The regulation of intestinal bicarbonate secretion
by marine teleost fish

Volume 1 (of 2)

Submitted by Jonathan Mark Whittamore, to the University of Exeter as a thesis for the
degree of Doctor of Philosophy in Biological Sciences in December 2008.

This thesis is available for library use on the understanding that it is copyright material and
that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and
that no material previously submitted and approved for the award to a degree by this or any
other University.

Signature

Date 10th December 2008

Acknowledgements
I would like to extend my sincere gratitude to supervisor Dr. Rod Wilson for all his encouragement, advice and for offering the benefits of his knowledge and experience over many enjoyable discussions throughout the course of this project. Likewise, I am also very grateful to friend and colleague Dr. Chris Cooper, with whom it has been a pleasure to work these past few years. In addition, I would like to thank Jan Shears and Margaret Grapes for their excellent technical assistance. Thank you also to Dr Martin Grosell at the University of Miami for the opportunity to visit his laboratory, as well as Josi Taylor, Janet Genz and the rest of his research group for their wonderful hospitality. I would also like to thank the many members (past and present) of the Ecotoxicology and Ecophysiology research group here at the School of Biosciences. Finally, I wish to express my deep gratitude to my family for their encouragement and support throughout.

This work was funded by a studentship from the Biotechnology and Biological Sciences Research Council (BBSRC).

Abstract
In seawater, drinking is a fundamental part of the osmoregulatory strategy for teleost fish, and presents a unique challenge. The intestine has an established role in osmoregulation, and its ability to effectively absorb fluid from imbibed seawater is crucial to compensating for water losses to the surrounding hyperosmotic environment. Alongside solute-linked water transport (driven by NaCl cotransport), intestinal bicarbonate (HCO$_3^-$) secretion also benefits fluid absorption directly (via apical Cl$^-$/HCO$_3^-$ exchange), and indirectly through the formation of calcium carbonate (CaCO$_3$) thus removing the osmotic influence of Ca$^{2+}$ within the gut fluid. For the European flounder (*Platichthys flesus*), elevated luminal Ca$^{2+}$ has proven to be a specific, potent stimulator of HCO$_3^-$ secretion both *in vitro* and *in vivo* where these actions are presumably modulated by an extracellular Ca$^{2+}$-sensing receptor (CaR). The focus of this work was to learn more about how intestinal HCO$_3^-$ secretion is regulated, the role of Ca$^{2+}$, and more specifically the CaR. To achieve this, *in vitro* ‘gut sac’ experiments investigated how luminal Ca$^{2+}$ influenced HCO$_3^-$ secretion, and associated ion and fluid transport. Contrary to expectation, increasing Ca$^{2+}$ from 5 to 20 mM did not stimulate HCO$_3^-$ secretion. In an attempt to elucidate the role of CaCO$_3$ precipitation in fluid absorption, and further explore the physiological implications of HCO$_3^-$ secretion, the intestine was perfused *in vivo* with salines containing varying concentrations of Ca$^{2+}$ (10, 40 and 90 mM). The production and secretion of HCO$_3^-$, in addition to CaCO$_3$ formation increased accordingly with Ca$^{2+}$, and was associated with a dramatic 25% rise in the fraction of fluid absorbed by the gut. Additional *in vitro* experiments, utilising the Ussing chamber, helped establish some of the characteristics of intestinal HCO$_3^-$ secretion by the euryhaline killifish (*Fundulus heteroclitus*), but was unresponsive to elevated mucosal Ca$^{2+}$. Further attempts to potentiate the activity of the CaR, and application of the receptor agonists gadolinium (Gd$^{3+}$) and neomycin, failed to produce responses consistent with the effect of Ca$^{2+}$ observed previously, either *in vitro* or *in vivo*. With no evidence supporting a direct role for an extracellular, intestinal CaR in HCO$_3^-$ secretion it was argued that secretion would be principally regulated by two factors, the ability of the epithelia to generate high levels of intracellular HCO$_3^-$ and the rate of CaCO$_3$ formation.

