG displays an insulator to metal transition upon reducing the fluorine

coverage. In particular, for small doses (< 0.08 Ccm−2) the electrical conduction in this

material is described well by the lightly doped semiconductor model [28] characteristic

of standard semiconductors such as germanium and silicon. On the other hand, for

high doses (> 0.1 Ccm−2) the electrical conduction takes place via Mott variable range

hopping.
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7.2 Methods

Partially fluorinated graphene flakes are identified via their low optical contrast, typi-

cally 2-4% for few layers with white light. Electrical contacts are fabricated using stan-

dard electron beam lithography and thermal evaporation of Cr/Au contacts (5/70nm)

followed by a lift-off process in acetone, the final device schematic is shown in Figure

7.1(a). The zero-bias resistance of the devices was measured in a constant voltage con-

figuration with a lock-in amplifier, whereas the excitation voltage was varied to ensure

that the energy range where electrical transport takes place is smaller than the energy

range associated with the temperature of the electrons. This prevents heating of the

electrons and the occurrence of nonequilibrium effects.

The chemical functionalization of graphene with fluorine adatoms is obtained by

exposing natural graphite to F2 atmosphere at 450 °C as described in chapters 4 and

6. In these studies we employ two terminal electrical measurements in transistor de-

vices with a negligible contact resistance at the metal/fluorinated graphene interface

as compared to the sample resistance. Figure 7.4(b) shows the extracted energy gap in

2-terminal and 4-terminal configuration, the extracted gap is shown to be the same in

both cases.

We change in-situ the level of fluorine coverage by irradiating the samples with an

incident electron beam of 10keV energy and a current of 0.13 nA as described in chapter

6. Interestingly although the partially reduced fluorinated graphene is disordered and

the mobility of the elctrons is low gate dependence of the resistivity is still observed

(see Figure 7.1(b)).

7.3 Results and discussion

Figure. 7.2a shows a plot of the zero-bias square resistance (Rsq) measured at room

temperature after different steps of electron irradiation which correspond to different

fluorine coverages. The starting material is the electrically insulating PFG with 28%

coverage (CF0.28) and Rsq ≈ 1TΩ. Upon reducing the fluorine coverage we find that Rsq

decreases monotonically down to ≈ 10 kΩ after exposure to 1C/cm2. Such low values

of Rsq are typical of pristine graphene samples and suggest that electron irradiation

has reduced PFG to the pristine form.

At the same time, the temperature dependence of Rsq measured after different dose

exposures shows that PFG undergoes an insulator to metal transition driven by the

decrease of fluorine coverage (see Figure. 7.2b). In particular, for CF0.28 the Rsq
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Figure 7.1: (a) Shows the experimental setup (b) shows the back gate dependence of
the resistance for three different doses measured at 275 K

diverges when lowering the temperature, as expected for insulating materials. After

irradiating to 1C/cm2 and after conducting a mild annealing to remove contaminants

from the surface [18], the samples exhibit a very weakly temperature dependent Rsq

which is typical of pristine graphene [91].

7.3.1 Low dose regime

We first present the experimental characterization of PFG exposed to low electron

beam irradiation corresponding to doses ranging from 0 up to 0.1C/cm2 in steps of

0.02C/cm2 (see Figure. 7.2(a)). To understand the nature of the electrical conduction

in these materials we consider a semilog plot of the inverse temperature dependence of

Rsq (see Figure. 7.3(a) and (b)). In all cases we find that ln(Rsq) has a similar func-

tional dependence on T−1 characterized by four regions with distinct slopes (regions A,

B, C and D, see Figure. 7.3(a)). We note that this particular temperature dependence

is identical to the well established temperature dependence of lightly doped semicon-

ductors [28]. This similarity suggests that PFG is a semiconductor with impurity states

in the energy gap. Previous studies in standard semiconductors [28] have established

that region A corresponds to intrinsic electrical conduction due to thermally activated

carriers across the energy gap. At sufficiently low temperatures the intrinsic charge

carriers become less than the concentration contributed by the impurities. In these

regions, i.e. B to D, the conduction is entirely determined by the nature and concen-

tration of impurities. In what follows we adopt the lightly doped semiconductor model
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Figure 7.2: (a) Plot of the zero-bias square resistance (Rsq) measured at room tempera-
ture after different steps of electron beam irradiation. The inset shows a cartoon of the
electron-irradiation induced defluorination process. (b) Plot of the temperature depen-
dence of the ln(Rsq) after subsequent electron irradiation steps. A transition from an
insulating state in CF0.28 to a metallic state is observed after complete defluorination
by exposure to a dose of 1C/cm2.
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Figure 7.3: (a) Semilog plot of the inverse temperature dependence of Rsq for a CF0.28

sample irradiated to 0.06 Ccm−2 in the temperature range < 30 K. The four regions
(A, B, C and D) with distinct slopes of ln(Rsq) vs. T−1 characteristic of lightly doped
semiconductors are highlighted on the graph. (b) Semilog plot of the inverse tempera-
ture dependence of Rsq for samples irradiated to different electron doses and measured
up to room temperature. The continuous lines are linear fits to the exponential de-
pendence of the resistance in region A due to thermally activated carriers across the
energy gap. The plot in the inset highlights the exponential dependence of the resis-
tance in A by presenting a double-log scale plot. (c) Shows a plot of the energy gap
ε1 between the impurity states and the conduction band edge (sketch in the inset) as
a function of electron dose irradiation. (d) Plot of the hopping conduction activation
energy extracted from the linear fit of the semilog inverse temperature dependence of
R for different doses of electron irradiation shown in the inset.

to explain the evolution of the energy dispersion in fluorinated graphene as a function

of F-coverage.

