Second-Order Approximation to the Rotemberg Model around a Distorted Steady State*

Tatiana Damjanovic†
University of St Andrews
Charles Nolan‡
University of St Andrews

APRIL 2010

ABSTRACT

Less is known about social welfare objectives when it is costly to change prices, as in Rotemberg (1982), compared with Calvo-type models. We derive a quadratic approximate welfare function around a distorted steady state for the costly price adjustment model. We highlight the similarities and differences to the Calvo setup. Both models imply inflation and output stabilization goals. It is explained why the degree of distortion in the economy influences inflation aversion in the Rotemberg framework in a way that differs from the Calvo setup.

JEL Classification: E52, E61, E63.
Keywords: Price Stickiness, Rotemberg Model, Costly Price Adjustment.

* We should like to thank Stephen Millard for very helpful comments on an earlier version of this work and a referee who helped us clarify aspects of our results. The usual disclaimer applies.
† School of Economics and Finance, Castlecliffe, The Scores, St Andrews, Fife KY16 9AL, Scotland, UK. Tel: +44 (0) 1334 462482. E-mail: td21@st-andrews.ac.uk.
‡ School of Economics and Finance, Castlecliffe, The Scores, St Andrews, Fife KY16 9AL, Scotland, UK. Tel: +44 (0) 1334 462425. E-mail: Charles.Nolan@st-andrews.ac.uk. http://www.st-andrews.ac.uk/cdma/c.nolan.html
1. Introduction

Dynamic stochastic general equilibrium (DSGE) models incorporating sticky prices often adopt the Calvo (1983) device that each period firms face a constant probability of being able to reset price. The resulting framework’s popularity is partly explained by nice features of its linear-quadratic approximation. In particular, the first-order approximation to firms’ price setting behavior implies a Phillips relation with fairly sharp empirical implications for the equilibrium relationship between output and inflation. Moreover, the second-order approximation to the social welfare function provides a rigorous justification for a focus *predominantly* on inflation in the conduct of monetary policy.\(^1\)

An alternative approach is developed in Rotemberg (1982) based on the simple idea that changing prices is costly. This approach is related to the *ss* literature. But as the cost of price adjustment grows in the square of price changes, Rotemberg’s approach is simpler and somewhat easier to incorporate in DSGE models.

A key feature of the Rotemberg model is that all firms change prices in unison; there is no price dispersion as in Calvo’s approach. That makes for algebraic simplicity but also implies that the costs of inflation are somewhat different across the two models. In particular, inflation is generally much more costly in Calvo’s framework. For example, Damjanovic and Nolan (2008, 2010) compare the seigniorage-maximizing inflation rates (SMIRs) across models and find that the Rotemberg-based SMIR is generally in double digits and close to the flexible price SMIR. Under Calvo the SMIR is in single figures and perhaps as low as $2 - 3\%$. That is because price dispersion distorts substantially labour supply and demand decisions in Calvo’s model. In Rotemberg’s model inflation predominantly affects

\(^1\)Benigno and Woodford (2005) is a detailed analysis of the framework to which we refer.
the economy through the direct cost of price adjustment.\(^2\)

The differing impact of inflation across models raises the issue of how (monetary) policy objectives might differ between frameworks. This paper shows that, in fact, the linear-quadratic approximation to a baseline Rotemberg model around a distorted, zero-inflation steady state is almost equivalent to the Calvo model. In particular, the second-order approximation to social welfare has the same form and, more surprisingly, very similar coefficients attached to inflationary and output gaps as in the Calvo model. However, in the Rotemberg model the social weight on inflation objectives is more sensitive to the degree of inefficiency in the economy because agents ultimately endogenize some important costs of inflation that agents in the Calvo model cannot.

Section 2 sets out agents’ decisions and Section 3 looks at firms’ decisions. In Section 4 a Ramsey problem is constructed to characterize the optimal steady state around which the approximations will take place. Section 5 describes the second-order approximation (additional manipulations are in the appendix) and describes our key results.

