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Abstract 

 

This thesis examines the ecology, parasites and pathogens of three insectivorous bat species in 

Wytham Woods, Oxfordshire; Myotis nattereri (Natterer’s bat), M. daubentonii (Daubenton’s 

bat) and Plecotus auritus (Brown long-eared bat). 

The population structure was assessed by monitoring associations between ringed individuals, 

utilising recent advances in social network analysis. Populations of both M. daubentonii and M. 

nattereri were found to subdivide into tight-knit social groups roosting within small areas of a 

continuous woodland (average minimum roost home range of 0.23km2 and 0.17km2 

respectively). If this population structure is a general attribute of these species it may make 

them more sensitive to small scale habitat change than previously thought and has 

implications for how diseases may spread through the population. 

M. daubentonii had a strong preference for roosts close to water, away from woodland edge 

and in areas with an easterly aspect. The factors driving roost choice in M. nattereri and P. 

auritus remain elusive. The segregation of M. daubentonii into bachelor and nursery colonies 

was not a result of the exclusion of males from roosts close to water by females, or variation in 

microclimate preferences between the sexes, as was predicted. Body condition 

(weight/forearm length) was correlated with host characteristics including age and 

reproductive status, and weather variables. 

Astroviruses and Coronaviruses, which have characteristics typical of zoonotic viruses, were 

identified in UK bat species for the first time. Coronaviruses identified formed species-specific 

clades while Astroviruses were highly diverse. Though not closely related to human viruses 

these are potential zoonotic diseases of the future. Models of Coronavirus and ectoparasite 

distribution suggest individual attributes (e.g. sex and age) and population structure (e.g. the 

formation of nursery and bachelor colonies) are important predictors of parasite and pathogen 

prevalence. 

This study characterises a system that offers many opportunities for future research including 

studies of sociality, disease modelling and conservation management. 
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1 General Introduction 

 

1.1 Introduction 

 

Bats are the most ecologically diverse and second largest order of mammals, accounting for 

one in every five mammal species. The earliest fossil bat is approximately 53 million years old 

(Jepsen 1966) and over their long evolutionary history bats have filled a range of ecological 

niches. For example, the diets of bats include insectivory (insects), fruigivory (fruit), nectivory 

(nectar), sanguivory (blood), piscivory (fish) and terrestrial and aerial carnivory of non-insect 

prey. The diversity of bats is not limited to their diets, a similar range of strategies exist for 

mating, roosting, foraging, and other aspects of their ecology. 

Like much wildlife, bats continue to be affected by anthropogenic activities. These include 

urbanisation, habitat destruction and hunting. The slow reproductive rate of bats, normally 

giving birth to only one pup a year, means that bat populations typically take a long time to 

recover from declines. 

Over the past 15-25 years bats have been recognised as an important source of disease 

causing pathogens including Nipah, Hendra, SARS and Ebola. These have caused outbreaks in 

humans and non-human animals alike, causing many fatalities and large economic losses. 

This introduction reviews the past and present threats to the conservation of bats, and the 

recent emergence of diseases from bats to humans. It puts in context the aims and objectives 

of this thesis which are presented at the end of this chapter. Broadly, I aim to further our 

understanding of the ecology, social behaviour and disease dynamics of bats in a British 

lowland wood.  
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1.2 Biology of bats 

 

1.2.1 General life history 

 

Bats have long been known to be something of an anomaly amongst small mammals. Whilst 

mammals of a similar size typically have high mortality and birth rates, bats have low mortality 

and birth rates and invest in prolonged post-birth care. Bats typically only have one pup a year 

and are long-lived; of the species present in the UK individuals are known to live for 2-5 years 

on average but can live for up to 30 years (Schober & Grimmberger 1997). 

 

1.2.2 Taxonomy of bats 

 

The taxonomy of bats has been debated for many years but recent molecular studies have 

helped to generate consensus (Teeling et al. 2005). These studies suggest that flight evolved 

once amongst bats, all bat species being monophyletic, but that echolocation may have 

evolved twice. It was originally thought that Pteropid bats (family Pteropodidae: fruit bats), 

those that do not echolocate, formed a sister group to all other bats, suggesting echolocation 

evolved once. These two groups were named megachirpotera and microchiroptera 

respectively. New phylogenies based on sequence data suggest that the megachiroptera clade 

should also include the echolocating Rhinolophoid bats (super-family Rhinolophoidea). This 

group (Pteropids and Rhinolophoids) has been termed ‘Yinpterochiroptera’ and the remaining 

microchiroptera ‘Yangochiroptera’. Thus echolocation either evolved twice, or ancestral 

Yinpterochiroptera were able to echolocate but this ability was lost by those which evolved 

into present day pteropid species (Teeling et al. 2005). 