Contents

List of Figures
Chapter 1 – Introduction

1. The challenge of life in the sea
 1.1 Osmoconformity
 1.2 Osmoregulation
2. The osmoregulatory strategy of marine teleost fish
 2.1 Drinking
 2.2 Processing imbibed seawater
 2.2.1 The gastrointestinal tract
 2.2.2 Oesophagus
 2.2.3 Intestine
 2.2.4 Gills
 2.2.5 Kidney and urinary bladder
3. The role of the intestine in osmoregulation
 3.1 Anatomical structure
 3.2 Ion transport
 3.3 Fluid transport
 3.3.1 Aquaporins
 3.3.2 Is there active fluid transport?
 3.3.3 Calcium carbonate precipitation
4. Regulation of intestinal HCO₃⁻ secretion
 4.1 Osmoregulation and intestinal HCO₃⁻ secretion
 4.2 The calcium-sensing receptor (CaR)
 4.2.1 Structure and diversity
 4.2.2 Agonists and modulators
 4.2.3 Tissue distribution and functions
 4.2.4 Roles in health and disease
 4.3 The CaR in teleosts
 4.3.1 Distribution and proposed functions
 4.3.2 A role for the CaR in marine teleost osmoregulation
5. Project overview

Chapter 2 – Measuring fluid transport in vitro: Gravimetric method versus non-absorbable marker

1. Summary
2. Introduction
 2.1 Development of the gut sac as an in vitro technique
 2.2 Measuring fluid transport by gut sacs
 2.3 Non-absorbable volume markers
 2.4 Using PEG as a marker
 2.5 Aims and objectives
3. Materials and Methods
 3.1 Experimental animals
Chapter 3 – Evaluating the paired gut sac technique for measurement of ion and fluid transport in vitro

1. Summary

2. Introduction
 2.1 Assessing the viability of the intestine in vitro
 2.2 The energetic requirements of the intestine
 2.3 The functional capacity of the intestine in vitro
 2.4 Glucose and glutamine as metabolic fuels
 2.5 Aims and objectives

3. Materials and Methods
 3.1 Experimental animals
 3.2 Saline design and composition
 3.3 Concentrations of glucose and glutamine
 3.4 Pre-incubation period
 3.5 Functional viability of the gut sac preparation
 3.6 Hydrostatic pressure effects
<table>
<thead>
<tr>
<th>Chapter 4 - The regulation of bicarbonate secretion by the marine teleost intestine in vitro</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Summary</td>
</tr>
<tr>
<td>2. Introduction</td>
</tr>
<tr>
<td>2.1 The gastrointestinal tract in marine teleost osmoregulation</td>
</tr>
<tr>
<td>2.2 The role of intestinal HCO(_3^-) secretion and precipitation in osmoregulation</td>
</tr>
<tr>
<td>2.3 Mechanism and source of HCO(_3^-) secretion</td>
</tr>
<tr>
<td>2.3.1 The role of anion exchange</td>
</tr>
<tr>
<td>2.3.2 Source of HCO(_3^-)</td>
</tr>
<tr>
<td>2.3.3 Basolateral H(^+) secretion</td>
</tr>
<tr>
<td>2.4 Regulation of HCO(_3^-) secretion</td>
</tr>
<tr>
<td>2.5 Aims and objectives</td>
</tr>
<tr>
<td>3. Materials and Methods</td>
</tr>
<tr>
<td>3.1 Experimental animals</td>
</tr>
<tr>
<td>3.2 Saline design and composition</td>
</tr>
<tr>
<td>3.3 Experiment #1 – Effect of Ca(^{2+}) on HCO(_3^-) secretion</td>
</tr>
<tr>
<td>3.4 Experiment #2 – The role of serosal CO(_2)</td>
</tr>
<tr>
<td>3.4.1 Effect of 2 % CO(_2) on the composition of the serosal saline</td>
</tr>
<tr>
<td>3.5 Experiment #3 – The effects of Ca(^{2+}) on basolateral H(^+) secretion</td>
</tr>
<tr>
<td>3.6 Sample analysis and flux calculations</td>
</tr>
<tr>
<td>3.7 Data presentation and statistical analysis</td>
</tr>
<tr>
<td>4. Results</td>
</tr>
<tr>
<td>4.1 Experiment #1 – Effect of Ca(^{2+}) on HCO(_3^-) secretion</td>
</tr>
<tr>
<td>4.2 Experiment #2 – The role of serosal CO(_2)</td>
</tr>
<tr>
<td>4.2.1 Effect of 2 % CO(_2) on the composition of the serosal saline</td>
</tr>
<tr>
<td>4.3 Experiment #3 – The effects of Ca(^{2+}) on basolateral H(^+) secretion</td>
</tr>
<tr>
<td>5. Discussion</td>
</tr>
</tbody>
</table>
5.1 Experiment #1 – Effect of Ca\(^{2+}\) on HCO\(_3\)- secretion

