Eco-efficient friction materials

Submitted by Michael Robert Sloan, to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Engineering July 2008

This thesis is available for library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

............................
Abstract

Automotive friction materials are multi component composites in which fibrous materials play a fundamental role. Modern friction formulations have been developed around asbestos fibres, a heavily used material before legislation outlawed its use in the 1980’s. The replacement adopted by the friction industry was aramid, a high performance, high cost synthetic fibre.

The work in this thesis investigates the role of aramid fibres in an economy friction material from the early mixing stages in manufacture using mechanical and optical analysis techniques through to the friction and wear performance of brake pads by employing instrumented friction and wear machines. Experimental procedures were designed and employed to quantify the performance of aramid pulp within the friction formulation as a function of volume fraction. Investigation showed a hierarchal fibre structure produced by an inherent molecular structure that encourages fibrillation producing complex fibre morphologies. This physical structure has been identified as fundamental to the success of aramid pulp in friction materials as the fibre network readily entraps small particles aiding the manufacturing process of friction materials. A structural model has been developed to describe both the particle retention performance of aramid fibres and the bulk structure of the pulp as a function of fibre geometry.

A dynamic mechanical test was used to measure the bulk elastic properties of fibre networks to assess their suitability as processing fibres in friction materials and providing a novel analytical technique for the friction industry.

Hemp, flax and jute are examples of high performance natural fibres that offer a significant cost saving over aramid, representing candidate replacements. Various natural fibres were trialled in friction formulations as direct replacements and also blended with aramid pulp. The results are compared to the baseline specification produced for aramid pulp allowing the suitability of natural fibres in friction materials to be discussed.
Acknowledgements

First and foremost I would like to thank my supervisors Ken and Bill for their guidance and inspiration through my research. Thank you both for your support, understanding, knowledge and sense of humour. I would like to thank everyone in Exeter Advanced Technologies, particularly the staff in the materials office. A special thank you is given to Oana for her determination to ensure I stayed on track during writing up. Neil Sewell has been invaluable for proof reading my work and always looking on the positive side of life and also Mark Beard for the advice and patience with Microsoft word. Thanks to Dave Baker for his help in designing the British racing green machine and most importantly to Pete Gerry for his skill and hard work to make it happen. Without you, it would still be in bits now! Thanks to Julian Wright for the data acquisition software and to Bob Hamilton for his electronic wizardry.

Thanks to Dr Gavin Edwards at EFI for his superb knowledge of brake pads, help on the dynos, bad jokes and bacon rolls at Ducati Bristol throughout the Ecopad project.

Thank you to Colin Lovell for all of the excellent SEM images taken throughout the work.

Thank you to Luke for writing the Ecopad project application and for the help at the SAE conference. Thanks to all of the industrial partners on the Ecopad project – EFI, PBW, Hemcore, Aptec and the Eden project – and also the DTI for the funding the Ecopad project as part of the sustainable technologies initiative.

Thank you to all my friends in Exeter who have supported me throughout my work and understood why I couldn’t come out to play during the last 12 months!

A very special thank you goes to my Kate who has encouraged and supported me throughout this work without the slightest clue as to what I’m doing! Without you (and the regular tea supplies) I couldn’t have done this.

My biggest acknowledgement goes to my family - Mum, Dad and brother Rich. This thesis is the highlight of my career so far and I have achieved this because of you.
List of Contents

1. Introduction .. 10
 1.1 Automotive brakes ... 12
 1.1.1 Brake system requirements ... 12
 1.1.2 Brake system components ... 14
 1.1.3 Environmental, cost and market issues .. 16
 1.2 Aims and objectives of the thesis .. 17
2. Literature review .. 19
 2.1 Friction materials ... 19
 2.1.1 History and development of friction materials .. 19
 2.1.2 Classification of friction materials .. 21
 2.1.3 Selection and performance of raw materials .. 22
 2.1.4 Fibres in friction materials ... 25
 2.1.5 Testing and analysis of friction materials .. 39
 2.2 Tribology ... 43
 2.2.1 Theories .. 43
 2.3 Tribology of friction materials .. 48
 2.4 Natural Fibres .. 51
 2.4.1 Classification and life cycle of natural fibres ... 52
 2.4.2 Structure and processing of natural fibres ... 55
3. Materials ... 59
 3.1 Introduction ... 59
 3.2 Friction material formulation ... 59
 3.3 Natural fibres ... 64
 3.4 Organic and Mineral fibres ... 66
 3.5 Brake Pad Geometry ... 67
4. Methods .. 68
 4.1 Thermo-gravimetric analysis of raw materials ... 68
 4.2 Dry formed fibre networks .. 68
 4.2.1 Scanning electron microscopy ... 69
 4.2.2 Aramid Fibre length .. 69
 4.2.3 Dynamic mechanical testing .. 70
 4.2.3.1 Sample preparation and loading ... 71
 4.2.3.2 Oscillation tests .. 73
 4.2.3.3 Fatigue tests .. 73
 4.3 Friction material formulation ... 73
 4.3.1 Mixing Friction Formulation ... 74
 4.3.2 Dust suppression ... 78
 4.3.3 Bulk density .. 78
 4.3.4 Manufacture of Pre-forms ... 79
 4.3.4.1 Green strength .. 80
 4.3.5 Manufacture of friction composites ... 82
 4.3.5.1 Flexural strength .. 82
 4.3.5.2 Measurement of dispersion of materials ... 83
 4.3.5.3 Density ... 84
List of figures