The intrinsic carrier concentrations of electrons and holes in region A gives an

exponential dependence of the resistance on temperature: R(T ) = R0e
ε1

2kBT where ε1 is

an energy gap between the impurity states and the conduction band edge. Due to the

impurity and/or defect induced states, ε1 in these PFG is smaller than the true energy

gap corresponding to the difference between the top and bottom of the valence and
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(b)(a)

A

V

Figure 7.4: (a) Comparson of the temperature dependence of the resistivity for 2
and 4 probe measurements, note a similar ε1 is extracted in both cases (b) shows the
experimental setup for the measurement.

conduction bands (see inset in Figure 7.3(c)). The value of ε1 and its dependence on

the electron irradiation are readily determined from a linear fit to the plot of ln(Rsq)

vs. T−1 for region A after different low dose irradiation (up to 0.08 C/cm2), see Figure

7.3(c). We find that ε1 decreases monotonically from ≈ 90 meV (after irradiation to

0.02 C/cm2) to ≈ 30 meV (after irradiation to 0.08 C/cm2). The narrowing of the

energy gap due to electron irradiation-assisted defluorination is also consistent with

the observed increase in optical contrast of PFG when increasing the electron dose

irradiation. In this case, when the energy gap ε1 is reduced more optical transitions

can occur in PFG causing an increase of the optical contrast [27].

Similarly to lightly doped semiconductors [28], upon lowering the temperature the

Rsq of PFG crosses over to region B which is the so-called saturation range. In B all

impurities are ionized and the carrier concentration in the band is nearly temperature

independent. At the same time, upon lowering the temperature the weakening of the

phonon scattering affects the charge carrier mobility ultimately resulting in a weak Rsq

dependence on T commonly observed in lightly doped semiconductors [28]. Region C

is known as the freezing-out range, where the extrinsic charge carriers are recaptured

by the defects and/or impurities. In this region the temperature dependence of the

sample resistance is commonly described by RT = R3e
ε2

2kBT with an activation energy

ε2 which is much smaller than ε1 [28]. In particular, we find that ε2 is enhanced

from ≈ 0.4 meV after an electron irradiation of 0.02 C/cm2 to ≈ 0.55 meV after

exposure to a dose of 0.08 C/cm2 , see Figure 7.3(d). The observed increase of ε2
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upon electron irradiation is possibly due to an increase of random Coulomb potential

associated with the dangling bonds created by the irradiation-assisted defluorination

process [92]. Finally, at the lowest temperatures in region D the main contribution

to the electrical conductivity comes from electrons hopping directly between localized

states at sub-gap energies. To exclude barriers at the contacts we compare 2 and 4

probe measurements. Figure 7.4 shows the temperature dependence of the resistivity,

we find that a similar ε1 is extracted in both configurations indicating that the probed

gap is intrinsic to the partially fluorinated graphene flake and has nothing to do with

the effect of the contacts.

At lower temperatures we are probing transport in the hopping regime and a greater

understanding of the transport through these sub - gap states can be revealed by

looking at the I/V characteristics. Figure 7.5(a) shows the I/V curves measured at 4.2

K, numerical simulations show that the I/V curves can be explained by the following

equation [93],

I ∝ ((V − Vt)/Vt)α (7.1)

where Vt is the threshold voltage where transport is first detected and α = 1, 1.67

for 1D and 2D electron transport [93] through conductive particles enclosed within

an insulating material, while for quasi 2D arrays have been shown to have critical

exponents of α ≈ 4 [94]. Experimental studies of reduced graphene oxide have revealed

an exponent of ≈ 3.2 [95] which is larger than 1.67. This is attributed to the fact that

this system is quasi 2D and is closer to the expected value of 4.

Figure 7.5(b) shows the fits of our experimental I-V data measured at 4.2K to the

relation in Eq. 7.1 for different electron doses as indicated in the graph. The extracted

values for α as a function of dose are reported in Figure 7.6. We find that in PFG

materials α is 1.3 ± 0.5 which is in good agreement with the theoretically expected

value of 1.6 expected for hopping conduction through small 2 dimensional metallic

islands.
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(a) (b)

(V)

Figure 7.5: (a) I-V curves at T = 4.2 K for different fluorine coverages after different
electron irradiation doses from 0.02 to 0.06 Ccm−2 (b) Fits of the I-V curves to the
logarithm of Eq. 2.7 in order to extract α.

Figure 7.6: Plot of α determined from the fits shown in 1.4(b) for different doses.
The dashed line indicates the theoretically expected α = 1.6 for transport through 2D
metallic islands.
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7.3.2 High dose regime

We now turn our attention to the higher dose regime, which corresponds to a lower cov-

erage of fluorine adatoms. Figure 7.7(a) shows a semilog plot of the temperature depen-

dence of the resitance after various electron beam irradiations from a dose of 0.2C/cm2

up to 1C/cm2. In all cases we find that at high enough temperatures the conduction in

these samples takes place via hopping through localised states with R(T ) ∝ e
εa

2kBT and

εa the hopping activation energy. This temperature range corresponds to region C and

the values of εa extracted from the fits are plotted in Figure 7.7b. It is apparent that

εa shows a monotonic decrease with increasing dose, consistent with the narrowing of

the energy gap.

Upon lowering the temperature the ln(Rsq) is non-linear in T−1, indicating that

another mechanism of conduction is at play in this D region (see Figure 7.7a). To

idenfity the specific hopping mechanism of conduction dominating in D, we consider

the generic expression R(T ) = R0e
(T0/T )p where p is a parameter that depends on

the dimensionality of the system as well as the conduction mechanism and T0 is the

characteristic temperature of the system which correlates to the degree of localisation.