2. Agent’s decisions

There are a large number of identical agents in the economy who evaluate utility with the following criterion:

\[
E_t \sum_{t=0}^{\infty} \beta^t U(C_t, N_t) = E_t \sum_{t=0}^{\infty} \beta^t \left(\log(C_t) - \frac{\lambda}{1 + \nu} N_t^{1+\nu} \right).
\] (2.1)

\(E_t\) denotes the expectations operator at time \(t\), \(\beta\) is the discount factor, \(C_t\) is consumption and \(N_t\) is the quantity of labour supplied, \(\nu \geq 0\) measures labour supply elasticity while \(\lambda\) is a ‘preference’ parameter. Consumption is defined over a

\(^2\)Ascari and Rossi (2008) compare these two models and find that they behave differently with trend inflation.
basket of goods of measure one and indexed by i, $C_t = \int_0^1 c_t(i)^{\frac{\sigma-1}{\sigma}} \, di$. The price-level, P_t, is $P_t = \int_0^1 p_t(i)^{1-\sigma} \, di$. The demand for each good is $Y_t(i) = \left(\frac{p_t(i)}{P_t} \right)^{-\theta} Y_t^d$, where $p_t(i)$ is the nominal price of the final good produced in industry i and Y_t^d denotes aggregate demand.

Agents face the flow budget constraint

$$C_t + B_t = \frac{[1 + i_t-1]}{\pi_t} B_{t-1} + w_t N_t + \Pi_t. \quad (2.2)$$

As all agents are identical, the only financial assets traded will be government bonds. Here B_t denotes the nominal value at the end of date t of government bond holdings, $1 + i_t$ is the nominal interest rate on this ‘riskless’ bond, w_t is the real wage, and Π_t is remitted profits. Agents maximize (2.1) subject to (2.2). Necessary conditions for an optimum include the labour supply function (2.3) and the consumption Euler equation, (2.4):

$$\lambda N_t^\phi C_t = w_t; \quad (2.3)$$
$$E_t \left\{ \beta \frac{C_t}{C_{t+1}} \frac{1}{\pi_{t+1}} \right\} = \frac{1}{1 + i_t}. \quad (2.4)$$

3. Firm’s decisions

Labour is the only factor of production. Firms are monopolistic competitors who produce their distinctive goods according to the following technology

$$Y_t(i) = A_t N_t(i)^{1/\phi}, \quad (3.1)$$

where $N_t(i)$ denotes labour hired by firm i and A_t is a productivity shifter. There are diminishing returns to labour, $\phi > 1$. The demand for output determines the demand for labour, so

$$N_t(i) = \left(\frac{Y_t(i)}{A_t} \right)^\phi = \left(\frac{P_t(i)}{P_t} \right)^{-\theta \phi} \left(\frac{Y_t}{A_t} \right)^\phi. \quad (3.2)$$

Following Rotemberg (1982), Schmitt-Grohe and Uribe (2004) and Bouakez et al. (2009), it is costly for firms to change prices:

$$\text{Price adjustment cost} = \frac{\xi}{2} \left(\frac{P_t(i)}{P_{t-1}(i)} - 1 \right)^2.$$
where $\xi > 0$ is a measure of price stickiness.

The firm sets its price to maximize the net present value of future profits:

$$\max E_t \sum_{k=0}^{\infty} d_{t+k} \left(Y_{t+k} \left(\frac{P_{t+k}(i)}{P_{t+k}} \right)^{1-\theta} - \mu_{t+k} w_{t+k}(i) N_{t+k}(i) - \frac{\xi}{2} \left(\frac{P_{t+k}(i)}{P_{t+k-1}(i)} - 1 \right)^2 \right).$$

