Nonlinear solutions of the amplitude equations governing fluid flow in rotating spherical geometries.

Submitted by

Edward William Blockley

to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Applied Mathematics, December 2008.

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material is included for which a degree has previously been conferred upon me.

Abstract

We are interested in the onset of instability of the axisymmetric flow between two concentric spherical shells that differentially rotate about a common axis in the narrow-gap limit. The expected mode of instability takes the form of roughly square axisymmetric Taylor vortices which arise in the vicinity of the equator and are modulated on a latitudinal length scale large compared to the gap width but small compared to the shell radii. At the heart of the difficulties faced is the presence of phase mixing in the system, characterised by a non-zero frequency gradient at the equator and the tendency for vortices located off the equator to oscillate. This mechanism serves to enhance viscous dissipation in the fluid with the effect that the amplitude of any initial disturbance generated at onset is ultimately driven to zero.

In this thesis we study a complex Ginzburg-Landau equation derived from the weakly nonlinear analysis of Harris, Bassom and Soward [D. Harris, A. P. Bassom, A. M. Soward, Global bifurcation to travelling waves with application to narrow gap spherical Couette flow, Physica D 177 (2003) p. 122-174] (referred to as HBS) to govern the amplitude modulation of Taylor vortex disturbances in the vicinity of the equator. This equation was developed in a regime that requires the angular velocities of the bounding spheres to be very close. When the spherical shells do not co-rotate, it has the remarkable property that the linearised form of the equation has no non-trivial neutral modes. Furthermore no steady solutions to the nonlinear equation have been found.

Despite these challenges Bassom and Soward [A. P. Bassom, A. M. Soward, On finite amplitude subcritical instability in narrow-gap spherical Couette flow,
J. Fluid Mech. 499 (2004) p. 277-314] (referred to as BS) identified solutions to the equation in the form of pulse-trains. These pulse-trains consist of oscillatory finite amplitude solutions expressed in terms of a single complex amplitude localised as a pulse about the origin. Each pulse oscillates at a frequency proportional to its distance from the equatorial plane and the whole pulse-train is modulated under an envelope and drifts away from the equator at a relatively slow speed. The survival of the pulse-train depends upon the nonlinear mutual-interaction of close neighbours; as the absence of steady solutions suggests, self-interaction is inadequate.

Though we report new solutions to the HBS co-rotation model the primary focus in this work is the physically more interesting case when the shell velocities are far from close. More specifically we concentrate on the investigation of BSstyle pulse-train solutions and, in the first part of this thesis, develop a generic framework for the identification and classification of pulse-train solutions.

Motivated by relaxation oscillations identified by Cole [S. J. Cole, Nonlinear rapidly rotating spherical convection, Ph.D. thesis, University of Exeter (2004)] whilst studying the related problem of thermal convection in a rapidly rotating self-gravitating sphere, we extend the HBS equation in the second part of this work. A model system is developed which captures many of the essential features exhibited by Cole's, much more complicated, system of equations. We successfully reproduce relaxation oscillations in this extended HBS model and document the solution as it undergoes a series of interesting bifurcations.

Acknowledgements

First and foremost I would like to thank my supervisors without whom I would never have been able to complete this work.

Primarily I am indebted to Andrew Soward whose experience, knowledge and patience has been essential to the completion of this work. Throughout the term of this study his door has always been open to me and I have benefited greatly from his advice and guidance.

I would like also to thank Andrew Bassom for getting me interested in the project in the first place, following our successful partnership for my masters dissertation. His email-based encouragement has proven most useful and I particularly appreciated him inviting me to Australia as an academic visitor.

Finally, I would like to extend my thanks Andrew Gilbert for stepping into the breach as my second supervisor following the departure of AB and, in particular, for his swift and extremely thorough draft reading skills.

I would also like to thank the remainder of the departmental staff many of whom have offered me advice on various subjects during my time here. In particular, Sebastian Wieczorek and Pete Ashwin afforded me some very helpful conversations relating to dynamical systems and topology. Many thanks too must go to the maths PhD gang, in particular those that I have shared office space with, for always being on hand to provide welcome distractions and for putting up with my hogging most of the space available to us!

I am also indebted to my employers The Met Office, and in particular my line manager John Siddorn, both for employing me in the first place and for being understanding and allowing me the flexibility needed to complete the writing of
this work.
On the personal side of things I am indebted to so many people including all my friends and family whose support has been a constant help. In particular I would like to thank my parents, my girlfriend Caroline and my housemate Tom for being there for me and for coping with the grumpiness that seems to go hand-in-hand with writing up a PhD thesis. My thanks also go to all the lads that I play Football and Ultimate Frisbee with for both helping me to relieve stress and for putting up with my erratic performances and attendance.