For a two dimensional system -such as fluorinated graphene- p is equal to 1 for thermally

activated transport, 1/2 for Efros-Shklovskii variable range hopping (ESVRH) with

Coulomb interactions and 1/3 for Mott variable range hopping (MVRH) [96]. The

exponent p can be determined from a linear fit to the reduced activation energy W =

− lnR(T )/(lnT ) = p(T0/T )p in a logarithmic scale plot, see Figure 7.7(c) and 7.7(d).

[97] We find that for all the studied doses the best fit gives p=1/3, demonstrating

that the electrical conduction takes place by MVRH. From a fit of R(T ) to MVRH

conduction mechanism (see Figure 7.7(e)) we can extract the values of T0 for each

different electron dose irradiation. This hopping parameter is shown in figure 7.8(a)

and it is found to decrease with increasing the electron dose suggesting an increase of

sub-gap states.

Theoretically, an energy gap whose value depends on the coverage of adatoms is

expected in the limit that the mean free path of charge carriers is longer than the

average distance between adatoms [98]. In this case, the Bragg scattering of electron

waves by the adatoms opens a uniform energy gap which is immune to the positional

disorder of the adatoms. Indeed, in our experiments the mean free path in this low-

dose regime is always longer than the distance between fluorine adatoms. The charge

carrier mobilities in PFG are typically of the order of ≈ 10cm2/V s (see Fig. 1.4(b)).

The Fermi velocity in PFG is vF =
√

2nπ~2
em∗2 with n charge density, e the charge of the

86



7. Tuning the transport gap of fluorinated graphene via electron beam
irradiation.

8

10

12

14

16

18

 
0.2  0.4  0.6  0.8  1.0

 

 

ln
(R

  (
Ω

)/1
Ω

)

0 0.04 0.08 0.12 0.16

T-1(K-1)

Dose (C/cm2)

0.2 0.3 0.4 0.5 0.6
8

10

12

14

16

18  
0.2  
0.4  

0.6

 
0.8 
1.0

 

 

ln
(R

  (
Ω

)/1
Ω

)

T-1/3(K-1/3)

Dose (C/cm2)

 

 

0.2 0.4 0.6 0.8 1
Dose (C/cm2)

12

16

20

ε a
(m

eV
)

0.3 0.6 0.9

1/3  

 

p

Dose (C/cm2)

1/2

a)

e)

b)

c)

d)

0

2

4

 

ln
 W

2 3 4 5
ln(T(K)/1K)

0.2  0.4  0.6  0.8  1
Dose (C/cm2)

C D

sq
sq

Figure 7.7: (a) Semilog plot of the inverse temperature dependence of Rsq after various
high dose irradiation steps as indicated in the graph. The continuous lines are a fit to
thermally activated transport. (b) Plot of the activation energy of the hopping conduc-
tion via localised states as a function of electron dose irradiation extracted from the
linear fits in (a). (c) Logaritmic scale plot of W = − ln(R(T ))/ ln(T ) vs. temperature,
the continuous lines are fit to W = p(T0/T )p and (d) shows the best fit values for p for
each given electron dose irradiation. (e) Shows a semilog plot of Rsq as a function of
T−1/3, the dashed lines are fit to the Mott variable range hopping.

electron and m∗ the effective mass in fluorinated graphene [23] . Therefore, the typical

mean free path for charge carriers in our devices is l = ~µ
e

√
2nπ
e ≈ 1.5nm. Since the

average distance between fluorine adatoms is smaller than l down to a F-coverage of

1.5%, we can conclude that in our PFG materials Bragg scattering of electron waves

plays a primary role in opening a uniform energy gap.

Finally, Figure 7.9 shows a sketch of the low-energy energy dispersion of PFG for

different fluorine coverages. For large fluorine content, PFG has a large band gap with

localised states near the conduction and valence band edges. As the fluorine coverage

is reduced by electron irradiation, the energy gap is reduced and at the same time the

impurity band width increases [57, 63]. When a large proportion of fluorine has been

removed the gap is almost closed and conduction takes place through a dense region of
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Figure 7.8: Graphs in (a) and (b) show the characteristic temperature T0 of the Mott
variable range hopping mechanism and the field effect mobility as a function of electron
beam dose irradiation.

impurity states. Ultimately a metallic state is attained, and the band gap is reduced

to zero.

7.4 Conclusion

In conclusion we show that the energy gap in partially fluorinated graphene can be

tuned by changing the coverage of fluorine adatoms simply via electron-beam irradi-

ation. We show that in CF0.28 this energy gap decreases monotonically from ≈ 90

meV (after electron irradiation to 0.02 C/cm−2) to ≈ 30 meV (after electron irradi-

ation to 0.08 C/cm−2). Correspondingly, we observe that these partially fluorinated

graphene materials display an insulator to metal transition when decreasing the cover-

age of fluorine adatoms. In particular, for low doses of electron beam irradiation, PFG

is a lightly doped semiconductor with an intrinsic energy gap whose value depends on

the fluorine coverage. For higher doses, the transport is governed by Mott variable

range hopping. These experimental findings highlight that electron beam irradiation

of fluorinated graphene is a novel way to engineer the band gap in graphene materials.
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Figure 7.9: (a), (b) and (c) show a sketch of the low-energy dispersion for the partially
fluorinated graphene after subsequent steps of dose irradiation. The higher the dose
irradiation, the smaller is the energy gap.
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Chapter 8

Novel Highly Conductive and

Transparent Graphene-Based

Conductors.

8.1 Introduction

As discussed in chapter 1, future wearable electronics, displays and photovoltaic

devices require materials which are mechanically flexible, lightweight and low-cost, in

addition to being electrically conductive and optically transparent [99–101]. Nowadays

indium tin oxide (ITO) is the most wide spread transparent conductor in optoelectronic

applications, however the mechanical rigidity of this material limits its use for future

flexible devices. In the race to find novel transparent conductors, graphene monolayers

and multilayers are the leading candidates as they have the potential to satisfy all

future requirements. Graphene, one-atom-thick layer of carbon atoms, is transparent[8],

conducting [4, 102], bendable [103] and yet one of the strongest known materials [6].

