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Abstract



In seawater, drinking is a fundamental part of the osmoregulatory strategy for teleost fish, 

and presents a unique challenge. The intestine has an established role in osmoregulation, 

and its ability to effectively absorb fluid from imbibed seawater is crucial to compensating 

for water losses to the surrounding hyperosmotic environment. Alongside solute-linked 

water transport (driven by NaCl cotransport), intestinal bicarbonate (HCO3
-) secretion also 

benefits fluid absorption directly (via apical Cl-/HCO3
- exchange), and indirectly through 

the formation of calcium carbonate (CaCO3) thus removing the osmotic influence of Ca2+ 

within the gut fluid. For the European flounder (Platichthys flesus), elevated luminal Ca2+ 

has proven to be a specific, potent stimulator of HCO3
- secretion both in vitro and in vivo 

where these actions are presumably modulated by an extracellular Ca2+-sensing receptor 

(CaR). The focus of this work was to learn more about how intestinal HCO3
- secretion is 

regulated, the role of Ca2+, and more specifically the CaR. To achieve this, in vitro ‘gut sac’ 

experiments investigated how luminal Ca2+ influenced HCO3
- secretion, and associated ion 

and fluid transport. Contrary to expectation, increasing Ca2+ from 5 to 20 mM did not 

stimulate HCO3
- secretion. In an attempt to elucidate the role of CaCO3 precipitation in 

fluid absorption, and further explore the physiological implications of HCO3
- secretion, the 

intestine was perfused in vivo with salines containing varying concentrations of Ca2+ (10, 

40 and 90 mM). The production and secretion of HCO3
-, in addition to CaCO3 formation 

increased accordingly with Ca2+, and was associated with a dramatic 25 % rise in the 

fraction of fluid absorbed by the gut. Additional in vitro experiments, utilising the Ussing 

chamber, helped establish some of the characteristics of intestinal HCO3
- secretion by the 

euryhaline killifish (Fundulus heteroclitus), but was unresponsive to elevated mucosal 

Ca2+. Further attempts to potentiate the activity of the CaR, and application of the receptor 

agonists gadolinium (Gd3+) and neomycin, failed to produce responses consistent with the 

effect of Ca2+ observed previously, either in vitro or in vivo. With no evidence supporting a 

direct role for an extracellular, intestinal CaR in HCO3
- secretion it was argued that 

secretion would be principally regulated by two factors, the ability of the epithelia to 

generate high levels of intracellular HCO3
- and the rate of CaCO3 formation.
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