Last but definitely not least, I would like to gratefully acknowledge the Engineering and Physical Sciences Research Council (EPSRC) without whose funding this work would not have come about in the first place.

Contents

Acknowledgements 4
Contents 6
List of Figures 10
List of Tables 14
1 Introduction and motivation 15
1.1 Spherical Couette flow 16
1.2 The narrow-gap problem 21
1.3 Thermal convection in a rapidly rotating, self-gravitating sphere 25
1.4 Outline of this work 30
I Pulse-trains in narrow-gap spherical Couette flow 32
2 Review of previous work 33
2.1 The linear stability problem 33
2.2 Weakly nonlinear extension 38
2.2.1 Co-rotating spheres 38
2.2.2 Pulse-train solutions 39
2.2.3 Pulses under an envelope : a multiple length scale problem 40
2.3 The HBS model : almost co-rotation 41
2.4 The BS model : pulse-trains 44
2.5 Summary 46
3 New results and comparisons 49
3.1 New solutions to the HBS model 49
3.1.1 Methodology 50
3.1.2 New HBS solutions : a large amplitude branch 51
3.2 Comparison between HBS and BS solutions 53
3.3 Extending the BS model 57
4 General pulse-train solutions : formulation 60
4.1 A Fourier series in space 61
4.2 Symmetries of the problem 62
4.3 Temporal periodicity $4 T_{\mathrm{PS}}$ 64
4.4 Spatial pulses : a Fourier series in time 67
5 Numerical pulse-train solutions 70
5.1 Methodology 70
5.1.1 Numerical strategy 71
5.1.2 Visualising our numerical results 72
5.2 The BS solution revisited 75
5.3 Stability tests 76
6 General pulse-train solutions : results 78
6.1 Symmetry broken $\mathcal{P}_{-}^{\mathcal{H}}(T ; 2)$ solutions 78
$6.2 \mathcal{P}_{ \pm}(T ; N)$ solutions with N odd 83
6.2.1 The case $N=3$ 83
6.2.2 The search for odd N solutions 89
6.3 Zero-mean $\mathcal{P}_{-}(T ; N)$ solutions with N even 93
7 Summary of Part I 96
II Relaxation oscillations in a model motivated by ther- mal convection 100
8 Extension of the HBS model 101
8.1 Relaxation oscillations in rotating systems 101
8.2 Governing equations 102
8.3 Methodology 104
8.3.1 Numerical scheme 104
8.4 HBS solutions : the case $\kappa_{T} \rightarrow \infty$ 105
8.5 Relaxation oscillations: the case $\kappa_{T} \ll 1$ 107
8.5.1 Relaxation oscillations explained 108
8.5.2 The behaviour of the solution in space 108
9 Route to chaos : the case $\lambda=7, \Upsilon_{\varepsilon}=1$ 114
9.1 Moderate κ_{T} 115
9.2 Quasi-periodic motion on a torus 120
9.3 Periodic windows in parameter space 121
9.4 Identifying periodic windows and bifurcations 127
9.5 Tori in "crises" 132
9.6 Strange attractors 137
9.7 Higher order toroidal attractors : the N-torus 142
9.7.1 Some facts about N-dimensional tori 143
9.7.2 Exploring the existence of a 3 -torus 144
9.8 Summary 150
10 Frequency power spectra analysis 156
10.1 Single frequency periodicity 156
10.2 Multi-frequency quasi-periodicity 157
10.3 Using power spectra to find frequencies 157
10.3.1 Frequency-locked periodic solutions on the 2-torus 157
10.3.2 Quasi-periodic solutions on the 2-torus 159
10.3.3 Quasi-periodic solutions on the 3-torus-like attractor 160
10.3.4 Chaotic solutions 165
11 Summary of Part II 166
A The relationship with HBS 169
B Spatially periodic pulses 170
B. 1 Pulse structure : separation L_{PS} 170
B. 2 The Fourier space-time link 173
C Cole's Rapidly Rotating Spherical Convection Problem 176
C. 1 The quasi-geostrophic model 176
C. 2 Governing equations 178
C.2.1 Boundary conditions 180
C. 3 Solutions to the quasi-geostrophic model 180
C.3.1 Time-dependent solutions 180
C.3.2 Relaxation oscillations 181
C. 4 Summary 183
D Growth Rates and Frequencies; an Eigenvalue Problem 184
D. 1 An eigenproblem on a local scale 184
D. 2 Chebyshev collocation 185
D. 3 Relaxation Oscillations for $\lambda=7, \Upsilon_{\varepsilon}=1$ 187