However, the use of graphene as a truly transparent conductor remains a great challenge

because the lowest values of its sheet resistance (Rs) demonstrated so far are above the

values of commercially available ITO (i.e. 10 Ω/2 at an optical transmittance Tr=85%

[104]). Currently many efforts are concentrated on decreasing the Rs of graphene-

based materials while maintaining a high Tr, which will allow their potential to be

harnessed in optoelectronic applications. To date, the best values of sheet resistance

The results in this Chapter have been published as I. Khrapach, F. Withers, T. H. Bointon, D. K.
Polyushkin, W. L. Barnes, S. Russo, M. F. Craciun, Advanced Materials, 24, 2844 (2012)
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and transmittance found in graphene-based materials are still far from the performances

of ITO, with typical values of Rs=30 Ω/2 at Tr=90% for graphene multilayers [103, 105]

and Rs=125 Ω/2 at Tr=97.7% for chemically doped graphene [103, 106, 107]

In this chapter we present results of novel graphene-based transparent conductors

with a sheet resistance of 8.8 Ω/2 at Tr=84%, a carrier density as high as 8.9×1014cm−2

and a room temperature carrier mean free path as large as ∼ 0.6µm. These materials

are obtained by intercalating few-layer graphene (FLG) with ferric chloride (FeCl3)

[108, 109]. Through a combined study of electrical transport and optical transmission

measurements we demonstrate that FeCl3 enhances the electrical conductivity of FLG

while leaving these graphene-based materials highly transparent. We also show that

FeCl3-FLG are stable in air up to one year, which demonstrates the potential of these

materials for industrial production of transparent conductors. The unique combination

of record low sheet resistance, high optical transparency and large room temperature

mean free path has not been demonstrated so far in any other doped graphene system,

and opens new avenues for graphene-based optoelectronics.

8.2 Experimental details

Pristine FLG ranging from two- to five-layers (2L to 5L) were obtained by microme-

chanical cleavage of natural graphite [4] on glass or SiO2/Si. The number of layers

composing each FLG was determined by two separate characterization methods firstly

optical contrast shown in Figure 8.1(b) which increases with increasing layer num-

ber. Secondly by Raman spectroscopy where we use the method described in section

3.1.2.1 from reference [44]. To utilize this method for the glass substrates we place the

graphene face down on the Si/SiO2 substrate in order to obtain the silicon peak, this

is schematically shown in Figure 8.1(c) with the ratio of the peaks shown in Figure

8.1(d).

The intercalation process with FeCl3 is performed in vacuum. Both anhydrous

FeCl3 powder and the substrate with exfoliated FLG are positioned in different zones

inside a glass tube. The tube is pumped down to 2× 10−4mbar at room temperature

for 1 hour to reduce the contamination by water molecules. Subsequently, the FLG and

the powder are heated for 7.5 hours at 360� and 310�, respectively. A rate of change

of temperature of 10�/min is used during the warming and cooling of the two zones.

Ohmic contacts are fabricated on FeCl3-FLG by means of electron-beam lithography

and lift-off of thermally evaporated chrome/gold bilayer (5/50 nm). We have fabricated

FeCl3-FLG on both SiO2/Si and glass substrates and we found no significant differences
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Figure 8.1: a) Optical micrograph of a FLG flake on glass taken with white light. The
glass substrate was suspended in air. b) The optical contrast of FLG on glass plotted
for 85 flakes. c) Schematic of the glass substrate with FLG on top of the SiO2/Si. d)
The ratios of the intensities of the G peak and the Si peak (IG/ISi). The curves are
shifted on the x axis for clarity.

in their transport properties.

Raman spectra are collected in ambient air and at room temperature with a Ren-

ishaw spectrometer. An excitation laser with a wavelength of 532 nm, focused to a spot

size of 1.5 µm diameter and a ×100 objective lens are used. To avoid sample damage

or laser induced heating, the incident power is kept at 5 mW.

The longitudinal and the Hall resistances are studied in a 4-probe configuration by

applying an a.c. current bias and measuring the resulting longitudinal and transversal

voltages with a lock-in amplifier. The excitation current is varied to ensure that the

energy range where electrical transport takes place is smaller than the energy range

associated to the temperature of the electrons. This prevents heating of the electrons

and the occurrence of nonequilibrium effects.

The transmission of pristine FLG and FeCl3-FLG is characterized by measuring the

bright-field transmission spectra. A system based on an inverted optical microscope

(Nikon Eclipse TE2000-U) combined with a spectrometer and CCD camera (Princeton

Instruments, SpectraPro 2500i) is used to acquire data. White light from a tungsten

filament lamp is used to illuminate the samples and, after passing through the sample,

is collected by a dry Nikon lens (S Plan Fluor ELWD) ×40 of NA 0.60. A slit width

of 50 µm is used for the spectrometer, yielding a spectral resolution < 1 nm for the
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measurements. In the spectrometer the dispersed light is projected onto the 1024 by

256 lines of the CCD camera. Data from the camera are extracted to give the transmis-

sion spectra of the flake, or part of it, the data being normalized to the signal obtained

through a region of bare substrate. For the visually uniform parts of the flakes, spectra

are averaged along several lines of the CCD camera to improve the signal-to-noise ratio.