5.1.1 Is HCO\(_3\)- secretion impaired when using the gut sac preparation?

5.1.2 Influence of the mucus layer and CaCO\(_3\) precipitation

5.1.3 Is CaCO\(_3\) precipitation likely to take place in gut sacs?

5.2 Experiment #2 – The role of serosal CO\(_2\)

5.2.1 Effect of 2 % CO\(_2\) on the composition of the serosal saline

5.2.2 Can CO\(_2\) regulate NaCl transport in the flounder intestine?

5.3 Experiment #3 – The effects of Ca\(^{2+}\) on basolateral H\(^+\) secretion

5.3.1 The role of endogenous CO\(_2\) in luminal HCO\(_3\)- secretion

5.3.2 Net flux of acid-base equivalents \textit{in vitro}

5.3.3 The effect of elevated mucosal Ca\(^{2+}\) on basolateral H\(^+\) secretion

5.3.4 The regulation of intestinal ion and fluid transport by Ca\(^{2+}\)
List of figures

Figure 1.1: A comparative illustration of the basic organisational plan of the vertebrate digestive system.
Figure 1.2: The general layout of the vertebrate intestine.
Figure 1.3: A model of the principal cellular ion and fluid transport pathways across the marine teleost intestinal epithelia.
Figure 1.4: A schematic representation of the principal topological features of the CaR protein.

Figure 2.1A: An illustration of the elaborate circulation system for the perfusion of a section of rat intestine.
Figure 2.1B: A diagram showing the preparation of an everted gut sac, alongside a photograph of an everted gut sac from the hamster.
Figure 2.2: A comparison of the mean rates of intestinal fluid transport measured simultaneously by the gravimetric method and 14C PEG using gut sacs from the intestines of the European flounder and rainbow trout.
Figure 2.3: The time course of fluid transport by gut sacs from the flounder intestine based on 14C PEG.
Figure 2.4: The mean proportions of 14C PEG initially injected into gut sacs that were found associated with the mucosal layer at the start of an incubation and 2 hours later.
Figure 2.5: The relationship between the mean volume change to a fixed volume of mucosal saline following the addition of different volumes of deionised water.
Figure 2.6: A comparison of the mean rates of intestine fluid transport measured simultaneously by the gravimetric method and 14C PEG, using unlabelled PEG as a carrier, by gut sacs from the European flounder intestine.
Figure 2.7: The mean proportion of 14C PEG initially injected into gut sacs that was found to be associated with the mucosal layer at the start of an incubation, and 2 hours later at the end, using unlabelled PEG as a carrier.
Figure 2.8: The time course of net water fluxes by an isolated segment of everted eel intestine.

Figure 3.1: The time course of fluid transport by gut sacs from the flounder.
intestine.

Figure 3.2: The mean net transport rates of Na^+, Cl^- and HCO_3^-, alongside net fluid transport by gut sacs from the anterior, mid and posterior segments of the flounder intestine in the presence of varying amounts of glucose and glutamine.

Figure 3.3: The mean net transport rates of Na^+, Cl^- and HCO_3^-, alongside net fluid transport by gut sacs from the intestine of the European flounder in the presence of varying amounts of glucose and glutamine.

