Using evolutionary algorithms to resolve 3-dimensional geometries encoded in indeterminate data-sets

Graham Rollings
College of Engineering, Mathematics and Physical Sciences
University of Exeter

A thesis submitted to the University of Exeter for the degree of
Doctor of Philosophy in Computer Science
November 2011
Declaration

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Print Name: ..

Signature: ..

Date: ..
Abstract

This thesis concerns the developments of optimisation algorithms to determine the relative co-location, (localisation), of a number of freely-flying ‘Smart Dust mote’ sensor platform elements using the a non-deterministic data-set derived from the duplex wireless transmissions between elements. Smart dust motes are miniaturised, microprocessor based, electronic sensor platforms, frequently used for a wide range of remote environmental monitoring applications; including specific climate synoptic observation research and more general meteorology.

For the application proposed in this thesis a cluster of the notional smart dust motes are configured to imitate discrete ‘Radio Drop Sonde’ elements of the wireless enabled monitoring system in use by meteorological research organisations worldwide. This cluster is modelled in software in order to establish the relative positions during the ‘flight’; the normal mode of deployment for the Drop Sonde is by ejection from an aeroplane into an upper-air zone of interest, such as a storm cloud.

Therefore the underlying research question is, how to track a number of these independent, duplex wireless linked, free-flying monitoring devices in 3-dimensions and time (to give the monitored data complete spatio-temporal validity). This represents a significant practical challenge, the solution applied in this thesis was to generate 3-dimensional geometries using the only ‘real-time’ data available; the Radio Signal Strength Indicator (RSSI) data is generated through the ‘normal’ duplex wireless communications between motes. Individual RSSI values can be considered as a ‘representation of the distance magnitude’ between wireless devices; when collated into a spatio-temporal data-set it ‘encodes’ the relative, co-locaotional, 3-dimensional geometry of all devices in the cluster. The reconstruction, (or decoding), of the 3-dimensional geometries encoded in the spatio-temporal data-set is a complex problem that is addressed through the application of various algorithms. These include, Random Search, and optimisation algorithms, such as the Stochastic Hill-climber, and various forms of Evolutionary Algorithm.

It was found that the performance of the geometric reconstruction could be improved through identification of salient aspects of the modelled environment, the result was heuristic operators. In general these led to a decrease in the time taken to reach a convergent solution or a reduction in the number of candidate search space solutions that must be considered. The software model written for this thesis has been implemented to generalise the fundamental characteristics of an optimisation algorithm and to incorporate them into a generic software framework; this then provides the common code to all model algorithms used.
Contents