Here $d_{t+k} := \beta^{t+k} (C_t/C_{t+k})$ and μ_{t+k} represents cost-push factors (including labour taxation, perhaps). The first-order condition with respect to $P_t(i)$ is derived and, since all firms charge the same price, in equilibrium $P_t(i) = 1$. The Phillips relation is readily derived:

$$(\theta - 1) Y_t - \theta \phi \mu_t w_t A_t^{-\phi} Y_t^{\phi} + \xi \pi_t (\pi_t - 1) = E_t \beta \frac{C_t}{C_{t+1}} \xi \pi_{t+1} (\pi_{t+1} - 1). \quad (3.3)$$

Absent relative price distortions, the average wage is

$$w_t = C_t \left(\frac{Y_t}{A_t} \right)^{\phi \nu}. \quad (3.4)$$

The costs of price adjustment affect consumers by reducing profit share. Consequently, the household budget constraint implies the market clearing condition

$$C_t = Y_t - \frac{\xi}{2} (\pi_t - 1)^2. \quad (3.5)$$

4. Optimal steady state

4.1. Ramsey problem

To approximate the model one chooses an appropriate point for the approximation. The first step is to formulate a Ramsey problem. Hence,

$$\max E_0 \sum_{t=0}^{\infty} \beta^t \left(\log(C_t) - \frac{\lambda}{1+\nu} (A_t^{-1} Y_t)^{\phi(v+1)} \right), \quad (4.1)$$

subject to market clearing (3.5) and pricing behavior (4.2)

$$(\theta - 1) Y_t - \theta \phi \mu_t \lambda C_t \left(A_t^{-1} Y_t \right)^{\phi(v+1)} + \xi \pi_t (\pi_t - 1) = E_t \beta \frac{C_t}{C_{t+1}} \xi \pi_{t+1} (\pi_{t+1} - 1). \quad (4.2)$$
Next, one solves this problem assuming commitment; we adopt the "timeless perspective" of Benigno and Woodford (2005). Thus, optimal policy under commitment implies zero inflation. From (3.5) one finds

$$C = Y$$ \hspace{1cm} (4.3)

and, using (3.3) and (3.4), that the optimal level of steady state output is

$$\mu \lambda Y^{\phi(v+1)} = \frac{\theta - 1}{\theta \phi}.$$ \hspace{1cm} (4.4)

5. Second-order approximation

One now constructs the second-order approximation to social welfare which coincides with the objectives of the representative individual. Thus,

$$U = E_0 \sum_{t=0}^{\infty} \beta^t \left[\log(C_t) - \frac{\lambda}{1+v} (A_t^{-1}Y_t)^{\phi(v+1)} \right]$$

$$= E_0 \sum_{t=0}^{\infty} \beta^t \left[\tilde{C}_t - \frac{\theta - 1}{\theta \mu} (\tilde{Y}_t - \tilde{A}_t) - \frac{1}{2} \frac{(\theta - 1)(1+v) \phi}{\theta \mu} (\tilde{Y}_t - \tilde{A}_t)^2 \right] + O_3. \hspace{1cm} (5.1)$$

O_3 indicates terms of third and higher order. The second-order approximation to market clearing, (3.5), is

$$\tilde{Y}_t = \tilde{C}_t + \frac{\xi}{2Y} \tilde{\pi}_t^2 + O_3. \hspace{1cm} (5.2)$$

Combining (5.1) and (5.2) one obtains

$$U = \Phi E_0 \sum_{t=0}^{\infty} \beta^t (\tilde{Y}_t - \tilde{A}_t)$$

$$- \frac{\xi}{2Y} \sum_{t=0}^{\infty} \beta^t \tilde{\pi}_t^2 - \frac{1}{2} (1 - \Phi) (1+v) \phi \sum_{t=0}^{\infty} \beta^T (\tilde{Y}_t - \tilde{A}_t)^2 + O_3 + tip, \hspace{1cm} (5.3)$$

where $\Phi := 1 - \frac{\theta - 1}{\theta \mu}$ is a constant which sums up all the distortions in the economy3. Finally, one derives a second-order approximation to price setting

