Recovery and analysis of director profiles in liquid crystal cells

Submitted by

Stephen Leslie Cornford

to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics, October 2008. This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.
Abstract

This thesis is concerned with the determination of the director profile within a nematic liquid crystal cell from optical experiments. The larger part of the work details the development of computational methods which can be used to find the director profile, and the application of these tools to the fully leaky guided mode experiment. In a second part, a simple conoscopic device is built, and then used to undertake a novel viscodynamic experiment.

In essence, the fully leaky guided mode experiments and its relatives measure the dependence of the transmission and reflection coefficients of a liquid crystal cell upon incident angle. It is simple enough to calculate these coefficients if the director profile is known, but experimentalists actually need to achieve the opposite. That is, having measured the transmission and reflection coefficients, they must determine the director profile. However, this turns out to be an ill-posed problem, and so some additional information about the director profile is required.

There is indeed an appropriate source of additional information - the continuum theory of nematic liquid crystals - and it is exploited here to develop two computational tools. In the first, it is used to adapt a mathematical technique, Tikhonov regularization, to both steady-state and time-dependent situations, so that director profiles can be recovered having made only weak assumptions about their behaviour. A second tool makes stronger assumptions and can be deployed after the first to estimate some of the unknown parameters which appear in the continuum theory.

These tools are use in the first instance to analyze data drawn from two fully leaky guided mode experiments. In the first experiment, a hybrid aligned cell was measured during AC switching, and from its data director profiles and several phenomenological parameters including four viscosities are determined. Following that, the DC switching of the same cell is studied, which turns out to be critically affected by the motion of tiny concentrations of charged impurities. Then, having noted that only limited information about the director profile can be recovered from even the most elaborate optical experiment, a conoscopy experiment is designed to recover it quickly. Following this approach, a previously unknown flow-induced transition between topologically distinct states in a homoetropically aligned cell is observed.
Acknowledgements

It seems quite likely that a list of acknowledgments in any PhD thesis begins with the supervisor. I do think that Roy Sambles deserves that place more than most. Throughout my time as his student, other students complained to me that their own supervisors were so elusive that some kind of exclusion principle was to be suspected. But if I managed to go a whole week without a discussion with Roy, I was probably on holiday.

Tim Taphouse, who started his PhD two years before me, also deserves special credit. Without his experimental data I might well be presenting tests of the computational techniques developed in this thesis against synthetic data - a serious crime, perhaps. Thanks are also due to Fuzi Yang and Pete Cann, who built a number of the samples I used in chapter 7, including one at about 3 hours notice after a mishap.

Chris Newton at HP Labs really started the ball rolling on this thesis, and was always a source of theoretical and computational assistance. Also at HP Labs, Steve Kitson, John Rudin, Tim Spiller, Suzanne Klein, David Sikharulidze and Adrian Geisow all had something to say at the regular CASE meetings held there.

Fellow School of Physics basement dwellers John Birkett and Tim Atherton kept me entertained for my first year, posing the philosophical question ‘Is physical force acceptable punishment for poor password choice?’ Sharon Jewell didn’t live in the basement, but remained, along with Lizhen Ruan, a valuable ally. I’d also like to thank Ian Hooper for coming downstairs from time to time, but never distracting me for more than, say, four hours at once. Fellow pirates Baptiste Augie and Martyn Gadsdon always joined me for a rousing chorus of ‘R’, while Matt Lockyear (the Roger Mellie of the microwave regime) always knew where coffee was to be had. Bill Barnes, George Zorinyants, Euan Hendry, Alistair Hibbins, Gemma Winter, Andy Murray, James Parsons, Tom Isaac, Ciarán Stewart, Stephen Luke, Chris Burrows, Tom Constant, James Edmunds, Melita Taylor and Ed Stone all had to put up with singular value decomposition at various times, so kudos to them.

University of Exeter people beyond the immediate research group who had advice at various times include G P Srivastava, Bob Jones, and Hamid Dehghani. Further afield, Bill Lionheart helped me understand what an inverse problem was right at the start. Nigel Mottram had a useful suggestion practically every time I encountered him, as did Paul Brimicombe. I also had useful discussions with Andrew Smith, Claus Kischka and Christophe Trabi.