 

1.2.3 Reproductive cycle of temperate bats 

 

Temperate bats hibernate during winter months when food is scarce and cold temperatures 

increase the cost of homeothermy. Bats emerge from hibernation in spring and give birth to 

young in early summer (Figure 1.1). In most species females come together to form nursery 

colonies during gestation. These nursery colonies stay together until pups are independent, in 

the autumn. At birth, pups are approximately 20-30% the weight of adults (Altringham 1996). 
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Mating occurs in late summer, autumn and during hibernation when males briefly come out of 

hibernation and mate with torpid females. Sperm is commonly stored until ovulation occurs in 

late winter or early spring. Mating strategies can vary between species, for example the 

Pipistrellus pipistrellus (Common pipistrelle) is a harem forming bats while others such as 

Myotis nattereri (Natterer’s bat) fly great distances in autumn to swarming sites where 

individuals from a large geographic area congregate to mate (Altringham 2003). 

 

Figure 1.1 – The annual cycle of bat activity in the UK (adapted from Altringham (2003)) with 

modifications showing details for Wytham Woods (using data from 2009 and 2010). 

 

1.2.4 Life in colonies 

 

Bats are form large aggregations of tens to millions of individuals. There are two principle 

reasons for colony formation in bats. Firstly, in many landscapes roost sites are limiting. This is 

particularly true for bats that roost in caves such as the Tadarida brasiliensis (Mexican free-
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tailed bat) which forms the largest aggregations of any mammal (Davis et al. 1962). Secondly, 

individuals within a colony may gain benefits from roosting with others. These benefits include 

social thermoregulation, allogrooming, information sharing and predator avoidance (Safi 

2008). 

As a consequence of their gregarious lifestyle, long lifespan and mobility (allowing individuals 

to choose where to roost) bats have complex social structures (O'Donnell 2000b; Vonhof et al. 

2004; Fortuna et al. 2009). Evolutionary theory predicts that individual bats will maximise their 

fitness both in the context of cooperative behaviour and mating opportunity. This behaviour 

generates the observed social structure. Colonies of temperate bats undergo frequent 

subdivision and recombination of colonies with varying membership (Kerth & Konig 1999; 

Willis & Brigham 2004; Popa-Lisseanu et al. 2008; Kerth et al. 2011), a behaviour shared by a 

small number of other mammals (Aureli et al. 2008). This behaviour is associated with non-

random associations, with some pairs of individuals associating more frequently than others 

(Kerth et al. 2011). Another property of some social mammals, such as primates and elephants 

(Sapolsky 2005; Wittemyer et al. 2005), is a dominance hierarchy. There is as yet insufficient 

evidence to support the presence of hierarchies amongst bats (Kerth et al. 2003; Ortega & 

Maldonado 2006).  



33 
 

1.3 Bats as ecosystem service providers 

 

Bats are often viewed as pests when present in the urban environment. Usual complaints 

include noise, defacement of property by guano and a perceived risk of disease (Guilliatt 

2011). However, bats also provide a number of ecosystem services. Ecosystem services are the 

elements of ecosystems that are used directly and indirectly to support human wellbeing 

(Fisher et al. 2009). For bats these services include consumption of agricultural pests, 

pollination and seed dispersal, bush meat, fertiliser (guano) and cultural benefits. 

 

1.3.1 Consumption of agricultural pests 

 

Approximately one third of bats species are insectivores, feeding on a range of insects from 

midges and mosquitoes to beetles and moths. The high energetic demand of a bat’s lifestyle, 

including flight and high maternal investment, require individuals to eat large quantities of 

insects each night. Investigation of wild bats suggests that individuals may consume from 50% 

to over 100% of their body mass in insects in a single night (Kurta et al. 1989; Kunz & Stern 

1995; Kunz et al. 1995; Encarnação 2006). Studies using microscopy and genetic analyses have 

found the remains of a number of agricultural pests in faeces from numerous bat species 

(Table 2 in Kunz et al. 2011). As many bats are generalists, agricultural pests are likely to be 

predated by bats all over the world. One well studied example is the Tadarida brasiliensis 

(Brazilian free-tailed bat). This generalist insectivore can form colonies of millions of individuals 

and is a predator of agricultural pests (Desmarais et al. 1980; Mizutani et al. 1992). Valuations 

of the service provided by these bats in terms of damage avoided to cotton crops is estimated 

at $0.02 per bat per night in the summer, totaling $638,000 annually across a 4000Ha area in 

Texas (Cleveland et al. 2006). The value of bats to American agriculture has been estimated at 

approximately $22.9 billion per year, with a minimum value of $3.9 billion (Boyles et al. 2011). 