3Tip denotes terms independent of policy. Broadly speaking, it collects terms that are not functions of policy. See Woodford (2003).
behavior (equation (6.1) in the appendix). That delivers an expression for the second-order approximation to social welfare in terms of output and inflation:

\[
U = \frac{1}{2} E_0 \sum_{t=0}^{\infty} \beta^t \left(\hat{Y}_t - \hat{A}_t + \frac{\Phi}{\phi(v+1)} \hat{\mu}_t \right)^2 - \frac{1}{2} E_0 \sum_{t=0}^{\infty} \beta^t \frac{\xi}{(1+v)\phi} \hat{\pi}_t^2 \left[\frac{\Phi}{(1+v)\phi} + 1 \right] + O_3 + \text{tip}. \tag{5.4}
\]

Note, the Phillips curve (derived in the appendix) takes the same form in both the Calvo and Rotemberg specifications; all that differs is the \(\kappa \) parameter\(^4\):

\[
\kappa_i^{-1} \left(\hat{Y}_t - \hat{A}_t \right) = \hat{\pi}_t - \beta E_t \hat{\pi}_{t+1} + \hat{\mu}_t + O_2, \quad i = R, C \tag{5.5}
\]

where \(\kappa_R = \frac{\xi}{(\theta-1)v} \phi(v+1) \) denotes the slope of the Rotemberg Phillips Curve\(^5\) and where \(\kappa_C = \frac{(1-\beta_0)(1-\alpha)}{\alpha} \frac{\phi(1+v)}{(\theta \phi(1+v) - \theta + 1)} \) is the slope of the Calvo Phillips Curve. The Rotemberg social objective (5.4) is

\[
U_R = -\frac{1}{2} E_0 \sum_{t=0}^{\infty} \beta^t y_t^2 - \frac{1}{2} \kappa_R \left(\frac{\Phi}{(1+v)} \phi + 1 \right) \left(\theta - 1 \right) E_0 \sum_{t=0}^{\infty} \beta^t \hat{\pi}_t^2 + O_3 + \text{tip}, \tag{5.6}
\]

where \(y_t \) := \(\hat{Y}_t - \hat{A}_t + \frac{\Phi}{\phi(v+1)} \hat{\mu}_t \). Now one can compare this with the Calvo version\(^6\):

\[
U_C = -\frac{1}{2} E_0 \sum_{t=0}^{\infty} \beta^t y_t^2 - \frac{1}{2} \theta \kappa_C E_0 \sum_{t=0}^{\infty} \beta^t \hat{\pi}_t^2 + O_3 + \text{tip}.
\]

The Rotemberg model delivers a very similar objective function to the Calvo model. First, optimal policy tries to minimize inflation and output gaps. Furthermore, and more surprisingly, the coefficient on the inflation term in \(U_R \) is close to \((1/2)\theta \kappa_C\), assuming, via normalization of \(\xi \), that the slopes of the Phillips curves are identical. Indeed, for a realistic parameterization, the ratio of the weights on inflation across loss functions is equal to unity plus or minus 20%,

\(^4\)See equation (30) in Benigno and Woodford (2005).

\(^5\)For convenience, \(\hat{\mu}_t := \frac{\hat{\mu}_t}{(1+v)\phi} \).

\(^6\)\(U_C \) corresponds to equation (32) in Benigno and Woodford (2005). Our formulation is simpler because we have fewer sources of uncertainty; we only include productivity and cost-push shocks.
approximately. However, observe that in the Rotemberg social welfare function
the weight on inflation increases in the inefficiency of the economy; the larger
the distortions, the larger the cost of inflation fluctuations. In contrast, in the
Calvo set-up it is only the degree of competition, θ, that affects the inflation
weight\(^7\). Why? In the Rotemberg model there is a wedge between output and
consumption that is proportional to the square of inflation, see (3.5). However, in
the Calvo model that wedge is absent and the principle distortions are included
in the Phillips curve. Finally, by setting Φ = 0 one can compare objectives in the
non-distorted steady state case. Again, assuming \(κ_C = κ_R\), the inflation weights
differ only marginally; \((1/2)θκ_C\) compared with \((1/2)(θ - 1)κ_R\)^8.