Figure 4.1: An example of the typical titration curves obtained following the titration of the initial and final samples of the serosal saline.

Figure 4.2: The mean net fluxes of Na^+, Cl^- and HCO_3^-, alongside net fluid transport by gut sacs from the flounder intestine under control conditions, and in response to a 15 mM increase in mucosal Ca^{2+} concentration.

Figure 4.3: The mean net fluxes of Na^+, Cl^- and HCO_3^-, alongside net fluid transport by gut sacs made from the anterior, mid and posterior sections of the flounder intestine in relation to changes in mucosal Ca^{2+} and serosal CO_2.

Figure 4.4: The mean net fluxes of Na^+ and Cl^- alongside net fluid transport by gut sacs made from the anterior, mid and posterior sections of the flounder intestine in response to elevated mucosal Ca^{2+}, and in the absence of serosal HCO_3^-/CO_2.

Figure 4.5: The mean net flux of HCO_3^- into the mucosal saline in relation to the opposite acidic efflux detected in the serosal saline by gut sacs made from the anterior, mid and posterior sections of the flounder intestine in response to elevated mucosal Ca^{2+} and in the absence of serosal HCO_3^-/CO_2.

Figure 4.6: The mean concentration of HCO_3^- measured in the mucosal saline of gut sacs from the European flounder after being incubated for 1, 2 and 8 hours under control, *in vivo*-like conditions.

Figure 4.7: A proposed model of the processes involved in NaCl and fluid absorption by the proximal intestine of the European flounder in response to elevated intracellular CO_2 derived from either metabolism or external sources.

Figure 4.8: The relationship between net apical HCO_3^- secretion and net basolateral H^+ secretion by gut sacs from the anterior, mid and posterior sections of the flounder intestine.
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>The typical ionic composition and osmolality of seawater compared with the blood plasma of a number of fish species representing the classes Agnatha, Chondrichthyes and infra-class Teleostei.</td>
<td>18</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>The salts used in the composition of the mucosal and serosal salines.</td>
<td>55</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>The mean proportion of $[^{14}\text{C}]\text{PEG}$ detected in various compartments of gut sacs (serosal saline, rinses of the sac lumen and mucosal layer), from the flounder and rainbow trout.</td>
<td>67</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>The change in activity of $[^{14}\text{C}]\text{PEG}$ after being aliquoted from a working stock of mucosal saline into clean, dry tubes made from a range of different materials.</td>
<td>70</td>
</tr>
</tbody>
</table>
Table 2.4: The mean mass of the mucosal layer removed from the anterior, mid and posterior gut sacs at the beginning, and at the end of an incubation.

Table 3.1: The inorganic salts used to compose the mucosal and serosal salines.

Table 3.2: Calculations of the mean tissue density of various regions of the flounder intestine.

Table 4.1: The inorganic salts used in the composition of the mucosal and serosal salines employed in the following experiments.

Table 4.2: The mean measured pH and total CO$_2$ from samples taken at regular intervals from serosal saline being continuously gassed over 3 hours with either 0.5 % CO$_2$ or 2 % CO$_2$.

Table 4.3: A comparison of mean luminal HCO$_3^-$ secretion by gut sacs from the flounder under serosal conditions with 0.5 % CO$_2$ and 8 mM HCO$_3^-$ present in the serosal saline and 100 % O$_2$, 0 mM HCO$_3^-$.

List of Plates

Plate 2.1: A typical gut sac made from the intestine of the European flounder.
The regulation of intestinal bicarbonate secretion by marine teleost fish

Volume 2 (of 2)

Submitted by Jonathan Mark Whittamore, to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological Sciences in December 2008.

This thesis is available for library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.
I certify that all material in this thesis which is not my own work has been identified and that no material previously submitted and approved for the award to a degree by this or any other University.