While this study depends on many assumptions, it is clear that even the lower monetary 

estimate indicates bats are a valuable contributor to natural pest control and reduce 

agricultural production costs. 
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1.3.2 Bats as pollinators and seed dispersers 

 

Two families of bats are responsible for pollination and seed dispersal services, the 

Pteropodidae (fruit bats) and Phyllostomidae (New World leaf-nosed bats) whose members 

feed on fruit, pollen and nectar. The mobility of bats allows them to spread pollen and seeds 

over a much larger area then most other plant visitors (de Lacerda et al. 2008). While there are 

no monetary estimates of the value of bats as pollinators and seed dispersers, Kunz et al 

(2011) present a long list of economically and environmentally important plants that are either 

currently, or were historically, pollinated or dispersed by bats (Table 4 in Kunz et al. 2011). 

These include plants that provide products such as cashew nuts, mangos, dates, tequila, 

papaya, balsa wood, bananas, passion fruit, coffee and many others. In many cases however, 

bats are thought to be one of a number of species to pollinate or disperse seeds of a given 

plant. Furthermore, pollination by bats is often no longer necessary for widely grown, self-

fertile, varieties of crops such as banana and mango. 

 

1.3.3 Bats as a resource 

 

Humans use two products of bats as resources, their meat and their guano. Guano is rich in 

nitrogen and phosphorus, nutrients that are often limiting for plant growth in the 

environment. It is mined from caves where bats roost, typically in the tropics, and is valued 

between $1.25 and $12 per pound (Kunz et al. 2011). Bats are hunted for meat in many 

tropical countries both as food for the hunter and to be traded commercially (Mickleburgh et 

al. 2009). The value of a bat as meat varies from $0.50-$1.50 per bat (Pteropus vampyrus 

natunae in Borneo; Struebig et al. 2007) to $10 per bat (P. vampyrus in Jakarta; Fujita & Tuttle 

1991). Exact numbers of bats eaten are hard to obtain, however as an indication Wiles et al 

(1997) report that until 1994 between 10,000-16,000 bats were exported annually from the 

Palau islands (approximately 460km2 in area), south east of the Philippines. Additionally, 

Kamins et al. (2011) estimate that a minimum of 128,000 Eidolon helvum are sold for meat in 

Ghana each year.  
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1.3.4 Cultural services 

 

Perhaps the most difficult service to quantify, the cultural importance of bats, is also the most 

widely recognized by the public. Bats appear on artifacts from ancient civilizations, from Egypt 

to China and Japan to Mexico. They appear in paintings, prints and carvings that attract 

tourists to ancient ruins and museums (Altringham 2003; Kunz et al. 2011). In modern day 

culture bats appear in the media, on products (e.g. Bacardi), in films (e.g. Batman), cartoons 

(e.g. Batfink), and in nature documentaries. The latter may in part have stimulated the public’s 

interest in bats and as such bat walks, cave tours and educational activities are becoming more 

commonplace. Indeed tourism generated by bats roosting in Congress Avenue Bridge, Austin, 

Texas, one of the world’s largest colonies of urban bats, is thought to be worth approximately 

$3 million a year to the local economy (Ryser & Popovici 1999).  
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1.4 Conservation of bats 

 

The effective conservation of any species requires an understanding of the threats to 

populations, and the ecology of the species, including their population structure, behavior and 

habitat requirements. Factors that have caused declines in bats in the past and continue to 

threaten bat populations today are considered below. 

 

1.4.1 Threats to bat populations 

 

1.4.1.1 Land use change and habitat loss 

 

Land use change and habitat loss are the greatest threats to bat populations worldwide 

(Mickleburgh et al. 2002; Racey & Entwistle 2003). Urbanisation and agricultural expansion 

have led to the loss of vast areas of natural habitat, the impacts of which are felt across all 

taxa. For example, in Singapore 95% of natural habitat has been lost due to urbanization 

resulting in a loss of at least 28% of its biodiversity over 183 years (Brook et al. 2003). 