8.3 Results

Figure 8.2(a) shows the Raman spectra of pristine FLG on SiO2/Si, with the G-band

at 1580 cm−1 and the 2D-band at 2700 cm−1 [43, 53]. As expected for pristine FLGs,

increasing the number of layers results in an increase of the G-band intensity [44],

whereas the 2D-band acquires a multi-peak structure [43, 53]. The charge transfer

from FeCl3 to graphene modifies the Raman spectra of FLGs in two distinctive ways

[108–110]: an upshift of the G-band and a change of the 2D-band from multi- to single-

peak structure, respectively (see Figure 8.2(a)). The shift of the G-band to G1=1612

cm−1 is a signature of a graphene sheet with only one adjacent FeCl3 layer, whereas the

shift to G2=1625 cm−1 characterizes a graphene sheet sandwiched between two FeCl3

layers [15, 108, 109] (see Figure 8.2(b)). The frequencies, linewidths and lineshapes of

the G1 and G2 peaks do not depend on the number of graphene layers which indicates

the decoupling of the FLGs into separate monolayers due to the intercalation of FeCl3

between the graphene sheets. This is consistent with the changes in the 2D-band shape

and with the Raman studies of other intercalants such as Potassium [47, 111] and

Rubidium [111]. These observations allow us to identify the structure of intercalated

2L samples as one FeCl3 layer sandwiched between the two graphene sheets. However,

the structural determination of thicker FeCl3-FLG cannot rely uniquely on the Raman

spectra, it requires complementary knowledge from electrical transport experiments.

Direct structural determination for example by X-ray diffraction would be valuable

to confirm the findings of Raman and electrical transport measurements, however the

small thickness of FeCl3-FLG and the substrate effects make it difficult to apply such

techniques to these systems.

To characterize the structure of thicker FeCl3-FLG, we study the oscillatory be-

haviour of the longitudinal magneto-conductance (Gxx) in a perpendicular magnetic

field (i.e. Shubnikov-de Haas oscillations, see Figure 8.3(a)) in combination with the

Hall resistance (Rxy). Here we discuss the representative data for an intercalated 5L

sample patterned into a Hall bar geometry. Firstly the data need to be converted into
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longitudinal conductivity instead of resistivity which can be done as follows: since con-

ductances are additive, the analysis of Shubnikov-de Haas oscillations is performed on

the longitudinal conductivity σxx = ρxx/[ρ
2
xx + ρ2

xy] (with ρxx and ρxy the longitudi-

nal and transversal resistivity, respectively). The low frequency magneto-conductivity

oscillations shown in Figure 8.4(a) are obtained by averaging out the high frequency

oscillations, whereas to obtain the high frequency oscillations shown in Figure 8.4(b) we

subtract the low frequency oscillations from the longitudinal conductivity. Figure 8.3(a)

shows SdHO of Gxx as a function of perpendicular magnetic field (B) for different tem-

peratures. It is apparent that for T<10K Gxx oscillates with two distinct frequencies.

For T>10K only the lower frequency oscillations are visible. These observations indi-

cate that electrical conduction takes place through parallel gases of charge carriers with

distinct densities. Indeed, the Fourier transform of Gxx(1/B) yields peaks at frequen-

cies fSdHO1 = 1100T and fSdHO2 = 55T (see Figure 8.3(b)), corresponding to charge

carrier densities n1 = (1.07×1014±5×1011)cm−2 and n2 = (5.3×1012±4×1011)cm−2

(with ni = 4efSdHOi/h [38, 102]).

The temperature dependence of the magneto-conductivity oscillations allows us to

determine the cyclotron mass of the charge carriers in these parallel gases. Figures

8.4(a) and (b) show the low- and high-frequency magneto-conductivity oscillations for

different temperatures. In all cases, the temperature decay of the amplitude is well de-

scribed by A(T ) ∝ T/sinh(2π2kBTmc/~eB) (see Figure 8.4(c)), with cyclotron masses

mc1 = (0.25±0.05)me and mc2 = (0.08 ± 0.001)me for the high- and low-frequency

oscillations, respectively. These values correspond to the expected values of cyclotron

mass for massless Dirac fermions mc =
√
h2n/4πv2

F = 0.21me at n1 and for chiral

massive charge carriers of bilayer graphene mc =
√
~2v2

Fπn+ (γ/2)2/v2
F = 0.084me at

n2 (with vF = 106m/s the Fermi velocity [102] and γ the interlayer hopping energy

[15]). Therefore, intercalation of FeCl3 decouples the stacked 5L graphene into parallel

gases of massless (1L) and massive (2L) charge carriers.

The charge carrier type (electrons or holes) and the number of parallel gases present

in FeCl3-FLG is readily identified by correlating SdHO to the Hall resistance mea-

surements. The linear dependence of Rxy(B) with positive slope identifies charge

carriers as holes, with a Hall carrier density nH = B/(eRxy)=3 × 1014cm−2 (see

Figure 8.3(b)). Since the total carrier density ntot =
∑

i ni should be higher than

nH = (
∑

i niµi)
2/
∑

i niµ
2
i (with ni and µi the carrier density and mobility of each hole

gas) [112], only a minimum of three parallel hole gases with n1 = 1.07× 1014cm−2 can

explain the estimated value of nH . Therefore, the electrical transport characterization
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(a)

(b)

Figure 8.2: a) The G and 2D Raman bands of pristine FLG (top) and of FeCl3-FLG
(bottom) with different thicknesses ranging from 2L to 5L. (b) The Raman shift of G
to G1 and G2 stem for a graphene sheet with one or two adjacent FeCl3 layers as shown
by the schematic crystal structure.

demonstrates the presence of four parallel hole gases, of which one with bilayer charac-

ter (and density n2) and three with monolayer character (each with density n1). These

findings are confirmed by the Raman spectra taken after the device fabrication showing

the presence of pristine G, G1 and G2 peaks (see Figure 8.5) which also shows that

the intercalation is uniform if not complete over the whole sample. A schematic of this
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(a)