Contents

List of Figures xiii

List of Tables xvii

I Introduction, Literature review, and Background 1

1 Introduction 3

1.1 Real world motivation ... 3

1.1.1 The Radio Sonde airborne environmental monitoring system . 4

1.1.2 Tracking distant objects .. 4

1.1.3 The ‘Smart Dust’ system 5

1.1.4 A Smart Dust based Radio Sonde 5

1.1.5 Multiple element Radio Sonde 5

1.1.6 The software modelling abstraction 6

1.2 Principal contributions ... 7

1.3 Chapter list précis .. 9

1.3.1 Chapter 2 : The literature review 9

1.3.2 Chapter 3 : Background .. 9

1.3.3 Chapter 4 : Software model design 9

1.3.4 Chapter 5 : Run-time base-line using non-optimised algorithms . 9

1.3.5 Chapter 6 : Establishing optimal algorithm parameter settings . 10

1.3.6 Chapter 7 : Optimisation algorithm simulations 10

1.3.7 Chapter 8 : Heuristic and hybrid operators 10

1.3.8 Chapter 9 : Conclusions and further work 10

1.3.9 Appendices .. 11

2 Literature Review 13

2.1 Environmental monitoring using Smart Dust 13

2.2 Localisation and Radio Signal Strength Indication 16

2.3 An overview of ant colony and swarm optimisation 20

2.4 Optimisation algorithms 22
CONTENTS

2.4.1 Evolutionary Algorithms 23
2.4.2 Evolution Strategies 24
2.5 Chapter summary .. 26

3 Background .. 27
3.1 Defining localisation 28
3.2 Relative distance identification 31
 3.2.1 Historical methods for the determination of relative position .. 31
 3.2.2 An overview of contemporary range detection 32
3.3 Radio Signal Strength Indication 37
 3.3.1 Idealised electro-magnetic wave propagation 38
 3.3.2 Radio Signal Strength Indication in the real-world environment 38
 3.3.3 Radio Signal Strength Indication as an input data-set 41
3.4 A generic Radio Sonde monitoring system 43
 3.4.1 Sonde monitoring and wireless communication 43
 3.4.2 Meteorological Radio Sonde synoptic data types 43
 3.4.3 The types of Radio Sonde devices 44
 3.4.4 The Radio Sonde 45
 3.4.5 The Drop Sonde 46
 3.4.6 The Drift Sonde 47
 3.4.7 Some general Radio Sonde system limitations 48
3.5 An Overview of evolutionary algorithms 49
 3.5.1 A simple evolutionary algorithm 50
3.6 An overview of the object oriented paradigm 52
 3.6.1 Problem space representation in a computational environment 53
 3.6.2 The object-oriented design process 54
3.7 Chapter summary .. 54

II Problem Description .. 55

4 Software model design .. 57
 4.1 The real-world upper-airspace abstraction 58
 4.1.1 The Clustered Drop Sonde hardware abstraction 59
 4.1.2 An overview of a clustered Drop Sonde 61
4.2 The software modelling system 62
 4.2.1 Clustered Drop Sonde run-time overview 62
4.3 Virtual base-class frameworks 65
 4.3.1 System processes in a virtual base-class framework 65
 4.3.2 A practical virtual base-class framework 66
4.4 Implementing a geometric reconstruction model 69
 4.4.1 The complexity of the search space 70
4.5 Representing the problem space in a computer 73
 4.5.1 The algorithm and run-time control 76
4.5.2 The allele: the fundamental dimension definition 77
4.5.3 The allele: Drop-Sonde element class structure 77
4.5.4 The n-dimensional bounding zone and sonde element classes ... 79
4.5.5 The chromosome and associated population classes 79
4.5.6 The operators: The virtual class structure 80
4.5.7 The operators: The mutation operators 81
4.5.8 The operators: The crossover operators 82
4.5.9 The objective fitness: 3-dimensional positional error class ... 84
4.6 The data storage, collation and output sub-system 93
4.6.1 The DSS elemental class types 94
4.6.2 The DVec storage object 95
4.6.3 The DVecV dynamic DVec array storage object 97
4.6.4 The DVecV Meta-data and statistics interface 98
4.6.5 Range-group classifier meta-data classes 98

III 'Standard' Algorithm Simulations 105

5 Software model performance base-line using non-optimised algorithms107
5.1 The simulated algorithm types 108
5.2 Run-time parameters 109
5.2.1 Initialisation file section: Simulation specific parameters ... 110
5.2.2 Initialisation file section: Generic system parameters 111
5.2.3 Overview of the plotted results data 112
5.3 Simulation setup ... 113
5.3.1 Minimising directed fitness convergence 113
5.3.2 Overview of the run-time sequence 114
5.4 Random Landscape Search 116
5.4.1 Random Landscape Search algorithm results 117
5.5 Random Progression Search 120
5.5.1 Random Progression Search algorithm results 121
5.5.2 Range Groups and the Weighted Performance Factor 122
5.5.3 Standard deviation 123
5.6 Summary of the search algorithm results 124

6 Establishing optimal algorithm parameter settings 127
6.1 The default parameter values 127
6.2 Mutation distance 129
6.2.1 Mutation distance - simulation results 130
6.3 Chromosome population size 131
6.3.1 Chromosome population size - simulation results 131
6.4 Selection simulations 133
6.4.1 Tournament selection parameter setting 133
6.4.2 Tournament percentage selection - simulation results 133
CONTENTS

