The Aza-Silyl-Prins Reaction:
Development and Application
to the Total Synthesis of
(±)-Pipecolic Acid and (±)-Cannabisativine

Submitted by
Robert James Parker

To the University of Exeter as a thesis for the degree of
Doctor of Philosophy in Chemistry

September 2008

This thesis is available for library use on the understanding that it is copyright material
and no quotation from the thesis may be published without proper acknowledgement.

“I certify that all material in this thesis which is not my own work has been identified
and no material is included for which a degree has previously been conferred upon me.
Signed ________________________________”
Abstract

The focus of this thesis is to develop new methods towards the synthesis of nitrogen-containing heterocycles. Chapter one contains a brief introduction into previous work by the Dobbs group, involving the optimisation of the silyl-Prins reaction and aza-silyl-Prins reaction, which afford substituted dihydropyran and tetrahydropyridines respectively.

Chapter two initially provides a literature overview towards the synthesis of piperidines using this methodology. Following this, our results demonstrate that using different substitution patterns in the homoallylic amine precursors has quite a significant regiochemical effect on the reaction. These effects include the formation of pyrrolidine structures, which can be isolated and characterised.

Chapter three presents the utilisation of the previously optimised silyl-Prins and aza-silyl-Prins reaction to obtain oxa- and aza-cycles containing a trifluoromethyl group, a functionality known to have significant effects on the lipophilicity of drug molecules. Next in chapter four, again the advantages of using the aza-silyl-Prins reaction to obtain high functionality in a simple coupling reaction are presented, with the formation of pipecolate and pipecolic acid analogues. Chapter five includes attempts to use the aza-silyl-Prins to form tetrasubstituted tetrahydropyridines using precedent from studies in the silyl-Prins reaction. However, although the similarities between these two coupling reactions are obvious, the differences in heteroatom in the substrates and products have a significant effect. Following previous attempts in the group to form nitrogen heterocycles in high enantiopurity with little success, chapter six discusses the optimisation of a new Lewis acid mediated imine-vinylsilane cyclisation reaction. The formation of 2-substituted free amine tetrahydropyridines was successful for racemic examples, but the studies into utilising this methodology towards an asymmetric synthesis are yet to be finalised. Finally, chapter seven investigates the use of the aza-silyl-Prins reaction into forming more complex natural products such as cannabisativine.

Part of this work has been published in:

Contents

Abbreviations .. 7

Acknowledgements... 10

INTRODUCTION... Error! Bookmark not defined.

CHAPTER ONE: Previous Work ... Error! Bookmark not defined.

I. The Silyl-Prins Reaction ... Error! Bookmark not defined.

II. The Aza-Silyl-Prins Reaction .. Error! Bookmark not defined.

CHAPTER TWO: The Aza-Prins Reaction ... Error! Bookmark not defined.

I. Literature Review of Prins Methodology. .. Error! Bookmark not defined.

1. The Prins Reaction .. Error! Bookmark not defined.

2. Iminium Ion-Olefin Cyclisation Reactions .. Error! Bookmark not defined.

II. Results and Discussion: Studies into the Aza-Prins Reaction ... Error! Bookmark not defined.

 a. Precursor Synthesis for the Aza-Prins Reaction I .. Error! Bookmark not defined.
 b. Initial Screening for Aza-Prins Reaction .. Error! Bookmark not defined.
 c. Solvent Effects of Acetonitrile .. Error! Bookmark not defined.
 d. Stabilisation Effects .. Error! Bookmark not defined.

2. Iron(III) Halide Mediated Aza-Prins Reaction .. Error! Bookmark not defined.
 a. Precursor Synthesis for the Aza-Prins Reaction II .. Error! Bookmark not defined.
 c. Aza-Prins Cyclisations: Effects of (E)-Homoallyl Amine Error! Bookmark not defined.

 a. Precursor Synthesis for the Aza-Prins Reaction III .. Error! Bookmark not defined.
CHAPTER THREE: Formation of 6-Trifluoromethyl-3,4-dihydropyrans and 6-Trifluoromethyl-3,4-tetrahydropyridines

I. Literature Review for Formation of Trifluoromethyl Containing Heterocycles

1. Literature for Formation of Fluorinated Oxacycles
2. Literature Review for the Formation of Fluorinated Azacycles

II. Results and Discussion: Studies into the Formation of Fluorinated Heterocycles

1. Synthesis of 6-Trifluoromethyl-3,4-dihydropyrans
 a. Precursor Synthesis I - Formation of 1-CF₃-Homoallylic Alcohol
 b. Silyl-Prins Reactions of 1-CF₃-Homoallylic Alcohol
 c. Further Functionalisation of Dihydropyran Olefin
2. Synthesis of 6-Trifluoromethyl-3,4-tetrahydropyridines
 a. Precursor Synthesis II - Formation of 1-CF₃-Homoallylic Amine
 b. Aza-silyl-Prins Reactions of 1-CF₃-Homoallylic Amine
 c. Further Functionalisation of Tetrahydropyridine Olefin
 d. Precursor Synthesis III – Formation of 1-CF₃-Homoallylic Tosylamine