5.1. Concluding remarks

The Rotemberg approximate social welfare function is very similar to the Calvo
model’s if linearized around a zero inflation steady state both in terms of functional
form and coefficients. However, the degree of distortion in the economy influences
inflation aversion in Rotemberg’s framework in a way that has no counterpart in
Calvo’s setup. Finally, we emphasize that these two model economies behave very
differently under trend inflation (see Damjanovic and Nolan (2008)).

\(^7\)Had we used CRRA utility, Φ would have appeared in \(U_C\) also.
\(^8\)θ usually takes values between 7 and 10 in applied work.
References

6. Appendix: derivation of (5.4)

The price setting relation (4.2) is approximated as

\[
\frac{\xi}{(\theta - 1)Y} \hat{\pi}_t - \frac{\beta \xi}{(\theta - 1)Y} E_t \hat{\pi}_{t+1} + \frac{1}{2} \left(\frac{\xi}{(\theta - 1)Y} (\hat{\pi}^2_t - \hat{\pi}^2_{t+1}) - \frac{\beta \xi}{(\theta - 1)Y} (\hat{C}_t - \hat{C}_{t+1}) \right) \hat{\pi}_{t+1} = O_3. \tag{6.1}
\]

Here \(T_t \) stands for total production costs satisfying the identity

\[
\hat{T}_t = \hat{\mu}_t + \hat{C}_t + \phi(v + 1) \left(\hat{Y}_t - \hat{A}_t \right). \tag{6.2}
\]

Hence, the first order approximation to (4.2) is familiar

\[
\frac{\xi}{(\theta - 1)Y} (\hat{\pi}_t - \beta E_t \hat{\pi}_{t+1}) = \phi(v + 1) \left(\hat{Y}_t - \hat{A}_t \right) + \hat{\mu}_t + O_2 \tag{6.3}
\]

One may integrate forward (6.1) yielding

\[
E_0 \sum_{t=0}^{\infty} \beta^t \left(\hat{Y}_t - \hat{T}_t \right) + \frac{1}{2} E_0 \sum_{t=0}^{\infty} \beta^t \left(\hat{Y}^2_t - \hat{\pi}^2_t \right) \Rightarrow \frac{\beta \xi}{(\theta - 1)Y} E_0 \sum_{t=0}^{\infty} \beta^t \left(\hat{C}_t - \hat{C}_{t+1} \right) \hat{\pi}_{t+1} + \mathit{tip} + O_3.
\]

Combining this with (5.2) and (6.2) obtains

\[
E_0 \sum_{t=0}^{\infty} \beta^t \phi(v + 1) \left(\hat{Y}_t - \hat{A}_t \right) + \mathit{tip} + O_3 = \]

\[
- E_0 \sum_{t=0}^{\infty} \beta^t \frac{\xi}{2Y} \hat{\pi}^2_t - \frac{\beta \xi}{(\theta - 1)Y} E_0 \sum_{t=0}^{\infty} \beta^t \left(\hat{Y}_t - \hat{Y}_{t+1} \right) \hat{\pi}_{t+1}
\]