Signature

Date 10th December 2008

Contents

List of Figures 163
List of Tables 167
List of Plates 169

Chapter 5 – The role of intestinal HCO$_3^-$ production, secretion and precipitation in fluid absorption and Ca$^{2+}$ homeostasis by a marine teleost.

1. Summary 171
2. Introduction 172
 2.1 A historical perspective on fluid transport 172
 2.2 The mechanism of intestinal fluid transport in teleosts 174
 2.3 The role of intestinal HCO$_3^-$ secretion and precipitation in fluid transport 175
 2.4 The role of CaCO$_3$ precipitation in Ca$^{2+}$ homeostasis 177
3. Materials and Methods 178
 3.1 Experimental animals 178
 3.2 In vivo surgical procedures 179
 3.2.1 Cannulation of the caudal blood vessel 179
 3.2.2 Fitting the intestinal perfusion and stomach drain catheters 181
 3.2.3 Fitting the rectal catheter 181
 3.3 Saline composition and experimental design 183
 3.4 Intestinal perfusion 185
Chapter 6 – The regulation of intestinal HCO$_3^-$ secretion by the seawater-adapted killfish (Fundulus heteroclitus L.)

1. **Summary** 216
2. **Introduction** 217
 2.1 The Ussing chamber 217
 2.2 Measuring HCO$_3^-$ secretion in the Ussing chamber 218
 2.3 The euryhaline killfish 220
 2.4 Does ionic strength influence intestinal HCO$_3^-$ secretion? 221
 2.5 Aims and objectives 222
3. **Materials and Methods** 222
 3.1 Experimental animals 222
 3.2 General experimental protocol 223
 3.3 Stimulation of HCO$_3^-$ secretion by Ca$^{2+}$ 225
 3.4 Is HCO$_3^-$ secretion modulated by ionic strength and/or osmolality? 226
 3.4.1 Effects of mucosal hyper-osmolality 226
 3.4.2 Source of HCO$_3^-$ secretion 227
 3.4.3 Basolateral H$^+$ secretion in relation to mucosal osmotic pressure 227
 3.4.4 Mediation of apical HCO$_3^-$ and H$^+$ secretion 228
 3.5 Buffer capacity of mannitol and sucrose 228
3.6 Saline design and composition 229
3.7 Calculations 229
3.8 Data presentation and statistics 231

4. Results 231
4.1 Stimulation of HCO$_3^-$ secretion by Ca$^{2+}$ 231
4.2 Is HCO$_3^-$ secretion modulated by ionic strength and/or osmolality? 233
 4.2.1 Effects of mucosal hyper-osmolality 237
 4.2.2 Source of HCO$_3^-$ secretion 241
 4.2.3 Basolateral H$^+$ secretion in relation to mucosal osmotic pressure 243
 4.2.4 Mediation of apical HCO$_3^-$ and H$^+$ secretion 245
4.3 Buffer capacity of mannitol and sucrose 247

5. Discussion 248
5.1 Stimulation of HCO$_3^-$ secretion by Ca$^{2+}$ 248
5.2 Is HCO$_3^-$ secretion modulated by ionic strength and/or osmolality? 248
 5.2.1 Other effects on epithelial ion transport 250
 5.2.2 A role for the CFTR? 251
5.3 Effects of mucosal hyperosmolality and the role of cell volume regulation 252
 5.3.1 The source of HCO$_3^-$ 253
 5.3.2 Basolateral H$^+$ secretion 254
5.4 The response of the killifish intestine to mucosal hyperosmolality 255
 5.4.1 Mediation of apical HCO$_3^-$ and H$^+$ secretion 257
 5.4.2 The mechanism of HCO$_3^-$ secretion in vitro 258
 5.4.3 Physiological significance 259

Chapter 7 – Is there a role for the calcium-sensing receptor in the regulation of ion and fluid transport by the marine teleost intestine?

1. Summary 262
2. Introduction 263
 2.1 Calcium homeostasis 264
 2.2 Salinity sensor 265
 2.3 Intestinal ion and fluid transport 266
 2.4 Epithelial barrier function 267
 2.5 Digestion and nutrient sensing 268
 2.6 Aims and objectives 269
3. Materials and Methods 270
 3.1 Experimental animals 270
 3.2 In vitro experiments 271
 3.2.1 General experimental approach 271
 3.2.2 Is HCO$_3^-$ secretion modulated by ionic strength and/or 271
osmolality?