CHAPTER FOUR: Towards the Synthesis of Pipecolic Acid Analogues and Pipecolates

I. Literature Review for Synthesis of Pipecolic Acid and Analogues

1. Formation of 2-Substituted Pipecolic Acids
2. Formation of 2,6-Disubstituted Pipecolic Acids and Other Analogues
II. Results and Discussion: Studies into the Formation of Pipecolic Acid Analogues and Pipecolates

1. Precursor Synthesis – Formation of Silylated Homoallylic Amines
2. Synthesis of 6-Methyl Pipecolic Acid
3. Synthesis of 3,4-Dihydroxy Pipecolates

CHAPTER FIVE: Formation of 1,2,5,6-Tetrasubstituted-3,4-tetrahydropyridines

I. Literature Review on the Formation of Multi-substituted Tetrahydropyridines

II. Results and Discussion: Studies into Synthesis of N,2,5,6-Tetrasubstituted-3,4-tetrahydropyridines

1. Precursor Synthesis I: Formation of α,β-Disubstituted Amines
2. Precursor Synthesis II- Zinc Bromide Mediated α,β-Dialkyl Amine Formation

CHAPTER SIX: Towards the Synthesis of Enantiopure 2-Substituted-3,4-tetrahydropyridines

I. Literature Review Towards Formation of Enantiopure Tetrahydropyridines

1. Vinylsilane Cyclisations: Formation of Racemic Tetrahydropyridines
2. Activation of Imines with Lewis Acids
3. Utilisation of Chiral Lewis Acids

II. Results and Discussion: Studies Towards Asymmetric Imine-vinylsilane Reaction

1. Lewis Acid Mediated Imine-vinylsilane Cyclisations for Racemic Products
 a. Precursor Synthesis: Synthesis of Imine-vinylsilanes
 b. Cyclisations Reactions for Racemic Products
2. Imine-vinylsilane Reactions: Formation of Enantiopure Products
 a. Chiral ligand Synthesis
 b. Imine-vinylsilane Cyclisations: Towards Enantiopure Products

CHAPTER SEVEN: Towards the Total Synthesis of Cannabisativine
Contents

I. Literature Review for Total Synthesis of Cannabisativene and Spermidine Alkaloids

II. Results and Discussion: Studies Towards the Total Synthesis of Cannabisativine

1. Retrosynthetic Analysis of Literature Examples, Towards the Formal Synthesis of Spermidine Alkaloids

2. ROUTE 1
 a. Retrosynthetic Analysis of Cannabisativine I
 b. Amine Precursor Synthesis I

3. ROUTE 2
 a. Retrosynthetic Analysis of Cannabisativine II
 b. Amine Precursor Synthesis II
 c. Aldehyde Formation
 d. Aza-silyl-Prins Screening
 e. Imine-vinylsilane Cyclisation

CONCLUSION

EXPERIMENTAL

REFERENCES
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>Acetyl</td>
</tr>
<tr>
<td>acac</td>
<td>Acetylacetonate</td>
</tr>
<tr>
<td>BINOL</td>
<td>1,1'-Bi-2-naphthol</td>
</tr>
<tr>
<td>bpy</td>
<td>2,2'-Bipyridine</td>
</tr>
<tr>
<td>Boc</td>
<td>t-Butoxycarbonyl</td>
</tr>
<tr>
<td>Bn</td>
<td>Benzyl</td>
</tr>
<tr>
<td>Cbz</td>
<td>Benzyloxy carbonyl</td>
</tr>
<tr>
<td>CI</td>
<td>Chemical ionisation</td>
</tr>
<tr>
<td>Cy</td>
<td>Cyclohexyl</td>
</tr>
<tr>
<td>DAST</td>
<td>Diethylaminosulfur trifluoride</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-Diazabicyclo[4.3.0]undec-7-ene</td>
</tr>
<tr>
<td>DCC</td>
<td>(N,N')-Dicyclohexylcarbodiimide</td>
</tr>
<tr>
<td>DCM</td>
<td>Dichloromethane</td>
</tr>
<tr>
<td>DHQ</td>
<td>Hydroquinone</td>
</tr>
<tr>
<td>DiBAL</td>
<td>Diisobutylaluminium hydride</td>
</tr>
<tr>
<td>DIAD</td>
<td>Diisopropyl azodicarboxylate</td>
</tr>
<tr>
<td>4-DMAP</td>
<td>4-Dimethylaminopyridine</td>
</tr>
<tr>
<td>DME</td>
<td>Dimethoxyethane</td>
</tr>
<tr>
<td>DMF</td>
<td>(N,N)-Dimethylformamide</td>
</tr>
<tr>
<td>DMP</td>
<td>Dess-Martin periodinane</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>DPPA</td>
<td>Diphenyl phosphorylazide</td>
</tr>
<tr>
<td>Ei</td>
<td>Electronic ionisation</td>
</tr>
<tr>
<td>eq.</td>
<td>Equivalent</td>
</tr>
<tr>
<td>HIV</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td>HMDS</td>
<td>Hexamethyldisilazide</td>
</tr>
<tr>
<td>Hmim</td>
<td>1-Hexyl-3-methylimidazolium</td>
</tr>
<tr>
<td>HMPA</td>
<td>Hexamethylphosphoramidate</td>
</tr>
<tr>
<td>HPLC</td>
<td>High Performance Liquid Chromatography</td>
</tr>
<tr>
<td>HRMS</td>
<td>High resolution mass spectrometry</td>
</tr>
<tr>
<td>Hz</td>
<td>Hertz</td>
</tr>
<tr>
<td>Im</td>
<td>Imidazole</td>
</tr>
</tbody>
</table>
Abbreviations