List of Figures

1.1 Taylor vortices in the classical Taylor-Couette flow configuration.
 18

1.2 The spherical Couette flow configuration. 20
1.3 A sketch showing Taylor vortices in the spherical Couette flow con- figuration. 22
1.4 An illustration of the construction of a pulse train 24
1.5 A sketch of convective motions in an internally heated, rotating sphere 26
1.6 Relaxation oscillation behaviour in the results of Cole 29
2.1 Contours of $\sqrt{ }\langle\mathcal{E}\rangle$ vs. L_{PS} for the BS-style solutions at various values of λ 47
3.1 The maximum amplitude and frequency vs. driving coefficient $\lambda(0)$ for the new solutions of the HBS problem 52
3.2 Pulses for the case $\lambda=10, L_{\mathrm{PS}} \approx 2.487\left(T_{\mathrm{PS}} \approx 1.263\right)$ 54
3.3 Contours of constant $\operatorname{Re}\{a\}(x, t)$ and $\operatorname{Im}\{a\}(x, t)$ in the $x / L_{\mathrm{PS}}-t / T_{\mathrm{PS}}$ plane for the $\lambda=10, L_{\mathrm{PS}} \approx 2.487$ case 56
3.4 The time series $a(0, t)$ for the new solutions of the HBS problem andthe BS pulse-train solutions for $\Upsilon_{\varepsilon}=\frac{1}{4}, \lambda=10$ and $L_{\mathrm{PS}} \approx 2.487 \ldots 57$
3.5 Contours of $\sqrt{ }\langle\mathcal{E}\rangle$ vs. L_{PS} at $\lambda=10$ for the BS-style solutions, new broken-symmetry solutions and the related HBS solution59
5.1 The functions $A_{\alpha}(t)$ for the $N=2$ case $\lambda=10, L \approx 2.094(T=1.5)$ 73
5.2 The pulses $\bar{a}^{\alpha}(x)$ for the $N=2$ case $\lambda=10, L \approx 2.094$ 74
6.1 The modulus functions of the pulses corresponding to the symmetrybroken $\mathcal{P}_{-}^{\mathcal{H}}(T ; 2)$ wave-train solution for $\lambda=10, L_{\mathrm{PS}}=L \approx 2.094$
6.2 Contours of $\sqrt{ }\langle\mathcal{E}\rangle$ vs. spatial pulse-separation L_{PS} for the $\mathcal{P}_{-}^{\mathcal{Q}}(T ; 2)$, $\mathcal{P}_{-}^{\mathcal{H}}(T ; 2), \mathcal{P}(T ; 3)$ and $\mathcal{P}_{-}^{\mathcal{H}}(T ; 6)$ solutions with $\lambda=16$ and $22 \ldots 82$
6.3 The $\mathcal{P}_{+}(T ; 3)$ and $\mathcal{P}_{-}(T ; 3)$ solution amplitudes $A_{\alpha}(t)$ and $\{\mathcal{L} A\}_{\alpha}(t)$ for the case $\lambda=22, T=1.15$
6.4 The time series and the phase portraits of the $\mathcal{P}(T ; 3)$ solutions for the case $\lambda=22, T=1.15(L \approx 2.732)$
6.5 The amplitudes $\bar{a}^{\alpha}(x)$ corresponding to the functions $\widehat{A}^{\alpha}(t)$ for the $\mathcal{P}_{-}(T ; 3)$ case $\lambda=22, T=1.15$
6.6 The pulse amplitudes $\bar{b}^{0}(x)$ and $\bar{b}^{\mp 2}\left(x \pm L_{\mathrm{PS}}\right)$ for the $\mathcal{P}_{-}(T ; 3)$ case $\lambda=22, T=1.15, L_{\mathrm{PS}} \approx 1.821$88
6.7 Contours of constant amplitude for the $\mathcal{P}(T ; 3)$ solution in the $x / L_{\mathrm{PS}^{-}}$ t / T_{PS} plane for the case $\lambda=22, T=1.15\left(L \approx 2.732, L_{\mathrm{PS}} \approx 1.821\right)$
6.8 Contours of $\sqrt{ }\langle\mathcal{E}\rangle$ vs. L_{PS} for a variety of solutions at $\lambda=5$
7.1 Latitude-longitude plane distributions of various quantities of the azimuthal vorticity equation studied by Sha and Nakabayashi
8.1 The behaviour of the HBS solution $\lambda=7, \Upsilon_{\varepsilon}=1, \kappa_{T} \rightarrow \infty$ in time and space
8.2 HBS solutions recap : time series and temperature gradient for $\lambda=7$ $\Upsilon_{\varepsilon}=1$
8.3 Relaxation oscillations in detail : the time series and temperature gradient for $\lambda=7 \Upsilon_{\varepsilon}=1$