3.2.3 Applying agonists of the calcium-sensing receptor (CaR) 271
3.2.4 Saline design and composition 274

3.3 In vivo experiments 274
3.3.1 Experimental approach and salines 274
3.4 Data presentation and analysis 274

4. Results 276
4.1 The influence of saline composition on HCO$_3^-$ secretion 276
4.1.1 Regular mucosal saline 276
4.1.2 Reduced ionic strength mucosal saline 277
4.1.3 Reduced osmolality saline 278
4.2 The effect of calcium-sensing receptor (CaR) agonists on ion and fluid transport in vitro 278
4.2.1 Gadolinium (Gd$^{3+}$) 278
4.2.2 Neomycin 281
4.3 The effect of calcium-sensing receptor (CaR) agonists on ion and fluid transport in vivo 282
4.3.1 Bicarbonate production and excretion 282
4.3.2 Fluid transport 283

5. Discussion 284
5.1 Why is HCO$_3^-$ secretion in gut sacs NOT stimulated by Ca$^{2+}$? 285
5.1.1 Thermodynamic considerations for HCO$_3^-$ secretion in vitro 286
5.1.2 The driving forces for Cl$^-$/HCO$_3^-$ exchange 287
5.1.3 The electrochemical potential ($\Delta \mu$) 288
5.1.4 Is diffusion of CO$_2$ into the epithelial cell limited? 290
5.1.5 Additional barriers to Cl$^-$/HCO$_3^-$ exchange in gut sacs 291
5.1.6 Summary 292
5.2 The role of CaCO$_3$ production in HCO$_3^-$ secretion in vivo 292
5.2.1 Is a CaR required for HCO$_3^-$ secretion in vivo? 293
5.3 A role for the CaR in vitro 297
5.4 Is Cl$^-$/HCO$_3^-$ exchange a driving force for fluid transport in vitro? 298

Chapter 8 – General discussion 304

1. The Ca$^{2+}$-sensing receptor and regulation of intestinal HCO$_3^-$ secretion 305
2. Fluid absorption by the marine teleost intestine 309
2.1 Absorbing a hyperosmotic fluid 309
2.2 The influence of basolateral H$^+$ secretion 309
2.3 Absorption of an iso-osmotic fluid 310
2.4 Further implications of intestinal H$^+$ production 312
3. Concluding remarks 313

References 314
List of figures

Figure 5.1: A simple illustration of solute-coupled fluid absorption across an epithelia.
Page: 174

Figure 5.2: The mean net production and excretion of HCO$_3^-$ equivalents by the intestine of the flounder.
Page: 190

Figure 5.3: The mean osmolality of the perfusate entering the intestine and the voided rectal fluid from the flounder following perfusion of the intestine.
Page: 192

Figure 5.4: The mean proportion of fluid absorbed by the flounder intestine.
Page: 193

Figure 5.5: The mean amounts of Ca$^{2+}$ and Mg$^{2+}$ presented to, and recovered from the intestine and rectal catheters of the flounder following perfusion of the intestine.
Page: 194

Figure 5.6: The relationship between the net fluxes of Na$^+$ and Cl$^-$, and the corresponding rate of fluid absorption by the intestine of the flounder.
Page: 199

Figure 5.7: A comparison of the mean net fluxes of cations and anions by the intestine.
Page: 201
intestine of the flounder.

Figure 5.8: The relationship between the total rate of HCO₃⁻ secretion and ‘missing cation’ absorbed by the intestine of the flounder.

Figure 5.9: The relationship between the net titratable acid flux via non-intestinal routes into the surrounding seawater and the ‘missing cation’ absorbed by the intestine of the flounder.