(b) (c)

Figure 8.3: a) Longitudinal conductance (Gxx) as a function of magnetic field at
different temperatures for a 5 L intercalated graphene flake (curves shifted for clarity).
b) Top panel: optical microscope image of a Hall bar device. Bottom panel: Hall
resistance (Rxy) as function of magnetic field. c) Fourier transform of Gxx(1/B) with

peaks at frequencies f
(1)
SdH = 1100T and f

(2)
SdH = 55T . The inset shows Gxx as a function

of inverse magnetic field at different temperatures (curves shifted for clarity).

crystal structure is illustrated in Figure 8.4(d). The bilayer gas is likely to be caused

by the first two layers of the stacking which have been de-intercalated due to rinsing

in acetone during lift-off [110]. The bottom part of the stacking has a per-layer doping
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(a) (b)

(c) (d)

Figure 8.4: a) and b), respectively, show the low- and high- frequency magneto-
conductivity oscillations vs 1/B extracted from the measurements in 8.3(a). c) Temper-
ature decay of the amplitude (A) of ∆σxx oscillations at B=6.2T . The amplitudes are
normalized to their values at T=0.25K. The continuous lines are fits to A(T )/A(0.25)
with the cyclotron mass mc as the only fitting parameter. h) Schematic crystal struc-
ture of a 5L FeCl3-FLG in which electrical transport takes place through four parallel
conductive planes, one with bilayer character and three with monolayer character.

of n1 = 1.07× 1014cm−2 and the stoichiometry of stage-1 FeCl3 graphite intercalation

compounds (i.e. where each graphene layer is sandwiched by two FeCl3 layers) [15].
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Figure 8.5: a) Schematic crystal structure of a 5L FeCl3-FLG after device fabrication.
b) Optical image of 5L FeCl3-FLG. c) Raman spectra of 5L FeCl3-FLG devices taken
at different locations as indicated in b).

A remarkable property of FeCl3-FLGs shown by the electrical transport characteri-

zation is that intercalated materials thicker than 3L invariably exhibit a very low-sheet

resistance, which is essential for their use as electrical conductors. We find a room

temperature value of Rs = 8.8Ω/2 in 5L intercalated FLGs. The 4L intercalated FLGs

typically exhibit higher sheet resistance values than the 5L intercalated samples with a

similar crystal structure. Furthermore, the sheet resistance of FeCl3-FLGs thicker than

2L decreases when lowering the temperature as expected for metallic conduction (see

Figure 8.6(a)). Contrary to intercalated samples, pristine FLGs always have a higher

Rs (>120 Ω/2) and they exhibit non-metallic behaviour as a function of temperature

[4, 113, 114] (see Figure 2b). This suggests that the low values of Rs and the metallic

nature of the conduction are consequences of intercalation with FeCl3. FeCl3-FLGs

thinner than 3L suffer of partial de-intercalation during the device fabrication, which

results in a non-metallic behaviour similar to pristine FLGs and in higher Rs values

(see Figure 8.6(a)).

The low values of Rs characterizing thick FeCl3-FLG are accompanied by an ex-

tremely high charge density. Indeed, the Hall coefficient measurements reveal that nH

ranges from 3×1014cm−2 to 8.9×1014cm−2, depending on the number of layers (see
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Figure 8.6: a) Temperature dependence of the square resistance for FeCl3-FLG of
different thicknesses. b) Square resistance for pristine FLG of different thicknesses as
function of temperature. These devices are fabricated on SiO2/Si substrates and the
highly-doped Si substrate is used as a gate to adjust the Fermi level to the charge
neutrality of the system. c) Hall resistance of FeCl3-FLG as a function of magnetic
field. The inset shows the data for the bilayer sample on a smaller B scale. Panels d)
and e) show the carrier density and mobility for FeCl3-FLG as a function of the number
of graphene layers.

Figures 8.6(c) and (d)). These charge densities exceed even the highest values demon-

strated so far by liquid electrolyte [115] or ionic [116] gating. The corresponding charge
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carrier mobility for the 4L and 5L samples typically ranges from µH = 1540cm2/V s to

µH = 3650cm2/V s (µH = 1/(nHeρxx) with ρxx the longitudinal resistivity and e the

electron charge). Consequently, the charge carriers in thick FeCl3-FLG have a macro-

scopic mean free path as high as 0.6 µm in 5L at room temperature. The outstanding

electrical properties, e.g. lower Rs than ITO and macroscopic mean free path, found in

FeCl3-FLGs thicker than 3L are of fundamental interest for the development of novel

electronic applications based on highly conductive materials.

Whether FeCl3-FLGs can replace ITO in optoelectronic applications strongly de-

pends on their optical properties. Surprisingly, our detailed study of the optical trans-

mission in the visible wavelength range shows that while FeCl3 intercalation improves

significantly the electrical properties of graphene, it leaves the optical transparency

nearly unchanged. Figures 8.7(a) and (b) show a comparison between the transmit-

tance spectra of pristine FLG and FeCl3-FLG. The transmittance values of pristine

FLG at the wavelength of 550nm are in agreement with the expected values [8], high-

lighted in Figure 8.7(a), and with the results reported by other groups [8, 103]. Upon

intercalation, the transmittance slightly decreases at low wavelengths, but it is still

above 80 %. In order to measure an accurate value of transmittance we fit it with

a linear dependence on the number of layers for a statistical ensemble of flakes (Fig-

ure 8.7(d)). This results in similar extinction coefficients per layer for pristine FLG

(≈ 2.4±0.1%) and for FeCl3-FLG (≈ 2.6±0.1%), see Figure 8.7(d). For wavelengths

longer than 550nm we observe an increase in the optical transparency of FeCl3-FLG.

