Sexual selection and reproductive isolation in field crickets

Submitted by:

Frances Tyler

To the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological Sciences

November 2012

This thesis is available for Library use in the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.
Acknowledgments

First of all my thanks go to my supervisors Tom Tregenza & Rolando Rodriguez-Muñoz for interpreting my incoherent babbling during meetings, reading endless drafts of chapters, as well as providing support throughout the PhD. To Xavier Harrison for teaching me most of what I know about molecular genetics, and for taking on much more than he bargained for, as well as Amanda Bretman and Michelle Hares for fielding endless questions. To Yannick Pauchet who patiently helped me get to grips with transcriptomics. To Iain Stott - my walking-talking guide to statistics, and to Fiona Ingleby for introducing me to the world of PCA. To Thor Veen for his constant enthusiasm, and for enduring my company in a confined space while driving around the middle of no-where in rural Spain. To Laurence Albert who braved sea-sickness, mossie bites and sunburn to help collect crickets. To Jeff Stoltz for helping look after crickets, and to Rochishnu Dutta for the tedious task of watching them do very little. To Tanya Pennell and Dave Ellis for collecting preliminary data (and for pioneering a release programme at Tremough). To Joe Faulks, Corrina Lowri and Chris Mitchell for acting as lab sat-navs. To Helen Leggett for casting her eye over the entire thesis. Finally, to all those (there are many) who listened to endless moaning, and shared bottles of wine and laughs through the good and the bad.
Abstract

Barriers to interbreeding limit gene flow between sister taxa, leading to reproductive isolation and the maintenance of distinct species. These barriers come in many forms, and can act at different stages in the reproductive process. Pre-copulatory barriers may be due to individuals discriminating against heterospecifics in mate choice decisions. These decisions may be informed through a range of sensory modalities. If a female is mated and inseminated, then there may be multiple postmating-prezygotic barriers that affect the success of heterospecific sperm in attaining fertilisations. Post-zygotic barriers can be very early acting, resulting in embryonic fatality, or may be later acting, affecting the fitness of hybrid offspring. In this thesis I investigate potential reproductive barriers between the interbreeding field crickets *Gryllus bimaculatus* and *G. campestris*.

I find that females of both species show only weak preference for conspecific calling song, and may even respond phonotactically to songs typical of heterospecific males. Female *G. bimaculatus* are repeatable in their preferences and strength of response. *G. bimaculatus* females presented with synthetic songs prefer those with longer inter-pulse intervals, whereas *G. campestris* show no discrimination between these songs.

Upon meeting, *G. campestris* females strongly discriminate against heterospecific males, behaving aggressively towards them. This is likely driven by females responding to close range species recognition cues, including chemoreception. The species differ in their cuticular hydrocarbon profiles, and females that are no longer able to use their antennae to receive chemosensory information reduced their aggressive behaviour towards heterospecific males.

G. bimaculatus females will mate with heterospecific males, though less readily than to conspecifics. When sequentially mated to both conspecific and heterospecific males, these females will preferentially take up and store sperm from the conspecific male, and sperm from conspecific males is more likely to sire offspring than would be predicted from the proportion of sperm in storage.

Eggs from inter-species mating pairs are less likely to begin embryogenesis, and are more likely to suffer developmental arrest during the early stages of embryogenesis. However hybrid embryos that survive to later stages of development have hatching success similar to that of pure-bred embryos.

After mating, phonotaxis of *G. bimaculatus* females towards male songs follows a pattern of suppression and subsequent recovery, likely triggered through detection of seminal proteins.
transferred in the male ejaculate, or detection of mechanical filling of the spermatheca. This pattern of suppression and recovery of phonotaxis does not differ between females mated to conspecific or heterospecific males. Females that lay few or no eggs do not experience a refractory period.
Table of contents

Acknowledgments ... 2
Abstract ... 3
Table of contents ... 5
List of figures .. 9
List of tables ... 11
Author’s Declaration .. 12

Chapter 1 General Introduction ... 13
 1.1 Speciation .. 13
 1.2 Reproductive barriers ... 13
 1.3 Study species .. 15
 1.4 The field cricket mating system ... 17

Chapter 2 The use of long-range calling song for species recognition in field crickets 20
 2.1 Abstract ... 20
 2.2 Introduction .. 20
 2.3 Methods .. 22
 2.3.1 Song analysis and construction .. 22
 2.3.2 Study population ... 25
 2.3.3 Phonotactic trials .. 25
 2.3.4 Analyses .. 26
 2.4 Results ... 27
 2.4.1 Responses to conspecific and heterospecific song ... 27
 2.4.2 Response to inter-pulse interval .. 29
 2.5 Discussion .. 30