IR Infrared
LA Lewis Acid
LAH Lithium aluminium hydride
LCMS Liquid chromatography-mass spectrometry
LDA Lithium diisopropylamide
LUMO Lowest unoccupied molecular orbital
m-CPBA meta-chloroperoxybenzoic acid
MEM methoxethoxymethyl
MHz Mega-Hertz
MMPP Magnesium monoperoxyphthalate
MOM Methoxymethyl
M.p. Melting point
Ms Methanesulfonyl
MS Molecular sieves
m/z Mass to charge ratio
NMO 4-Methylmorpholine N-oxide
NMR Nuclear magnetic resonance
nOe Nuclear Overhauser effect
NOESY Nuclear Overhauser enhancement spectroscopy
Nu Nucleophile
PCC Pyridinium chlorochromate
PDC Pyridinium dichromate
PG Protecting group
PhF 9-Phenylfluorene
PMP 1-Phenyl-3-methyl-5-pyrazolone
PYBOX 2,6-Bis(4,5-dihydro-1,3-oxazol-2-yl)pyridine
RCM Ring closing metathesis
rt Room temperature
SAR Structure activity relationship
TBAB Tetrabutylammonium bromide
TBS t-Butyldimethylsilyl
TBDPS t-Butyldiphenylsilyl
TCC trans-2-(α-Cumyl)cyclohexyl
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>TES</td>
<td>Triethylsilyl</td>
</tr>
<tr>
<td>Tf</td>
<td>Trifluoromethanesulfonyl</td>
</tr>
<tr>
<td>TFA</td>
<td>Trifluoroacetic acid</td>
</tr>
<tr>
<td>THF</td>
<td>Tetrahydrofuran</td>
</tr>
<tr>
<td>TIPS</td>
<td>Triisopropylsilyl</td>
</tr>
<tr>
<td>TLC</td>
<td>Thin layer chromatography</td>
</tr>
<tr>
<td>TMEDA</td>
<td>Tetramethylethylenediamine</td>
</tr>
<tr>
<td>TMS</td>
<td>Trimethylsilyl</td>
</tr>
<tr>
<td>Tr</td>
<td>Triphenylmethyl (Trityl)</td>
</tr>
<tr>
<td>Tp</td>
<td>Hydridotrispyrazolylborate</td>
</tr>
<tr>
<td>Troc</td>
<td>2,2,2-Trichloroethoxycarbonyl</td>
</tr>
<tr>
<td>Ts</td>
<td>para-Toluenesulfonyl</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra-violet</td>
</tr>
</tbody>
</table>
Acknowledgments

I would like to thank Dr Adrian P. Dobbs, my academic supervisor, for all his encouragement and support over the last four years. Especially for being so supportive with regards to my family situation. Also I would like to thank the staff at the University of Exeter, past and present, for allowing the practical aspects of my degree to run smoothly. I would like to thank my industrial supervisor, Dr John Skidmore of GlaxoSmithKline for all the precious time he has given to the project and for his expert supervision while I spent my CASE placement in Harlow.

The work described in this thesis was funded by GlaxoSmithKline and EPSRC, this financial support is greatly appreciated. Also I would like to thank the EPSRC Mass Spectrometry service at Swansea and the EPSRC X-ray Crystallography Service at Southampton for analysis of samples.

I would like to dedicate this thesis to my wife Dawn and children, Nathan and Darcey who have only ever encouraged me throughout my degree and have been very understanding when the majority of my time has been dedicated to this work. This is as much their achievement as it is mine.

Finally, I would like to thank my parents for being so supportive, to Dad for being there constantly during my write-up and to Mum for giving me everything I ever needed. So many people have encouraged me during my degree and I thank you all.