Conversion of woodlands to agricultural land has contributed to the net loss of 7-11 million 

km2 of woodland globally in the past 300 years (Foley et al. 2005) resulting in local climate 

change and biodiversity loss (Soares et al. 2006). While bats are extremely diverse, the 

majority of species are dependent on woodlands for foraging or roosting (Mickleburgh et al. 

2002) and as a consequence the loss of this habitat has contributed to declines in bat 

populations across the world (Brosset et al. 1996; O'Donnell 2000a; Altringham 2003; Racey & 

Entwistle 2003; Wiles & Brooke 2010). 

 

1.4.1.2 Hunting 

 

Hunting wildlife as a source of food and income is widespread. In many poor areas wildlife 

hunting is essential as a source of protein and income, and can be sustainable (Wilkie & 

Carpenter 1999; Brashares et al. 2004; de Merode et al. 2004). However, as human 

populations grow and becomes more effcient (e.g. by the introduction of guns) the pressure 

on wildlife populations has increased and hunting rates in many areas are now thought to be 

unsustainable (Milner-Gulland & Bennett 2003).  
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Bats are a common source of bushmeat in the tropics. Hunting has resulted in the extinction of 

some species (Cheke & Dahl 1981), and declines in others (Craig et al. 1994; Mohd-Azlan et al. 

2001; Riley 2002). Island populations have been most greatly affected, presumably because 

there is little immigration into these populations and because large mammals, preferable 

sources of bush meat in terms of cost benefit for the hunter (Peres 2000; Milner-Gulland & 

Bennett 2003), are usually absent (Craig et al. 1994; Riley 2002). Irrespective of their size, 

animals like bats that have slow reproductive rates are frequently among the first species to go 

extinct when overhunted. While hunting bats in small numbers may be sustainable, more 

research is needed to estimate the sustainable harvest of bats in places were hunting is 

common (Mickleburgh et al. 2009). 

Bats have also been the target of culls. In Australia fruit bats have been killed by farmers, who 

see them as pests. It is thought at least 240,000 fruit bats were culled on the East coast of 

Australia between 1986 and 1992 (Racey & Entwistle 2003). In South America the rabies vector 

Desmodus rotundus (Common vampire bat) has been persecuted for its role in transmitting 

rabies to cattle. This persecution included the destruction of 40,000 caves in Venezuela 

containing Desmodus rotundus and many other species (Hutson et al. 1993). 

 

1.4.1.3 Exposure to toxins 

 

Pesticides and agrochemicals are thought to have harmed bat populations both directly and 

indirectly. While little or no quantitative data are available, it is likely that the widespread use 

of highly effective pesticides in the 20th century negatively impacted bat populations by 

reducing the abundance of prey species. The presence and toxicity of pesticides and other 

pollutants in bats has been reported widely. Those chemicals found in bat tissues include 

organochlorides (Geluso et al. 1976; Clark et al. 1978; Clawson & Clark 1989; Senthilkumar et 

al. 2001; Stansley et al. 2001; Bennett & Thies 2007), organophosphates (Clark 1986; Clark & 

Rattner 1987; Eidels et al. 2007) and heavy metals (Clark 1979; Walker et al. 2007; Nam et al. 

2012). There has also been a recent interest in endocrine disrupters, and though these have 

not been identified in bats there is evidence that these compounds are present in their insect 

prey (Park et al. 2009). In general bats have not been found to be any more sensitive to 

organochlorides, organophosphates or heavy metal toxins than other animals, but studies are 

limited to acute morbidity and mortality. Some of these toxins have been found to reduce bats 

coordination (Clark 1986; Clark & Rattner 1987) but the effects these toxins have on bats’ 

behaviour, ability to forage or ability to avoid predation is generally poorly understood. Bats 
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have a number of attributes which make them particularly susceptible to the effects of 

pollutants. As insectivores they are exposed to higher levels of toxins than herbivores due to 

biomagnification, the increased concentration of many pollutants along a food chain. Their 

high energetic demands require increased food intake and their long lifespan allows significant 

bioaccumulation and increased chances of toxin exposure (Clark 1988). Additionally, 

mobilisation of fat-reserves after hibernation releases toxins which have been stored in 

adipose tissue over the winter period, resulting in a spike in their concentration in other 

tissues (Jefferies 1972). In the 1970’s DDT and its breakdown compounds were found at one-

third the lethal level in UK bats, and after hibernation this rose close to the lethal level for 

Pipistrellus species tested (Jefferies 1972). Organochlorides used to treat timber in roof spaces 

against wood-boring beetles and rot-causing fungi have been found to kill bats in the UK and 

have now been replaced with more suitable chemicals (Racey & Swift 1986). Surveillance for 

heavy metals in UK bats found low levels of mercury, lead and cadmium (Walker et al. 2007). 