The work described in this thesis was funded by an EPSRC CASE award in conjunction with HP Labs, Bristol.
Lowering himself suddenly to his knees he placed his right eye at the keyhole, and controlling the oscillation of his head and the vagaries of his left eye (which was for ever trying to dash up and down the vertical surface of the door), he was able by dint of concentration to observe, within three inches of his keyholed eye, an eye which was not his, being not only of a different colour to his own iron marble but being, which is more convincing, on the other side of the door.

— Mervyn Peake, Titus Groan
Contents

1 Introduction 14
 1.1 Liquid crystal mesophases 14
 1.2 Nematic liquid crystals 16
 1.2.1 The director 16
 1.2.1.1 The order parameter 17
 1.2.1.2 Uniaxial versus biaxial media 17
 1.2.1.3 Defects 17
 1.2.1.4 The Q-tensor 18
 1.2.2 Surface alignment 18
 1.2.3 Elastic energy 19
 1.2.4 Dielectric anisotropy 20
 1.2.4.1 Alignment by electric fields 21
 1.2.4.2 Birefringence 22
 1.2.5 The flexoelectric effect 23
 1.2.6 Ionic impurities 24
 1.2.7 The Euler-Lagrange equations 24
 1.2.8 Flow 25
 1.2.8.1 Backflow and kickback 26
 1.2.8.2 The Leslie and Meisowicz viscosities 27
 1.2.9 The Ericksen-Leslie equations 28
 1.3 Liquid crystal cells 29
 1.3.1 Planar homogeneous cells 30
 1.3.2 Twisted nematic cells 31
 1.3.3 Homeotropic cells 31
 1.3.4 HAN cells 31
 1.3.5 Bistable devices 32
 1.3.5.1 The Zenithal Bistable Nematic Device 32
 1.3.5.2 The post aligned bistable nematic device 33
 1.3.5.3 Switching of bistable devices 33
 1.4 Thesis outline 34
2 The optical study of liquid crystal cells and its relation to inverse problem theory

2.1 Optics of liquid crystal cells ... 38
 2.1.1 Birefringence ... 38
 2.1.1.1 Sensitivity to the director profile 39
 2.1.2 Thin-film interference ... 41
 2.1.2.1 Sensitivity to the director profile 42

2.2 Experimental methods .. 43
 2.2.1 The fully-leaky guided mode experiment 44
 2.2.2 Other guided mode experiments 45
 2.2.3 Conoscopy ... 45

2.3 The forward problem: calculation of the optical characteristics 47
 2.3.1 The Jones and extended Jones matrix methods 48
 2.3.2 The Berreman method .. 49

2.4 The inverse problem ... 51
 2.4.1 Ill-posed problems ... 52
 2.4.2 Optimisation problems .. 56
 2.4.3 Regularization ... 57

2.5 Summary ... 58

3 Singular value decomposition analysis of the inverse problem 59

3.1 Introduction ... 59

3.2 Methodology .. 60
 3.2.1 Numerical calculation of the Jacobian matrix 61
 3.2.2 Weak nonlinearity ... 62
 3.2.3 Singular value decomposition 62
 3.2.4 The SVD and ill-posed problems 63
 3.2.5 Regularization and the SVD 64

3.3 Results and Discussion ... 67
 3.3.1 SVD analysis of the fully-leaky guided mode experiment for the determination of the tilt profile in a HAN cell 67
 3.3.2 Using the SVD to analyse the proposed regularization matrix 73
 3.3.3 Inclusion of layer depths and permittivities in the model 76
 3.3.4 The effect of polar and azimuthal angle ranges upon the SVD 78
 3.3.5 The effect of laser wavelength upon the SVD 80
 3.3.6 Comparison of the fully-leaky guide mode and total attenuated reflection experiments ... 81
 3.3.7 Comparison of the fully- and half-leaky guided mode experiments 82

3.4 Summary ... 82
Development of a numerical model of liquid crystal dynamics

4. Introduction

4.2 The Governing equations

4.2.1 Assumptions

4.2.2 The Ericksen-Leslie equations

4.2.3 Boundary Conditions for θ and ϕ

4.2.4 Gauss' law

4.3 Solving second order PDEs numerically

4.3.1 The control volume method

4.3.2 Boundary conditions

4.3.3 Solving the algebraic equations

4.3.4 Nonlinear equations and Newton's method

4.3.5 Time-dependent equations

4.3.6 Multiple equations

4.4 Implementing and testing the model

4.4.1 HAN cells in steady-state

4.4.2 The flexo-electric effect in HAN cells

4.4.2.1 The flexo-electric effect and alternating fields

4.4.2.2 The flexoelectric effect and numerical stability

4.4.2.3 Test calculations involving the flexoelectric effect

4.4.3 Twisted nematic cells

4.4.4 HAN cell dynamics

4.5 Summary

5. Analysis of an AC switching experiment

6
5.3.2 Dynamics .. 136
 5.3.2.1 Weakly-constrained problem 137
 5.3.2.2 Strongly-constrained problem 139
 5.3.2.3 Error analysis 142