This is a significant advantage of our material compared to ITO whose transparency

decreases for wavelengths longer than 600nm [13]. This property will provide useful

applications that require conductive electrodes which are transparent both in visible

and near infrared range. For instance, FeCl3-FLG transparent electrodes could be used

for solar cells to harvest energy over an extended wavelength range as compared to

ITO-based devices, or for electromagnetic shielding in infrared.

The high transparency observed in FeCl3-FLG’s complemented by their remarkable

electrical properties make these materials valuable candidates for transparent conduc-

tors. However, to replace ITO in optoelectronic applications, it is generally agreed that

materials must (at least) have the properties of commercially available ITO (Rs=10

Ω/2 and Tr=85% [104]). Figure 8.8 compares Rs vs. Tr of FeCl3-FLG materials with

ITO [117], and other promising carbon-based candidates to replace ITO such as carbon-

nanotube films [118] and doped graphene materials [103]. It is apparent that Rs and Tr

of FeCl3-FLGs outperform the current limits of ITO and of the best values reported so

far for doped graphene [103]. Therefore, the outstandingly high electrical conductivity
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Figure 8.7: Panels a) and b) show the transmittance spectra of pristine FLG and FeCl3-
FLG, respectively. The horizontal lines in b) are the corresponding transmittances at
the wavelength of 550nm reported in the literature [8, 103]. c) Transmittance at 550nm
for pristine FLG as a function of the number of layers. The red line is a linear fit, which
gives the extinction coefficient of 2.35±0.1% per layer. d) Transmittance at 550nm for
fully intercalated FeCl3-FLG (FI), partially intercalated FeCl3-FLG (PI) and doped
FeCl3-FLG (D) as a function of the number of layers. The black line is a linear fit with
the extinction coefficient of (2.6±0.1)% per layer.

and optical transparency make FeCl3-FLG materials the best transparent conductors
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for optoelectronic devices.
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Figure 8.8: Square resistance versus transmittance at 550nm for 4L and 5L FeCl3-FLG
(from these experiments), ITO (from [117]), carbon-nanotube films (from ref [118]) and
doped graphene materials (from ref [103]). FeCl3-FLG outperform the current limit of
transparent conductors, which is indicated by the grey area. (For the case of ITO and
graphene it is the thickness being varied, to give the above dependence)

Finally, an important characteristic required by a transparent conductor is its stabil-

ity upon exposure to air. In principle FLGs could be intercalated with a large variety

of molecules, similar to the graphite intercalation compounds (GIC) [15]. However,
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most of the GIC are unstable in air, with donor compounds being easily oxidized and

acceptors being easily desorbed. Therefore we studied the stability in air of FeCl3-FLG

by performing Raman measurements as a function of time. We found that the Raman

spectra of FeCl3-FLG samples show no appreciable changes on a time scale of up to

one year, see Figure 8.9. This property has important implications for the utilization

of these materials as transparent conductors in practical applications such as displays

and photovoltaic devices.

Figure 8.9: a) Schematic crystal structure of a 5L FeCl3-FLG after device fabrication.
b) Optical image of 5L FeCl3-FLG. c) Raman spectra of a typical 5L FeCl3-FLG devices
taken at different locations after 3 months (a) and after one year (b).

8.4 Conclusion

In conclusion, we demonstrate novel transparent conductors based on few layer graphene

intercalated with ferric chloride with an outstandingly high electrical conductivity and

optical transparency. We show that upon intercalation a record low sheet resistance

of 8.8 Ω/2 is attained together with an optical transmittance higher than 84% in the

visible range. These parameters outperform the best values of ITO and of other carbon-
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based materials. The FeCl3-FLGs materials are relatively inexpensive to make and they

are easily scalable to industrial production of large area electrodes. Contrary to the

numerous chemical species that can be intercalated into graphite (more than hundred

[15]), many of which are unstable in air, we found that FeCl3-FLGs are air stable on

a timescale of at least one year. Other air stable graphite intercalated compounds can

only by synthesized in the presence of Chlorine gas [15], which is highly toxic. On

the contrary, here we demonstrate that the intercalation of FLG with FeCl3 is eas-

ily achieved without the need of using Chlorine gas, which ensures an environmental

friendly industrial processing. Furthermore, the low intercalation temperature (360�)

required in the processing allows the use of a wide range of transparent flexible sub-

strates which are compatible with existing transparent electronic technologies. These

technological advantages combined with the unique electro-optical properties found in

FeCl3-FLG make these materials a valuable alternative to ITO in optoelectronics.
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Chapter 9

Conclusions

Graphene materials are a unique platform for the development of novel transparent and

flexible electronics. Indeed, graphene is an ultra lightweight material -just one atom

thick- able to conduct electricity and with outstanding mechanical properties such as

strength and flexibility. Furthermore, the properties of graphene can be engineered by

chemical functionalization to turn this semimetallic material into a semiconductor for

example.

In this thesis we explore the chemical functionalization of graphene to engineer

the electrical properties of this novel material. More specifically, we aimed at opening

an energy gap in the energy dispersion of graphene making it of use for transistor

applications, and we aimed at achieving record high electrical conductivity for replacing

the expensive ITO transparent conductor in use by display industry.