Figure 2.1 Classification of automotive friction materials ... 21
Figure 2.2 Classification of fibres used in friction materials .. 26
Figure 2.3 Para-aramid ... 34
Figure 2.4 Meta-aramid .. 34
Figure 2.5 Hydrogen bonding between para-aramid backbone chains 34
Figure 2.6 Parameters affecting friction and wear performance of sliding abrasive wear ... 48
Figure 2.7 Predominant wear mechanisms of friction materials ... 49
Figure 2.8 Classification of natural fibres ... 54
Figure 3.1 Reaction path of novolac phenolic resin ... 61
Figure 3.2a Inside pad from VW Golf ... 67
Figure 3.2b Outside pad from VW Golf ... 67
Figure 4.1 Side view of fibre puck between rheometer plates ... 72
Figure 4.2 Industrial manufacture of brake pads ... 74
Figure 4.3 Letter box die .. 80
Figure 4.4a Orthogonal faces of pre-form .. 81
Figure 4.4b Indentation of pre-form .. 81
Figure 4.5 Flexural test set up for friction composites ... 83
Figure 4.6 Chase machine .. 86
Figure 4.7 Hot press cycle for friction materials ... 89
Figure 4.8a Inertia dynamometer .. 90
Figure 4.8b Braking components on dynamometer ... 90
Figure 5.1 TGA of Cured Pad in air .. 94
Figure 5.2a TGA of Twaron in N₂ atmosphere ... 96
Figure 5.2b TGA of Twaron in air ... 97
Figure 5.3 TGA of Natural fibres in air ... 98
Figure 5.4 Large structural fibre in Twaron pulp ... 99
Figure 5.5 Net structure of fine Twaron fibres .. 100
Figure 5.6 Hierarchical fibre structure of Twaron 1099 pulp ... 101
Figure 5.7 Toughness of Twaron fibres .. 102
Figure 5.8 Hierarchical structure generated from single aramid fibre 102
Figure 5.9 Graphite flakes with Twaron hierarchical fibre structure 103
Figure 5.10 Graphite flakes within open bulk fibre structure ... 104
Figure 5.11 Generation of Twaron fibrils .. 105
Figure 5.12 Fibrillation mechanism of Twaron fibres ... 105
Figure 5.13 Internal and external fibrillation of a large Twaron fibre 106
Figure 5.14a Goonvean aramid ... 107
Figure 5.14b Sterling fibres aramid ... 107
Figure 5.15 Hemcore FC fibre ... 108
Figure 5.16a Flax fibre ... 109
Figure 5.16b Flax contamination .. 109
Figure 5.17 Cross section of leaf fibre sisal ... 110
Figure 5.18 Fibrillated end of hemp fibre ... 110
Figure 5.19 Fibrillation of FC+4 hemp fibre ... 111
Figure 5.20a Large structural aramid fibre .. 112
Figure 5.20b Large structural aramid fibre .. 112
List of Tables
Table 2.1 Friction material developments 1950’s to 1980’s .. 20
Table 2.2 Typical properties of Twaron fibres ... 38
Table 2.3 aramid pulps sold by Teijin ... 38
Table 2.4 Mechanical properties of natural fibres ... 52
Table 2.5 Chemical composition of various natural fibres ... 56
Table 3.1 baseline friction material formulation .. 60
Table 3.2 natural fibres sourced for formulation trials ... 65
Table 3.3 fibrillated hemp fibre types ... 66
Table 3.4 Organic and mineral fibres ... 66
Table 4.1 Master Batch Formulation ... 75
Table 4.2 friction formulations as a function of fibre inclusion 77
Table 5.1 onset temperatures of raw materials in formulation 95
Table 5.2 Summary of dynamic oscillation fibre network results 119
Table 5.3 Bulk density of friction formulations ... 123
Table 5.4 Bulk density and volume fraction of aramid pulp .. 125
Table 5.5 Maximum shear strength of interfacial bond of VW brake pads 146
Table 5.6 Summary of Coefficient of friction from AK Master tests 148
Table 5.7 Friction summary of constant torque test on natural fibres 150