5.4 Summary .. 143

6 DC switching and ion drift in a HAN cell 146
 6.1 Introduction ... 146
 6.2 Methodology ... 147
 6.2.1 Experimental details 147
 6.2.2 Numerical model of ions in liquid crystal cells 148
 6.2.2.1 Ions bound to the cell walls 148
 6.2.2.2 Ions free to move in the bulk 149
 6.2.3 Inverse problems 151
 6.3 Results ... 152
 6.3.1 Steady-state behaviour 152
 6.3.1.1 Ionic impurities and ground-state tilt profiles 156
 6.3.2 Time-dependent behaviour 157
 6.3.3 Changing the surface treatment 162
 6.4 Summary ... 162

7 Conoscopic observations of pressure driven flow 165
 7.1 Introduction ... 165
 7.2 Cell Design ... 167
 7.3 Theory .. 167
 7.3.0.1 Nonlinear Ericksen-Leslie equations 167
 7.3.0.2 V and H states 168
 7.3.0.3 Linearised Ericksen-Leslie equations 171
 7.3.0.4 Modelling and Analysing the interference figure 172
 7.4 Experimental Method 178
 7.4.1 Building and using a laser conoscope 178
 7.4.1.1 Apparatus and design 178
 7.4.1.2 Alignment technique 179
 7.4.1.3 CCD operation 181
 7.4.2 Inverse problems 181
 7.5 Results and Discussion 182
 7.5.1 V state ... 183
 7.5.2 Transition to and from the H state 187
 7.6 Summary ... 189
List of Figures

1.1 Molecular structure of 5CB. ... 15
1.2 Schematics of the liquid, nematic, smectic A and crystalline phases. 15
1.3 Schleiren texture of a nematic film ... 18
1.4 Schematics of splay, twist, and bend distortions in a nematic liquid crystal. 20
1.5 Flexoelectric effect in pear-shaped molecules 23
1.6 The Meisowicz viscosities .. 27
1.7 Diagram of a simple liquid crystal cell .. 29
1.8 Schematic of the stable configurations of ZBND 32
2.1 A stratified optical system, or multilayer stack. 37
2.2 Double refraction ... 39
2.3 Symmetric and anti-symmetric two layer stacks. 40
2.4 Polarization converting transmission through uniaxial stacks. 41
2.5 Reflection of p-polarized light from an inhomogeneous, 10 layer stack. 42
2.6 The fully-leaky guided mode experiment apparatus. 44
2.7 Schematic of a simple conoscop e .. 46
2.8 Four modelled interference figures .. 46
2.9 Solutions to the forward heat conduction problems. 54
2.10 Solutions to the backward heat conduction problems. 55
3.1 Diagram indicating relative decay of the singular values σ_j with j for three classes of ill-posed problems. .. 64
3.2 Simulated full-leaky guided mode experiment transmission intensity data. 68
3.3 Simulated full-leaky guided mode experiment reflection intensity data. 68
3.4 Relative size of the singular values σ_j of J 69
3.5 Elements v_{ji} of the right singular vectors of J, plotted as a function of the sub-layer index i. ... 71
3.6 Segments of the left singular vectors of J corresponding to T_{pp}. 72
3.7 The coefficients $|c_j| = u_j^T (f(0) - b)/\sigma_j$ for two simulated data vectors 72
3.8 Relative size of the factors $\sigma'_j = \sigma_j / |L^{-1}v_j|$ 73
3.9 Right singular vectors of JL^{-1}, represented as continuous functions. 74
3.10 The first eight vectors $L^{-1}v_j$, normalised to $L^{-1}v_1$. 75
3.11 The coefficients $|c_j| = |u_j^T (f(0) - b)||L^{-1}v_j|/\sigma_j$ for two simulated data vectors . 75
3.12 The first eight normalised vectors parallel to $L^{-1}v_j$ when there is significant uncertainty in the permittivities and depths of the liquid crystal and ITO layers.