Fluorinated graphene flakes are exfoliated from bulk fluorinated graphite and in

Chapters 4 the electron transport data for partially flourinated graphene is presented

it is found that fluorination opens a mobility gap in graphenes band spectrum where,

and that at low temperatures ≈ 4 K the Ion/Ioff ratio is greatly enhanced to ≈ 103 but

only at low temperatures due to the existance of localized stated which exist within a

larger mobility gap. As electron transport is sensitive to localised states we aimed to

reduce this density of localised states by increasing the fluorine coverage. However it was

seen that we enter a second transport regime known as Efros Sklovskii Variable Range

Hopping (ES-VRH), where Coulomb interactions open up a energy gap in the density of

states. The samples exhibiting this behavior can be thought of as conductive graphene

islands isolated by regions of insulating fluorinated graphene. This observation paved

the way to the study of single charging behavior studies in small partially fluorinated

graphene flakes shown in Chapter 5.
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It is shown that quantum dots can exist within partially fluorinated graphene by

selecting small flakes of order (0.5 -1) µ m, and that interestingly a large number

of levels (more than 1000) are observed within the transport gap of these devices.

The level spacing statistics agree well with the predictions of Random Matrix theory

(RMT) discussed in Chapter 2. Only two other papers in history on quantum dots show

agreement with RMT [35, 36] and our data constitutes the greatest ensemble of data

confirming the application of this theory. This project remains open as reproducibility

in several devices is required, a parallel double dot must also be ruled out as a possible

reason for the observed bi-modal behaviour.

In an attempt to better open a band gap and reduce the density of localized states

in the hope of realizing room temperature transistor action we increased the fluorine

coverage. This was achieved using a second method of fluorination which allowed for a

higher degree of covalent bonding of the fluorine to the carbon atoms, therefore leading

to a better developed band gap. We found that as a result the carrier mobility is greatly

reduced falling to ≈ 1 cm−2V−1s−1.

Chapter 6, presents results on the nanopatterning of fluorinated graphene with

electron beam irradiation. Electron beam irradiation is found to decrease the resistivity

of highly fluorinated by 7 orders of magnitude from (1 TΩ to 100 KΩ) and after mild

annealing the resistivity is restored to that similar to graphene. This technique offers

the ability to directly write conductive circuitry in insulating fluorinated graphene and

semi-conducting components on the nanoscale.

In Chapter 7 it is shown that the the transport properties of heavily fluorinated

graphene can be tuned from an insulator to a metal simply by varying the electron beam

dose it receives. The electron transport follows that of a lightly doped semiconductor

for low doses (0 - 0.1) Ccm−2, while for higher doses (0.1 - 1) Ccm−2 the electron

transport can be best described by Mott Variable Range Hopping (M-VRH). Finally

after a mild annealing treatment the material is transformed into a metallic system

with a resistivity similar to that of graphene.

Finally in Chapter 8 the results for the electron transport and optical transparency

of intercalated few layer graphene are shown. In an attempt to reduce the resistivity

of graphene to make it useful as a transparent conductor we intercalated few-layer

graphene with ferric chloride molecules, we found a huge charge transfer with hole

concentrations in the graphene flake reaching 8×1014 cm−2. We find that the mobility

of the few layer graphene is preserved ≈ 3000cm2V −1s−1, this leads to a record low

sheet resistance of Rsq ≈ 8Ω. Also the optical transparency of few layer graphene was

retained post intercalation at around ≈ 85% thus meeting the material requirements
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for a replacement for (ITO).
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Appendix

Graphene and fluorinated graphene device preparation

Below summarises the basic steps for successful graphene and flourinated graphene

FET device fabrication from mechanical exfoliation from high quality natural crystals

(Source : Graphenium).

� Sonicate in pre cleaned beakers oxidized (275 nm) Si++ wafers (which have had

metalized markers pre patterned, required for 80 keV electron beam system) in

Acetone for 30 min.

� Transfer without breaking surface meniscus to fresh Acetone and boil substrates

for further 15 min.

� Sonicate for further 5 min.

� Transfer to Isoproponol and sonicate for further 20 min.

� Remove substrates and nitrogen dry then place on the hot plate at 120 degrees.

� Plasma etch at low power and low gas pressure for short time period in Oxygen.

� Place back on hot plate at 120 degrees and leave for ten minutes.

� While substrates are on the hot plate, prepare the exfoliated graphite. To do this

select a high quality natural crystal and use blue semiconductor tape to firstly

remove dirty exterior graphite leaving a large highly metallic looking flake of

graphite.

� Transfer this graphite to new tape and exfoliate 8 - 12 times, then removing the

large graphite crystal for future use.
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MONO-LAYER BI - LAYER

TRI - LAYER

Figure 1: Shows a typical exfoliated graphene flake of size ≈ 400 µm2 consisting
of mono-layer, bi-layer and tri-layer material. Image taken with green light filter to
maximize contrast see Chapter 3

� Lay the tape (Nitto tape (SWT-20)) close to the hot plate and directly place the

oxide face of the substrates onto the freshly exfoliated graphite.

� Press firmly the tape with fingers for 30 sec.

� Very slowly remove the tape from the substrate.. . .

For every 1 cm square substrate exfoliated onto, flakes of size shown in Figure 1

can be achieved.

� After exfoliation spin a single layer of A6 495 K Polymethylmethacrylate (electron

beam resist) and bake at 170 degrees for 15 min.

� Once the flakes have been identified AutoCaD or equivalent software can be used

to produce pattern data for the project.

� After electron beam lithography develop for 30 sec in MIBK developer then wash

in IPA for 1 min, Nitrogen dry then evaporate 5 nm Cr / 70 nm Au.
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100 µm

(a)

(b)

Figure 2: (a) Typical graphene device on a silica cover slip showing all electrical
connections and bonding pads with Au wire bonded to the pads. (b) Zoom in of the
graphene flakes showing electrical connections to the individual graphene flakes.

� Finally lift off in warm acetone, wash in IPA and nitrogen, then place into the

chip carrier and Au wire bond to the contact pads.. . .

Figure 2 shows a typical device after fabrication, this particular device was fab-

ricated on silica cover slips and features flakes intercalated with ferric chloride. The

results from this device star in Chapter 8.
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