\[
- \frac{1}{2} E_0 \sum_{t=0}^{\infty} \beta^t \left[\hat{\mu}_t + \phi(v + 1) \left(\hat{Y}_t - \hat{A}_t \right) \right] \left[2\hat{Y}_t + \hat{\mu}_t + \phi(v + 1) \left(\hat{Y}_t - \hat{A}_t \right) \right] .
\]
Now, multiplying both sides of (6.3) by \tilde{Y}_t, yields
\[\left[\tilde{\mu}_t + \phi(v + 1) \left(\tilde{Y}_t - \tilde{A}_t \right) \right] \tilde{Y}_t = \frac{\xi}{(\theta - 1)Y} \left(\tilde{\pi}_t \tilde{Y}_t - \beta E_t \tilde{\pi}_{t+1} \tilde{Y}_t \right) + O_3, \]
which solved forward gives
\[\sum_{t=0}^{\infty} \beta^t \left[\frac{\xi}{(\theta - 1)Y} \tilde{\pi}_t - \left(\tilde{\mu}_t + \phi(v + 1) \left(\tilde{Y}_t - \tilde{A}_t \right) \right) \right] \tilde{Y}_t = \frac{\beta \xi}{(\theta - 1)Y} \sum_{t=0}^{\infty} \beta^t E_t \tilde{\pi}_{t+1} \tilde{Y}_t + tip + O_3. \]
That expression, in turn, is rewritten as
\[\frac{\beta \xi}{(\theta - 1)Y} \sum_{t=0}^{\infty} \beta^t \left(\tilde{Y}_t - \tilde{Y}_{t+1} \right) = - \sum_{t=0}^{\infty} \beta^t \left[\tilde{\mu}_t + \phi(v + 1) \left(\tilde{Y}_t - \tilde{A}_t \right) \right] \tilde{Y}_t + tip + O_3. \]
Combining (6.5) with (6.4) results in
\[\sum_{t=0}^{\infty} \beta^t \phi(v + 1) \left(\tilde{Y}_t - \tilde{A}_t \right) = - \sum_{t=0}^{\infty} \beta^t \frac{\xi}{2Y} \tilde{\pi}^2_t - \sum_{t=0}^{\infty} \beta^t \left[\tilde{\mu}_t + \phi(v + 1) \left(\tilde{Y}_t - \tilde{A}_t \right) \right] \tilde{Y}_t \]
\[- \frac{1}{2} \sum_{t=0}^{\infty} \beta^t \left[\tilde{\mu}_t + \phi(v + 1) \left(\tilde{Y}_t - \tilde{A}_t \right) \right] \left[2\tilde{Y}_t + \tilde{\mu}_t + \phi(v + 1) \left(\tilde{Y}_t - \tilde{A}_t \right) \right] + tip + O_3, \]
which can be simplified as
\[\sum_{t=0}^{\infty} \beta^t \phi(v + 1) \left(\tilde{Y}_t - \tilde{A}_t \right) = - \sum_{t=0}^{\infty} \beta^t \frac{\xi}{2Y} \tilde{\pi}^2_t - \frac{1}{2} \sum_{t=0}^{\infty} \beta^t \left[\tilde{\mu}_t + \phi(v + 1) \left(\tilde{Y}_t - \tilde{A}_t \right) \right]^2 + tip + O_3. \]
The expression for welfare reported as expression (5.6) is obtained by combining (6.7) with (5.3).
ABOUT THE CDMA

The Centre for Dynamic Macroeconomic Analysis was established by a direct grant from the University of St Andrews in 2003. The Centre funds PhD students and facilitates a programme of research centred on macroeconomic theory and policy. The Centre has research interests in areas such as: characterising the key stylised facts of the business cycle; constructing theoretical models that can match these business cycles; using theoretical models to understand the normative and positive aspects of the macroeconomic policymakers' stabilisation problem, in both open and closed economies; understanding the conduct of monetary/macroeconomic policy in the UK and other countries; analyzing the impact of globalization and policy reform on the macroeconomy; and analyzing the impact of financial factors on the long-run growth of the UK economy, from both an historical and a theoretical perspective. The Centre also has interests in developing numerical techniques for analyzing dynamic stochastic general equilibrium models. Its affiliated members are Faculty members at St Andrews and elsewhere with interests in the broad area of dynamic macroeconomics. Its international Advisory Board comprises a group of leading macroeconomists and, ex officio, the University's Principal.