8.4 The behaviour of the relaxation oscillation solution $\lambda=7, \Upsilon_{\varepsilon}=1$, $\kappa_{T}=0.001$ in time and space109
8.5 The behaviour of the relaxation oscillation solution $\lambda=7, \Upsilon_{\varepsilon}=1$, $\kappa_{T}=0.001$ in time and space
8.6 Comparisons between HBS solutions $\kappa_{T} \rightarrow \infty$ and relaxation oscillations at small $\kappa_{T} \ll 1$ for various parameter values studied by HBS
9.1 The nature of solutions for various values of decreasing κ_{T} : part I . 116
9.2 The nature of solutions for various values of decreasing κ_{T} : part II 117
9.3 The state of the system for κ_{T} values either side of the Hopf bifurcation at $\kappa_{T} \sim 0.0516$. 119
9.4 Three-dimensional pictures of the newly emerged torus at $\kappa_{T}=0.05121$
9.5 Sketch illustrating the winding number, periodicity and quasi-periodicity on a torus . 122
9.6 An illustration of Arnold tongues in parameter space adapted from the work of Arnold . 123
9.7 The situation surrounding the first periodic window at $\kappa_{T}=0.045$ winding number $R=1 / 2$. 124
9.8 Bifurcation diagram under reducing κ_{T} for the case $\lambda=7 \Upsilon_{\varepsilon}=1$. 126
9.9 The situation surrounding the periodic window at $\kappa_{T}=0.028$ with winding number $R=2 / 5$129
9.10 Homoclinic wiggles, phase-locking and break-up of the 2-torus-like attractor about $\kappa_{T}=0.02075$
9.11 Three-dimensional pictures of the 'coiled' torus at $\kappa_{T}=0.0199 \ldots 135$
9.12 break-up of the 'coiled' torus and emergence of a weakly chaotic strange attractor for κ_{T} just below 0.02136
9.13 The underlying complicated structure of the strange attractor at $\kappa_{T}=0.0193$
9.14 The system surrounding the periodic solution at $\kappa_{T}=0.0177$ leading to emergence of a larger, more chaotic, attractor at $\kappa_{T}=0.0176$. . 140
9.15 Poincaré section of the suspected 3-torus at $\kappa_{T}=0.0149 \ldots . .$.
9.16 Illustration of a periodic window in the suspected 3-torus regime about $\kappa_{T}=0.0150$. 147
9.17 Periodic solution within the chaotic region at $\kappa_{T}=0.0094 \ldots$. . . 149
9.18 The extent of separation of the two time scales shown by the time series $a(0, t)$ for sevaral small values of κ_{T}
9.19 Sketch of the path taken through parameter space for decreasing κ_{T} illustrating Arnold tongues and the Hopf bifurcation154
10.1 Frequency power spectra for various periodic solutions 158
10.2 Frequency power spectra for quasi-periodic solutions 159
10.3 Frequency power spectra for a quasi-periodic solution in the suspected 3 -torus regime161
10.4 Frequency power spectra for the $R=1 / 5$ periodic solution in the suspected 3-torus regime163
10.5 Frequency power spectra for the chaotic relaxation solution 164
C. 1 A cross-section of the modified cylindrical annulus, or Busse annulus, model
C. 2 Time series of the kinetic energy for various values of the Rayleigh number R when $P=1$ and $E=10^{-6}$. 182
D. $1 \log$ plot of a relaxation oscillation for the case $\kappa_{T}=0.001$ showing the system growth rates and frequencies188

List of Tables

D. 1 A table showing real and imaginary parts of the dominant eigenvalue $p=p_{r}+\mathrm{i} p_{i}$, the growth rate and frequency respectively, at various points in time $t=T$ (corresponding to points in Figure D.1). . . . 190