Figure 5.10: The relationship between the rate of fluid transport predicted to be associated with HCO₃⁻ production, secretion and precipitation, and the total rate of HCO₃⁻ secretion by the intestine of the flounder.

Figure 5.11: A model illustrating the potential pathway for the removal of excess H⁺ arising from intracellular CO₂ hydration.

Figure 5.12: The relationship between calculated osmolarity of the absorbed fluid, minus the contribution of H⁺, and the measured total rate of HCO₃⁻ secretion by the intestine of the flounder.

Figure 6.1: A) A schematic drawing of a circulating Ussing chamber. B) A plan view of the two halves of the tissue mount inserted between the two half chambers.

Figure 6.2: Measurements of transepithelial potential, transepithelial conductance and HCO₃⁻ secretion from the isolated anterior intestine of the killifish following the addition of CaCl₂ or MgCl₂ to the mucosal saline.

Figure 6.3: Measurements of transepithelial potential, transepithelial conductance and HCO₃⁻ secretion from the isolated anterior intestine of the killifish following the addition of CaCl₂ or MgCl₂ to the ‘reduced ionic strength’ mucosal saline.

Figure 6.4: Measurements of transepithelial potential, transepithelial conductance and HCO₃⁻ secretion from the killifish intestine following the addition of CaCl₂ or MgCl₂ to the ‘reduced osmolality’ mucosal saline.

Figure 6.5: Measurements of transepithelial potential, transepithelial conductance and HCO₃⁻ secretion from the isolated anterior intestine of F. heteroclitus following the addition of mannitol or sucrose.

Figure 6.6: The pH of the mucosal saline logged over the course of an experiment.

Figure 6.7: Measurements of transepithelial potential, transepithelial conductance and HCO₃⁻ secretion from the killifish intestine after replacing the serosal saline, followed by the addition of sucrose to the mucosal saline.

Figure 6.8: Measurements of transepithelial potential, transepithelial conductance and the serosal secretion of acidic equivalents from the isolated anterior intestine of the killifish following the addition of mannitol or sucrose.
Figure 6.9: Measurements of transepithelial potential, transepithelial conductance and \(\text{HCO}_3^- \) secretion from the isolated anterior intestine of the killifish following the application of DIDS and amiloride.

Figure 6.10: The amount of base required to increase the pH of the reduced osmolality mucosal saline in order to determine any changes in buffer capacity following the addition of either mannitol or sucrose.

Figure 6.11: Measurements of transepithelial potential, transepithelial conductance and \(\text{HCO}_3^- \) secretion from the killifish intestine responding to an increase in mucosal osmolarity.

Figure 7.1: The mean net fluxes of \(\text{Na}^+ \), \(\text{Cl}^- \) and \(\text{HCO}_3^- \) alongside net fluid transport by gut sacs from the flounder intestine under control conditions, and in response to a 15 mM increase in mucosal \(\text{Ca}^{2+} \) concentration using the ‘regular’ mucosal saline.

Figure 7.2: The mean net fluxes of \(\text{Na}^+ \), \(\text{Cl}^- \) and \(\text{HCO}_3^- \), alongside net fluid transport by gut sacs from the flounder intestine under control conditions, and in response to a 15 mM increase in mucosal \(\text{Ca}^{2+} \) concentration using the ‘reduced ionic strength’ mucosal saline.

Figure 7.3: The mean net fluxes of \(\text{Na}^+ \), \(\text{Cl}^- \) and \(\text{HCO}_3^- \), alongside net fluid transport by gut sacs from the flounder intestine under control conditions, and in response to a 15 mM increase in mucosal \(\text{Ca}^{2+} \) concentration using the ‘reduced osmolality’ mucosal saline.

Figure 7.4: The mean net fluxes of \(\text{Na}^+ \), \(\text{Cl}^- \) and \(\text{HCO}_3^- \), alongside net fluid transport by gut sacs from the flounder intestine under control conditions, and in response to \(\text{Gd}^{3+} \).

Figure 7.5: The mean net fluxes of \(\text{Na}^+ \), \(\text{Cl}^- \) and \(\text{HCO}_3^- \), alongside net fluid transport by gut sacs from the flounder intestine under control conditions, and in response to neomycin.