6.5 Selection mode type .. 135
6.5.1 Selection mode type - simulation results 136
6.6 Mutation operator type .. 137
6.6.1 Mutation operator type - simulation results 138
6.7 Crossover operator type ... 139
6.7.1 Crossover operator type - simulation results 140
6.8 Chromosome mutate/accept ratio 142
6.8.1 Chromosome mutate/accept ratio - simulation results 142
6.9 Summary .. 144

7 Optimisation algorithm simulations 145
7.1 The simulated algorithm types 145
7.2 Run-time parameters ... 146
7.2.1 Initialisation file section: simulation specific parameters 147
7.2.2 Initialisation file section: generic system parameters 149
7.3 Simulation setup ... 150
7.3.1 Overview of the run-time sequence 150
7.4 Stochastic hill-climber ... 151
7.4.1 Stochastic hill-climber algorithm results 153
7.5 Standard evolutionary algorithm 155
7.5.1 Standard evolutionary algorithm results 157
7.5.2 Comparison of simulation results 161
7.6 Large data-set evolutionary algorithm results 165
7.7 Chapter summary .. 167

IV Search Space Reduction & Heuristic Simulations 169

8 Heuristic and hybrid operators 171
8.1 Search space characteristics 171
8.2 The simulated algorithm types 172
8.3 Run-time parameters ... 172
8.4 The gateway constraint operator 172
8.4.1 Constraint constraint operator: design 173
8.4.2 Constraint constraint operator: Mode of operation 175
8.5 Constraint constraint operator: EA simulation results 178
8.6 Hybrid operator simulations 180
8.6.1 Standard Gateway Constraint Operator hybrid results 181
8.6.2 Hybrid operator and standard EA comparative results 184
8.7 Chapter summary .. 186
V Conclusions 189

9 Conclusions and further work 191
 9.1 Conclusions ... 191
 9.1.1 Global climate change 192
 9.2 Conclusions on the work of the thesis 192
 9.2.1 Part I: Introduction, literature review and background 192
 9.2.2 Part II: The problem description 194
 9.2.3 Part III: the ‘standard’ algorithm simulations 196
 9.2.4 Part IV: Search space reduction & Heuristic Simulations 199
 9.3 Further work ... 200
 9.3.1 The error model ... 201
 9.3.2 Field trials .. 202
 9.3.3 Search space reduction heuristics 204
 9.3.4 Heuristic: Decomposition 204
 9.3.5 Heuristic: Quaternion operators 205
 9.3.6 Algorithmic structure .. 206
 9.4 Final conclusions .. 207

Appendices 209

A Crossbow Technology™ Smart Dust system 211
 A.1 The Smart Dust elements ... 212
 A.1.1 The Crossbow MICA2DOT Smart Dust mote 212
 A.1.2 The Crossbow MICA2/MICAz Smart Dust mote 213
 A.2 The Smart Dust interface devices 215
 A.2.1 MIB510 RS232 Serial Interface Board 216
 A.2.2 MIB520 Universal Serial Bus (USB Interface Board) 217
 A.2.3 MIB600 Ethernet Gateway Interface Board 217
 A.3 Stargate Processing module .. 218

B Smart Dust as an automatic weather station 223
 B.1 A simple automatic monitoring element 223
 B.1.1 Pressure Sensor and Analogue to Digital Converter example .. 225
 B.1.2 A smart dust system sonde implementation 225

C The software model initialisation file 231
 C.1 File section: Simulation specific parameters 231
 C.1.1 Generic simulation specific parameters 232
 C.1.2 Hybrid operator simulation parameters 232
 C.1.3 Evolutionary algorithm parameters 233
 C.1.4 Evolutionary algorithm parameters: fixed origin constraint .. 236
 C.2 File section: Generic specific parameters 237
 C.2.1 Debug parameters ... 237