Affiliated Members of the School
Dr Fabio Aricò.
Dr Arnab Bhattacharjee.
Dr Tatiana Damjanovic.
Dr Vladislav Damjanovic.
Prof George Evans.
Dr Gonzalo Forgue-Puccio.
Dr. Michal Horvath.
Dr Laurence Lasselle.
Dr Peter Macmillan.
Prof Rod McCrorie.
Prof Kaushik Mitra.
Dr. Elisa Newby.
Prof Charles Nolan (Director).
Dr Geetha Selvaretnam.
Dr Ozge Senay.
Dr Gary Shea.
Prof Alan Sutherland.
Dr Kannika Thampanishvong.
Dr Christoph Thoenissen.
Dr Alex Trew.

Senior Research Fellow
Prof Andrew Hughes Hallett, Professor of Economics, Vanderbilt University.

Research Affiliates
Prof Keith Blackburn, Manchester University.
Prof David Cobham, Heriot-Watt University.
Dr Luisa Corrado, Università degli Studi di Roma.
Prof Huw Dixon, Cardiff University.
Dr Anthony Garratt, Birkbeck College London.
Dr Sugata Ghosh, Brunel University.
Dr Aditya Goenka, Essex University.
Dr Michal Horvath, University of Oxford.
Prof Campbell Leith, Glasgow University.
Prof Paul Levine, University of Surrey.
Dr Richard Mash, New College, Oxford.
Prof Patrick Minford, Cardiff Business School.
Dr Elisa Newby, University of Cambridge.

Dr Gulcin Ozkan, York University.
Prof Joe Pearlman, London Metropolitan University.
Prof Neil Rankin, Warwick University.
Prof Lucio Sarno, Warwick University.
Prof Eric Schaling, South African Reserve Bank and Tilburg University.
Prof Peter N. Smith, York University.
Dr Frank Smets, European Central Bank.
Prof Robert Sollis, Newcastle University.
Prof Peter Tinsley, Birkbeck College, London.
Dr Mark Weder, University of Adelaide.

Research Associates
Mr Nikola Bokan.
Mr Farid Boumediene.
Miss Jinyu Chen.
Mr Johannes Geissler.
Mr Ansgar Rannenberg.
Mr Qi Sun.

Advisory Board
Prof Sumru Altug, Koç University.
Prof V V Chari, Minnesota University.
Prof John Driffill, Birkbeck College London.
Dr Sean Holly, Director of the Department of Applied Economics, Cambridge University.
Prof Seppo Honkapohja, Bank of Finland and Cambridge University.
Dr Brian Lang, Principal of St Andrews University.
Prof Anton Muscatelli, Heriot-Watt University.
Prof Charles Nolan, St Andrews University.
Prof Peter Sinclair, University of Surrey and Bank of England.
Prof Stephen J Turnovsky, Washington University.
Dr Martin Weale, CBE, Director of the National Institute of Economic and Social Research.
Prof Michael Wickens, York University.
Prof Simon Wren-Lewis, Oxford University.
<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Author(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDMA07/15</td>
<td>Interest Rate Rules and Welfare in Open Economies</td>
<td>Ozge Senay (St Andrews).</td>
</tr>
<tr>
<td>CDMA07/16</td>
<td>Arbitrage and Simple Financial Market Efficiency during the South Sea Bubble: A Comparative Study of the Royal African and South Sea Companies Subscription Share Issues</td>
<td>Gary S. Shea (St Andrews).</td>
</tr>
<tr>
<td>CDMA07/17</td>
<td>Anticipated Fiscal Policy and Adaptive Learning</td>
<td>George Evans (Oregon and St Andrews), Seppo Honkapohja (Cambridge) and Kaushik Mitra (St Andrews)</td>
</tr>
<tr>
<td>CDMA07/18</td>
<td>The Millennium Development Goals and Sovereign Debt Write-downs</td>
<td>Sayantan Ghosal (Warwick), Kannika Thampanishvong (St Andrews)</td>
</tr>
<tr>
<td>CDMA07/19</td>
<td>Robust Learning Stability with Operational Monetary Policy Rules</td>
<td>George Evans (Oregon and St Andrews), Seppo Honkapohja (Cambridge)</td>
</tr>
<tr>
<td>CDMA07/20</td>
<td>Can macroeconomic variables explain long term stock market movements? A comparison of the US and Japan</td>
<td>Andreas Humpe (St Andrews) and Peter Macmillan (St Andrews)</td>
</tr>
<tr>
<td>CDMA07/21</td>
<td>Unconditionally Optimal Monetary Policy</td>
<td>Tatiana Damjanovic (St Andrews), Vladislav Damjanovic (St Andrews) and Charles Nolan (St Andrews)</td>
</tr>
<tr>
<td>CDMA07/22</td>
<td>Estimating DSGE Models under Partial Information</td>
<td>Paul Levine (Surrey), Joseph Pearlman (London Metropolitan) and George Perendia (London Metropolitan)</td>
</tr>
<tr>
<td>CDMA08/01</td>
<td>Simple Monetary-Fiscal Targeting Rules</td>
<td>Michal Horvath (St Andrews)</td>
</tr>
<tr>
<td>CDMA08/02</td>
<td>Expectations, Learning and Monetary Policy: An Overview of Recent Research</td>
<td>George Evans (Oregon and St Andrews), Seppo Honkapohja (Bank of Finland and Cambridge)</td>
</tr>
<tr>
<td>CDMA08/03</td>
<td>Exchange rate dynamics, asset market structure and the role of the trade elasticity</td>
<td>Christoph Thoenissen (St Andrews)</td>
</tr>
<tr>
<td>CDMA08/04</td>
<td>Linear-Quadratic Approximation to Unconditionally Optimal Policy: The Distorted Steady-State</td>
<td>Tatiana Damjanovic (St Andrews), Vladislav Damjanovic (St Andrews) and Charles Nolan (St Andrews)</td>
</tr>
</tbody>
</table>
CDMA08/05 Does Government Spending Optimally Crowd in Private Consumption? Michal Horvath (St Andrews)