Chapter 3 Cuticular hydrocarbons as potential cues for species recognition in field crickets 33
 3.1 Abstract .. 33
 3.2 Introduction .. 33
 3.3 Methods .. 35
 3.3.1 Study population ... 35
 3.3.2 CHC extraction & analysis .. 36
 3.3.3 Behavioural assays ... 37
 3.4 Results ... 38
Chapter 5 Fertilisation and early developmental barriers to hybridisation in field crickets 74

5.1 Abstract .. 74
5.2 Introduction ... 74
5.3 Methods ... 76
5.3.1 Study animals .. 76
5.4.2 Matings and oviposition ... 76
5.3.3 Assessment of early stage embryogenesis ... 77
5.4.3 Success of competing males in siring nymphs .. 77
5.4.4 Egg laying and hatching success ... 77
5.4 Discussion .. 79

S1, Supporting Information: PCR conditions for microsatellite loci 67
S2, Supporting Information: Repeatability of CM-PCR ... 68
S3, Supporting Information: Detail of statistical analyses and model output 69

S3.1 Representation of competing males in the spermatheca 69
S3.2 Success of competing males in siring nymphs ... 70
S3.3 Egg laying & hatching success .. 71
S3.4 Individual male success across contexts ... 72
S3.5 Relationship between the amount of G. campestris sperm in storage and hatching success .. 72

S4, Supporting Information: Exposure to non-experimental females prior to mating trials 73
5.3.4 Assessment of late stage embryogenesis ... 78
5.3.5 Statistical analyses ... 78
5.4 Results .. 79
5.4.1 Early stage embryogenesis ... 79
5.4.2 Late stage embryogenesis ... 84
5.5 Discussion .. 85
5.6 Conclusions ... 88

Chapter 6 The influence of conspecific and heterospecific ejaculates on female post-mating behaviour... 89
6.1 Abstract ... 89
6.2 Introduction .. 89
6.3 Methods ... 91
 6.3.1 Rearing .. 91
 6.3.2 Song construction and phonotaxis .. 92
 6.3.3 Matings .. 93
 6.3.4 Statistical analyses ... 93
6.4 Results ... 94
6.5 Discussion .. 96

Chapter 7 General Discussion .. 100
7.1 Multiple reproductive barriers ... 100
7.2 Asymmetry of reproductive barriers ... 101
7.3 Future directions .. 103
7.4 Conclusions ... 104

Appendix A Investigating sites of potential geographic overlap between *Gryllus campestris* and *G. bimaculatus* in the Castilla-La Mancha region of Spain ... 106
 A.1 Background .. 106
 A.3 Detail of sites visited .. 109

Appendix B Genes for behaviour: Searching a *Gryllus campestris* transcriptome for candidates . 113
 B.1 Background .. 113
 B.2 Methods .. 113
 B.2.1 cDNA preparation & sequencing ... 113
 B.2.2 Identifying candidate genes .. 113
 B.3 Results .. 114

Appendix C Cuticular hydrocarbon profiles of a wild *Gryllus campestris* population 131
C.1 Background .. 131
C.2 Methods ... 131
C.3 Results ... 131
References ... 137
List of figures

Figure 1.1. *Gryllus bimaculatus* male..16
Figure 1.2. *Gryllus bimaculatus* female...16
Figure 1.3. *Gryllus campestris* male..16
Figure 1.4. *Gryllus campestris* female...16
Figure 1.5. Estimated distributions of *Gryllus campestris* and *G. bimaculatus* across mainland Spain..........................17
Figure 2.1. Example parameters of calling song..23
Figure 2.2. Inter-pulse intervals measured from the songs of *G. bimaculatus* and *G. campestris* songs..24
Figure 2.3. The frequencies with which conspecific and heterospecific songs were chosen by *G. bimaculatus* and *G. campestris* females in two-choice trials..28
Figure 2.4. The proportion of times each *G. bimaculatus* female chose conspecific song when repeatedly trialled in two-choice tests..28
Figure 2.5. Female response (measured as latency to reach speaker) to songs with different IPIs..29
Figure 3.1. A *G. bimaculatus* male, the section of the upper wing removed shown in red.................................37
Figure 3.2. Separation of *G. bimaculatus* and *G. campestris* cuticular hydrocarbon extracts based on the first and second principal components (PC) taken from the principal components analysis..45
Figure 3.3. Aggression towards heterospecific (*G. bimaculatus*) and conspecific (*G. campestris*) males, prior to treatment of antennae and post chemical ablation of antennae..46
Figure 3.4. The change in aggression towards a heterospecific male after chemical ablation of antennae..46
Figure 4.1. Success of *G. bimaculatus* and *G. campestris* males competing interspecifically, in terms of the proportion of sperm stored in the spermatheca..58
Figure 4.2. Individual male success in sperm storage across different mating contexts..59
Figure 4.3. The relationship between the proportion of sperm in storage and the subsequent proportion of nymphs sired by each focal male..60
Figure 4.4. The total number of eggs laid by females in the different triad types (4a) and the proportion of nymphs hatching from a sample of eggs laid by females in the different triad types (4b)..61
Figure 4.5. The relationship between the proportion of eggs hatching and the proportion of *G. campestris* sperm present in storage for intra- and interspecific triads..................62