3.13 The first eight normalised vectors parallel to $L^{-1}v_j$ when there is mild uncertainty in the permittivities and depths of the liquid crystal and ITO layers.

3.14 σ_j/σ_1 plotted against j for five angle ranges.

3.15 σ_j/σ_1 plotted against j for three azimuthal angles.

3.16 σ_j/σ_1 plotted against j for three laser wavelengths λ.

3.17 Simulated reflection coefficient R_{pp} against angle for the total attenuated reflection experiment.

3.18 σ_j/σ_1 plotted against j for the total attenuated reflection (TAR) and full-leaky guided mode (FLGM) experiments.

3.19 The first four right singular vectors computed for the total attenuated reflection (TAR) experiment.

3.20 Simulated reflection coefficient R_{pp} against angle for the half-leaky guided mode experiment.

3.21 Relative values of $\sigma'_j = \sigma_j/|L^{-1}v_j|$ computed for half leaky guided mode (HLGM) and fully-leaky guided mode (FLGM) experiments.

3.22 Unit vectors parallel to the first four $L^{-1}v_j$, calculated for the half leaky guided mode experiment.

4.1 A sub-layer, or control volume, within the liquid crystal layer.

4.2 Convergence of the iterative scheme when the initial state is the solution for $|v_0| \to \infty$.

4.3 Steady-state tilt profiles computed for a HAN cell, compared with DIMOS calculations.

4.4 Effect of varying $(e_s - e_b)$ on the tilt profile in a HAN cell.

4.5 Mid-plane tilt in a HAN cell, plotted against alternating voltage for several values of $(e_s - e_b)$.

4.6 Mid-plane tilt in a HAN cell, plotted against direct voltage for several values of $(e_s - e_b)$.

4.7 Steady-state tilt profiles computed for a twisted nematic cell, compared with DIMOS calculations.

4.8 Steady-state twist profiles computed for a twisted nematic cell, compared with DIMOS calculations.

4.9 Mid-plane tilt plotted against applied voltage computed for a twisted nematic cell, compared with DIMOS calculations.

4.10 Evolution of $\theta(z, t)$ in a HAN cell after a 4V potential is applied.

4.11 Evolution of $u_x(z, t)$ in a HAN cell after a 4V potential is applied.

4.12 Comparison of tilt profiles computed by DIMOS and the adaptive algorithm.

5.1 Grey-scale plot of the regularization matrix, L, for steady-state weakly-constrained problems using cubic spline interpolation.
5.2 Grey-scale plot of the regularization matrix, \(L \), for time-dependent weakly-constrained problems using cubic spline interpolation. .. 117
5.3 Grey-scale plot of the Jacobian matrix, \(J \), for time-dependent weakly-constrained problems using cubic spline interpolation. .. 118
5.4 Example use of the Metropolis algorithm. .. 124
5.5 Comparison between modelled and measured transmission \(T_{ps} \), before any kind of optimization. .. 125
5.6 Plot of the length of the Gauss-Newton step, \(\| \delta m \|_2 \), against iteration number, when seeking the ground state director profile. .. 126
5.7 Plot of the residual norm, \(\| f(m) - b \|_2 \), against iteration number. .. 126
5.8 Comparison of model against data, for different values of \(\lambda \). .. 127
5.9 Weakly-constrained ground state tilt profiles, computed as \(\lambda \) is varied. .. 127
5.10 Weakly-constrained steady-state tilt profiles, computed for several applied voltages. .. 129
5.11 Comparison between modelled and measured transmission \(T_{ps} \) for the weakly-constrained tilt profiles. .. 129
5.12 Variation of the estimated dielectric anisotropy \(\epsilon_a \) with the regularization parameter \(\lambda \). .. 130
5.13 Variation of the estimated flexoelectric coefficient \((\epsilon_s - \epsilon_a) \) with the regularization parameter \(\lambda \). .. 130
5.14 Variation of the residual norm \(\| f(x) - b \| \) with the regularization parameter \(\lambda \). .. 131
5.15 Strongly-constrained steady-state profiles, computed for several applied voltages. .. 132
5.16 Comparison between modelled and measured steady-state transmission \(T_{ps} \), for strongly-constrained tilt profiles. .. 132
5.17 Correlation of the uncertainty in \(k_{33} \) and \(\epsilon_a \). .. 134
5.18 Correlation of the uncertainty in \(d \) and \(\epsilon_a \). .. 134
5.19 Correlation of the uncertainty in \(d \) and \(n_0 \). .. 135
5.20 Correlation of the uncertainty in \(d \) and \(\Delta n \). .. 135
5.21 Comparison between modelled and measured dynamic transmission \(T_{ps} \), prior to any kind of optimization. .. 136
5.22 Weakly-constrained, unsteady tilt profiles, computed when the viscous term is included in the regularization matrix. .. 138
5.23 Comparison between modelled and measured dynamic transmission \(T_{ps} \), for weakly-constrained tilt profiles. .. 138
5.24 Weakly-constrained, unsteady tilt profiles, computed when the viscous term is neglected in the regularization matrix. .. 139
5.25 Comparison between modelled and measured dynamic transmission \(T_{ps} \), for strongly-constrained tilt profiles neglecting shear flow. .. 140
5.26 Strongly and weakly-constrained time-dependent tilt profiles. .. 141
5.27 Comparison between modelled and measured dynamic transmission \(T_{ps} \), for strongly-constrained tilt profiles including shear flow. .. 141
5.28 Correlation of the uncertainty in \(\gamma_1 \) and \(\gamma_2 \). .. 143
5.29 Correlation of the uncertainty in γ_1 and α_1...