CDMA08/06 Long-Term Growth and Short-Term Volatility: The Labour Market Nexus Barbara Annicchiarico (Rome), Luisa Corrado (Cambridge and Rome) and Alessandra Pelloni (Rome)

CDMA08/07 Seigniorage-maximizing inflation Tatiana Damjanovic (St Andrews) and Charles Nolan (St Andrews)

CDMA08/08 Productivity, Preferences and UIP deviations in an Open Economy Business Cycle Model Arnab Bhattacharjee (St Andrews), Jagjit S. Chadha (Canterbury) and Qi Sun (St Andrews)

CDMA08/09 Infrastructure Finance and Industrial Takeoff in the United Kingdom Alex Trew (St Andrews)

CDMA08/10 Financial Shocks and the US Business Cycle Charles Nolan (St Andrews) and Christoph Thoenissen (St Andrews)

CDMA09/01 Technological Change and the Roaring Twenties: A Neoclassical Perspective Sharon Harrison (Columbia) Mark Weder (Adelaide)

CDMA09/02 A Model of Near-Rational Exuberance George Evans (Oregon and St Andrews), Seppo Honkapohja (Bank of Finland and Cambridge) and James Bullard (St Louis Fed)

CDMA09/03 Shocks, Monetary Policy and Institutions: Explaining Unemployment Persistence in “Europe” and the United States Ansgar Rannenberg (St Andrews)

CDMA09/04 Contracting Institutions and Growth Alex Trew (St Andrews)

CDMA09/05 International Business Cycles and the Relative Price of Investment Goods Parantap Basu (Durham) and Christoph Thoenissen (St Andrews)

CDMA09/06 Institutions and the Scale Effect Alex Trew (St Andrews)

For information or copies of working papers in this series, or to subscribe to email notification, contact:

Jinyu Chen
Castlecliffe, School of Economics and Finance
University of St Andrews
Fife, UK, KY16 9AL
Email: jc736@at-andrews.ac.uk; Phone: +44 (0)1334 462445; Fax: +44 (0)1334 462444.