Figure 7.6: The mean net production and excretion of \(\text{HCO}_3^- \) equivalents by the intestine of the flounder perfused with salines containing the CaR agonists \(\text{Gd}^{3+} \) or neomycin.

Figure 7.7: The mean proportion of fluid absorbed by the flounder intestine following perfusion with salines containing the CaR agonists \(\text{Gd}^{3+} \) or neomycin.

Figure 7.8: (A) Mucus globules exiting from the goblet cell, demonstrating how \(\text{Ca}^{2+} \) becomes concentrated in the mucus. (B) Needle-like \(\text{Ca}^{2+} \)-rich crystals are clearly visible within the overlying mucus layer. (C) A simple schematic diagram
illustrating the potential role for CaCO$_3$ crystallisation in HCO$_3$\(^-\) secretion.

Figure 7.9: The mean net Na\(^+\) and Cl\(^-\) fluxes by the intestine of the flounder perfused with salines containing the CaR agonists Gd\(^{3+}\) and neomycin.

Figure 7.10: The net fluxes of Cl\(^-\) and HCO$_3$\(^-\) in relation to net fluid transport using the overall mean values pooled from anterior, mid and posterior gut sacs.

Figure 7.11: The relationships between net sodium flux, net fluid transport rate, and the concentration of Na\(^+\) in the mucosal saline with gut sacs from the European flounder

Figure 8.1: The concentration of HCO$_3$\(^-\) in the anterior, mid, posterior and rectal fluids sampled from the intestine of the Gulf toadfish (*Opsanus beta*) acclimated to a range of salinities from 2.5 to 70 ppt.

List of Tables

Table 5.1: The inorganic salts used in the composition of the *in vivo* perfusion salines employed by the present study.

Table 5.2: The mean values for measurements of pH, TCO₂ and calculated HCO₃⁻ equivalents measured in rectal fluid samples from the flounder following perfusion of the intestine.

Table 5.3: A summary of the various acid-base and osmoregulatory parameters measured on whole blood (pH) and plasma (Osmolality, TCO₂, Na⁺, Cl⁻, K⁺, Ca²⁺, and Mg²⁺) as part of the daily blood sampling routine during perfusion of the flounder intestine.

Table 5.4: The ionic composition of the rectal fluid following intestinal perfusion.

Table 6.1: The composition of the mucosal and serosal salines.

Table 6.2: A comparison of the ionic composition of the ‘regular’ mucosal saline used in the present study with the mucosal saline used by Wilson *et al.* (2002).

Table 7.1: The inorganic salts and additional solutes used in the composition of the mucosal and serosal salines.

Table 7.2: The inorganic salts used in the composition of the *in vivo* perfusion salines.

Table 7.3: The mean values of pH, TCO₂ and calculated HCO₃⁻ equivalents measured in rectal fluid samples from the flounder following perfusion of the intestine with salines containing the CaR agonists, Gd³⁺ and neomycin.

Table 7.4: The electrochemical potentials of Cl⁻ and HCO₃⁻ across the intestinal epithelia of the European flounder at the beginning and the end of *in vitro* gut sac experiments.

Table 7.5: A comparison of the electrochemical potentials for Na⁺, K⁺ and Cl⁻ as well as apical NaCl co-transport, for the ‘regular’ mucosal saline and ‘reduced ionic strength’ mucosal saline used with gut sacs from the intestine of the European flounder.

Table 8.1: The reduction in osmotic pressure of fluid absorbed by the teleost intestine *in vitro*, following the buffering of absorbed H⁺ by the extracellular fluid.
List of Plates

Plate 5.1: A flounder under anaesthesia on the wet table the gills being irrigated *via* the mouth and implantation of the blood catheter.

Plate 5.2: Insertion of the stomach drain catheter and intestinal perfusion catheter.

Plate 5.3: Fitting the rectal catheter.

Plate 6.1: The Ussing chamber set up with pH stat.