5.30 Correlation of the uncertainty in γ_2 and $\alpha_4 + \alpha_5$.

6.1 Steady-state transmission T_{ps} under DC fields.

6.2 Weakly-constrained tilt profiles under DC fields.

6.3 Strongly-constrained tilt profiles under DC fields.

6.4 Ground state tilt profile due to the flexoelectric effect, bound surface charge, and mobile ions.

6.5 Charge concentration due to the flexoelectric effect and bound surface charge.

6.6 Weakly-constrained mid-plane tilt evolving with time.

6.7 Modeled evolution of the mid-plane tilt with no ions present.

6.8 Modeled evolution of the mid-plane tilt when the linear effect is dominated by the flexoelectric effect.

6.9 Modeled evolution of the mid-plane tilt when the linear effect is dominated by surface charges.

6.10 Modeled solution of the mid-plane tilt in the best fit case.

6.11 Transmission between parallel polarizers at normal incidence measured for a cell with the Merck homeotropic aligner.

6.12 Transmission between parallel polarizers at normal incidence measured for a cell with the Nissan homeotropic aligner.

7.1 Plan and side elevations of a flow cell.

7.2 Modeled V and H state tilt profiles under pressure driven flow.

7.3 Schematics of the V and H states.

7.4 Free energy of V and H states plotted against flow rate.

7.5 Geometry of the conoscope.

7.6 Interference figure calculated for a 20 μm homeotropic cell.

7.7 Interference figure calculated for a 20 μm cell, with $\theta = 5^\circ$ throughout the cell.

7.8 Interference figures calculated for a 20 μm cell in the V state.

7.9 Interference figures calculated for a 20 μm cell in the H state.

7.10 Laser conoscope apparatus.

7.11 Image projected onto the CCD when the analyzer is removed.

7.12 Smoothed spline fitted to a slice of conoscopy data parallel to the y-axis.

7.13 CCD image captured when the cell is in the ground state.

7.14 CCD image captured when the cell is in the V state.

7.15 CCD images captured when the cell is in the V state, with voltages applied.

7.16 Plots of θ_{RMS} against applied voltage.

7.17 CCD image captured when the cell is in the H state.

7.18 CCD images captured when the cell is switched from an H state to a V state.

7.19 Sequence of polarizing microscopy images taken as the cell switches from a V state to an H state.
A.1 Side view of a HAN cell ... 197

D.1 Modelled H state tilt profiles for an in a planar homogeneous cell under pressure driven flow .. 207
D.2 Maximum tilt angle plotted against flow rate for a planar homogeneous cell 207
D.3 Frank energy density plotted against flow rate for the H and V states of a planar homogeneous cell ... 208
D.4 Plots of the y–component of flow speed against z when $G_y = 0$ 209
D.5 Plots of the y–component of flow speed against z when $G_y \neq 0$ 210
D.6 Plots mid-plane twist angle against net flow rate along the x–axis. 210