Figure 5.2. The proportion of eggs that failed to develop across the mating pair types.............80

Figure 5.3. The proportion of eggs that only partially developed across the mating pair types.......81

Figure 5.4. Egg development across mating pair combinations..82

Figure 5.5. The relationship between early and late stage embryogenesis.................................84

Figure 5.6. The relationship between late stage embryogenesis and hatching success.................85

Figure 6.1. Parameters of calling song...92

Figure 6.2. Phonotactic response of females mated to conspecific and heterospecific males.........95

Figure 6.3. Phonotactic response of females laying more than and less than the median number of eggs..96

Figure B.1. Characteristics of *G. campestris* 454 transcriptome: Frequency histogram of read lengths...115

Figure B.2. Characteristics of *G. campestris* 454 transcriptome: Frequency histogram of contig lengths...115

Figure B.3. EST annotation for the *G. campestris* adult head transcriptome. (A) Biological process GO terms at level 2. (B) Molecular function GO terms at level 2.........................116
List of tables

Table 2.1. Parameters calculated from song recordings, used to inform the construction of synthetic ‘IPI’ songs... 24
Table 2.2. Parameters of synthetic songs... 25
Table 3.1. Variance explained in male data.. 40
Table 3.2. Variance explained in female data.. 40
Table 3.3. Male CHC profile, displaying hydrocarbon identity and factor loadings in each of the PCs.. 41
Table 3.4. Female CHC profile, displaying hydrocarbon identity and factor loadings in each of the PCs.. 42
Table 3.5. Analysis of male data. Species differences in CHC expression, shown as output from the MANOVA, as well as the univariate contribution of each principal component.. 44
Table 3.6. Analysis of female data. Species differences in CHC expression, shown as output from the multivariate ANOVA, as well as the univariate contribution of each principal component.. 44
Table 4.1. Example triad design.. 55
Table S1.1. PCR conditions for microsatellite loci.. 67
Table S3.1. Representation of competing males in the spermatheca.. 69
Table S3.2. Success of competing males in siring nymphs.. 70
Table S3.3. Egg laying... 71
Table S3.4. Hatching success.. 71
Table S3.5. Individual male success across contexts.. 72
Table S3.6. Relationship between the amount of G. campestris sperm in storage and hatching success.. 72
Table S4.1. Exposure to non-experimental females prior to mating trials.. 73
Table B.1. Summary of the top 20 Enzyme classifications represented in the G. campestris transcriptome.. 117
Table B.2. Summary of the top 20 InterPro families / domains represented in the G. campestris transcriptome.. 118
Table B.3. Candidate genes from the D. melanogaster literature.. 119
Table B.4. Orthologs found in the G. campestris transcriptome.. 112
Table C.1. Variance explained in male data.. 132
Table C.2. Variance explained in female data.. 132
Table C.3. Male CHC profile, displaying factor loadings in each of the PCs.. 133
Table C.4. Female CHC profile, displaying factor loadings in each of the PCs.. 134
Author’s Declaration

During the research contributing to this thesis I was supported by a studentship from the European Social Fund. All of the chapters presented in this thesis were written by me, with comments and editing by Tom Tregenza and Rolando Rodríguez-Muñoz. Cricket collections in 2010 were carried out with the help of Thor Veen, and in spring 2011 with the help of Laurence Albert. Cricket collections in summer 2011 and spring 2012 were carried out by Rolando Rodríguez-Muñoz. Further contributions to sections are detailed below.

Chapter 2 - Song recordings and extraction of data from these was carried out by Thor Veen, who also created two of the synthetic songs used. I created all other synthetic songs, and performed all other behavioural trials and analyses.

Chapter 3 - Cuticular hydrocarbon samples were processed through the GCMS by Christopher Mitchell.

Chapter 4 - I carried out the molecular analyses in collaboration with Xavier Harrison, who took part in all aspects of this work. Amanda Bretman provided technical advice. Thor Veen performed some of the mating trials, though I performed the majority. A version of this chapter has been accepted for publication in *Molecular Ecology*. We are grateful for the comments of three anonymous reviewers.

Chapter 5 - A version of this chapter is currently in review with *BMC Evolutionary Biology*.

Tyler F, Rodríguez-Muñoz R & Tregenza T (Submitted) Fertilisation and early developmental barriers to hybridisation in field crickets. *BMC Evolutionary Biology.*

Appendix B - cDNA preparation & sequencing was carried out by Yannick Pauchet, who also taught me the skills required to identify candidate genes for behaviour

Appendix C – Cuticular hydrocarbon samples were collected by Rolando Rodríguez-Muñoz and Tom Tregenza. Processing of samples was carried out by Patrizia d’Ettorre & group.