The challenge for future research is to go beyond the current practice of identifying toxins in 

wild bats, or calculating the mortality rates for a range of doses, and examine the long term 

effects of specific toxins on fitness. 

 

1.4.1.4 Current threats to bats in the UK 

 

Within the UK bats are protected by law and so threats such as hunting and persecution are 

not significant. This protection is afforded by the Wildlife and Countryside Act 1981 and the 

Habitat Regulations, the latter put in place by the UK government as required by the EU 

Habitat Directive. This legislation prohibits the disturbance of bats or the destruction of their 

roosts without a license (Mitchell-Jones & McLeish 2004). 

Though regulated by UK law, the primary threat to bats in the UK is habitat destruction 

including the exclusion of bats from human dwelling places. Where roosts need to be 

destroyed they are replaced with artificial roosts but the effectiveness of this mitigation has 

been poorly studied. Another area lacking data is the effect of timber harvesting in managed 

woodlands. Though forestry practice is to leave some mature, or standing dead trees, it is 

unclear how effective this is at reducing disturbance to bat populations. 

A recently identified threat to bats in the UK are wind turbines. This is an area in need of more 

research, both to assess the numbers of bats killed by wind turbines and how their placement, 

or the turbines themselves, can be improved to reduce harm to bat populations (Kuvlesky et 

al. 2007). 
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1.4.2 Understanding species ecology 

 

To conserve wildlife effectively it is necessary to understand what species need to sustain 

viable populations. For bats this includes an understanding of the type and size of habitat 

needed to support a population, including both foraging and roosting habitat (Racey & 

Entwistle 2003). 

The general foraging and roosting habitats used by British bats are relatively well understood; 

that is to say that some information is available on the preferred habitats for roosting and 

foraging for almost all species (Altringham 2003). Despite this there is little specific, detailed 

information on roost preference (e.g. height, temperature and tree species) and foraging 

habitat (e.g. vegetation density and foraging height). 

There are also limited data on the requirements of bat populations in terms of land area and 

number of roosts. In fact, even the concept of a ‘population’ of bats is poorly defined. It is clear 

that UK bats form colonies (Altringham 2003), but there are few data on the rate of 

movements of individuals between colonies or movement of colonies between roosts. Data 

currently available are based on radio-tracking and so are limited to a small sample size for 

each study. These studies reveal that bats species including Myotis daubentonii (Daubenton’s 

bats) and M. nattereri switch roosts every few days and use a number of roosts (Smith 2000; 

Lucan & Radil 2010). However these studies consider a small number of individuals rather than 

the colony as a whole. Data are also lacking on the ability of groups to respond to changes such 

as the loss of individual bats or habitat. Such information would be a useful addition to our 

current understanding, permitting management plans to take account of the importance of 

individual roosts, and habitat patches to bats populations. 

 

1.4.3 Social network analysis (SNA): a conservation tool 

 

The current poor understanding of bats’ population structure makes it difficult to predict the 

impacts of anthropogenic activities including habitat alteration or the destruction of roosts. 

SNA allows the structure of a population to be identified by constructing a network of 

individual associations. They are composed of two elements, nodes and associations. Nodes 

represent individuals within the network, while lines connect nodes (i.e. individuals) that have 

associated in some way. These networks can be based on a range of association types, for 
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example individuals may be connected in the network if they interact aggressively, 

mutualistically or physically, each network providing different information. Networks can also 

be used to place individuals into social groups, i.e. collections of individuals that associate 

more frequently with each other than with individuals from other social groups (Figure 1.2). In 

addition SNA can be used to quantify the position of individuals within a network. For example 

the number of individuals that a given individual is associated with is defined as its ‘degree’. 

Additionally an individual’s ‘betweeness’ is the number of shortest paths, connecting 

individuals in the network, which pass through the focal individual, giving an indication of how 

central to the network an individual is. 

 

 

Figure 1.2 – Social networks are composed of individuals (nodes), show here by circles, and associations 

(lines). This network of students in an Exeter University class assumes individuals are associated if they 

are friends on Facebook. Individuals can then be assigned to social groups using a quantitative 

approach, indicated here by the colour of each node. 

 

Network analyses have been used to understand physical systems (e.g. transport connections 

and data flow through computer networks) for many years. The techniques have also been 

applied to human social behaviour (e.g. spread of sexually transmitted diseases and rumours). 

