A Cellular Automata Approach for the Simulation and Development of Advanced Phase Change Memory Devices

Submitted by

Jorge Alberto Vázquez Diosdado

to the University of Exeter as a thesis for the degree of Doctor of Philosophy (PhD) in Mathematics, November 2012.

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgment. I certify that all material in this thesis which is not my own work has been identified and that no material is included for which a degree has previously been conferred upon me.

Jorge Alberto Vázquez Diosdado
Abstract

Phase change devices in both optical and electrical formats have been subject of intense research since their discovery by Ovshinsky in the early 1960’s. They have revolutionized the technology of optical data storage and have very recently been adopted for non-volatile semiconductor memories. Their great success relies on their remarkable properties enabling high-speed, low power consumption and stable retention. Nevertheless, their full potential is still yet to be realized.

Operations in electrical phase change devices rely on the large resistivity contrast between the crystalline (low resistance) and amorphous (high resistance) structures. The underlying mechanisms of phase transformations and the relation between structural and electrical properties in phase change materials are quite complex and need to be understood more deeply. For this purpose, we compare different approaches to mathematical modelling that have been suggested to realistically simulate the crystallization and amorphization of phase change materials. In this thesis the recently introduced Gillespie Cellular Automata (GCA) approach is used to obtain direct simulation of the structural phases and the electrical states of phase change materials and devices. The GCA approach is a powerful technique to understand the nanostructure evolution during the crystallization (SET) and amorphization (RESET) processes in phase change devices over very wide length scales. Using this approach, a detailed study of the electrical properties and nanostructure dynamics during SET and RESET processes in a PCRAM cell is presented.

Besides the possibility of binary storage in phase change memory devices, there is a wider and far-reaching potential for using them as the basis for new forms of arithmetic and cognitive computing. The origin of such potential lies in a previously under-explored
property, namely accumulation which has the potential to implement basic arithmetic computations. We exploit and explore this accumulative property in films and devices. Furthermore, we also show that the same accumulation property can be used to mimic a simple integrate and fire neuron. Thus by combining both a phase change cell operating in the accumulative regime for the neural body and a phase change cell in the multilevel regime for the synaptic weighting an artificial neuromorphic system can be obtained. This may open a new route for the realization of phase change based cognitive computers.

This thesis also examines the relaxation oscillations observed under suitable bias conditions in phase change devices. The results presented are performed through a circuit analysis in addition with a generation and recombination mechanism driven by the electric field and carrier densities. To correctly model the oscillations we show that it is necessary to include a parasitic inductance.

Related to the electrical states of phase change materials and devices is the threshold switching of the amorphous phase at high electric fields and recent work has suggested that such threshold switching is the result of field-induced nucleation. An electric field induced nucleation mechanism is incorporated into the GCA approach by adding electric field dependence to the free energy of the system. Using results for a continuous phase change thin films and PCRAM devices we show that a purely electronic explanation of threshold switching, rather than field-induced nucleation, provides threshold fields closer to experimentally measured values.
Contents

Acknowledgements ... 3

Contents .. 5

List of figures ... 9

List of tables .. 24

1 Introduction and motivation 25
 1.1 Development of data storage technologies 25
 1.2 Characteristics of phase change materials 27
 1.3 Structural properties of phase change materials 29
 1.3.1 Structural properties of the amorphous state 30
 1.3.2 Structural properties of the crystalline state 31
 1.4 Outline of the thesis 32

2 Cellular automata approach for modelling phase change transformations in continuous thin films 35
 2.1 Classic nucleation and growth theory 36
 2.1.1 Homogeneous crystal nucleation 36
 2.1.2 Crystal growth 39
 2.2 JMAK theory .. 40
 2.3 Rate and master equation approaches 42
 2.4 General characteristics of cellular automata approaches 51
 2.5 Description of a Gillespie cellular automata approach 53
2.6 Simulation of phase change processes in continuous thin films 55
2.6.1 Nucleation and crystal growth . 56
2.6.2 Spatio-temporal annealings . 57
2.7 Comparison of different models for phase change transformations 59

3 Threshold switching in phase change materials 65
3.1 Possible threshold switching mechanisms 66
3.2 An analytical model for electronically-driven
threshold switching . 68
3.2.1 Subthreshold conduction . 69
3.2.2 Threshold conduction . 73
3.3 Electric field induced nucleation . 76

4 A multiphysics cellular automata model for simulation of phase change
devices 80
4.1 Implementation for realistic devices . 81
4.2 The electrical model . 83
4.2.1 Integration of Ielmini’s model in the Multiphysics framework 84
4.3 The thermal model . 86
4.4 Numerical Implementation . 87
4.5 Simulation of the RESET and SET processes in PCRAM “mushroom-
type” cells . 90
4.5.1 Reset operation . 91
4.5.2 Set operation . 96
4.5.3 Repeatability of the simulations . 108

5 Accumulation-based arithmetic and neuromorphic computing with phase
change materials and devices 114
5.1 Multistate memory in a continuous $Ge_2Sb_2Te_5$ thin film material using
the GCA approach . 116
5.2 Accumulator-based phase change devices 121
CONTENTS

5.3 Phase change integrate and fire neuron-like .. 127

6 Relaxation oscillations in phase change devices ... 133
 6.1 The Ielmini model for threshold switching ... 134
 6.1.1 Parameters .. 136
 6.2 Relaxation oscillations caused by threshold switching 137
 6.3 A simplified model for threshold switching .. 139
 6.4 Relaxation oscillations in the simplified model for threshold switching 143
 6.5 Discussion of relaxation oscillations in $Ge_2Sb_2Te_5$ material 145

7 Threshold switching via electric field induced nucleation in phase change memory devices .. 147
 7.1 Electric field induced nucleation ... 148
 7.2 Field induced nucleation in a $Ge_2Sb_2Te_5$ continuous thin film 149
 7.3 Field-induced nucleation and switching in PCRAM devices 152
 7.3.1 Methodology .. 152
 7.3.2 Results .. 157

8 Conclusions and further work ... 165

A List of Publications ... 170

B Relaxation oscillations .. 172