However, SNA has only been applied to the study of wildlife in the past 15 years. The social 

structure identified in networks can be used to direct the focus of conservation work by 

identifying functional units of biological significance, such as social groups. SNA can also be 

used to understand the mechanisms by which diseases may spread through a population, 

which can be applied to optimize vaccination strategies (Beyer et al. 2012). SNA may also 
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highlight individuals in the population that are disproportionately important for ensuring the 

reproductive success of a group, for example females within matriarchal societies. Using these 

methods Orcinus orca (Killer whales) have been shown to have a population structure that 

may increase their susceptibility to disease outbreaks (Guimaraes et al. 2007), Macaca 

nemestrina (Pigtailed macaques) suffer a breakdown of social structure if individuals key to 

policing are removed (Flack et al. 2006) and populations of Chalinolobus tuberculatus (long-

tailed bats) in New Zealand show a high level of social structure suggesting conservation 

should focus on conserving social groups (O'Donnell 2000b). 

At present there have not been any studies of the social structure of bats in the UK using a 

social networks approach, and only one species (Myotis bechsteinii, Bechstein’s bat) has been 

studied elsewhere (Kerth et al. 2011). SNA studies of bats not native to the UK have found 

differences in species’ propensity to form social groups, the area used by a social group, and 

the level of intergroup associations (O'Donnell 2000b; Vonhof et al. 2004; Fortuna et al. 2009). 

Using the results from social network analyses it is possible to explore the spatial structure of 

the population using geographical information systems (GIS). These analyses reveal the area 

use by social groups and their habitat preferences. This spatial structure can be important for 

conservation (O'Donnell 2000b), identifying the area needed to support a social group, and for 

vaccination campaigns (Haydon et al. 2006), predicting the rate of disease spread through a 

population. 

Population structure, which can be identified using SNA, will have a significant impact on the 

spread of disease. Populations with little structure, in which individuals associate at random 

with other individuals, allow for diseases to spread rapidly across the network. Populations 

with discrete subunits (i.e. social groups or cliques) may have high rates of transmission 

between individuals within the same group but low rates of transmission between groups. One 

might expect larger social groups, and groups with greater connectivity to others, to have 

higher prevalence of disease. Among individuals those with many associations with others in 

the network (i.e. high degree) or those who are members of more than one social group (i.e. 

high betweeness) might also be expected to have higher disease prevalence. 

SNA will be of great importance to the conservation of bats in the future but comes with a 

number of challenges. The technique requires numerous repeat observations of a large 

number of marked individuals, however, bats are often hard to observe being highly mobile 

and roosting in hard to reach locations. As in the current study, these difficulties can be 

overcome by studying bats that use artificial roosts and are therefore readily accessible.  
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1.5 Bats and disease 

 

1.5.1 Bats and ectoparasites 

 

The diversity we observe in bats is matched by the diversity of their ectoparasites. Bats are 

host to a number of different types of ectoparasites the most common being mites, ticks, bat 

flies, bugs and fleas. In this thesis I examine mites, bat flies and fleas present in the 

populations under study. 

There are 64 species of mite in the UK (Baker 2006), and the most conspicuous of these are 

members of the Spinturnicidae family (order Mesostigmata). This family is found exclusively on 

bats, and its members feed predominantly on the wing and tail membranes (Evans 1968). 

These blood-feeding mites spend their entire lifecycle on the host and are transmitted from 

host to host via direct contact in roosts. As, like other pathogens, mite transmission rates are 

likely to be dependent on contact rates it is hypothesised that mites and other directly 

transmitted pathogens will have a similar distribution within the population. If Spinturnicid 

mite load can be shown to correlate with pathogen prevalence, future studies may be able to 

use mite loads as a proxy for the probability of infection by directly transmitted pathogens 

(e.g. viruses) which may otherwise be difficult to detect. 

M. daubentonii is additionally parasitised by bat flies, primarily Nycteribia kolenatii (Hurka 

1964; Hutson 1984, Gardner & Molyneux 1988). These wingless diptera feed on blood and are 

thought to transmit Polychromophilus murinus, a malaria-like pathogen, and Bartonella 

between bats (Gardner & Molyneux 1988; Billeter et al. 2012). Bat flies give birth to terminal 

(3rd instar) larvae in the roost of their host, which immediately form puparia. Emerging adults 

locate a host and subsequently only leave the host to deposit larvae (Dick & Patterson 2006).  

Bat fleas are commonly found infesting M. nattereri (Zahn & Rupp 2004). These fleas spend 

the first half of their life-cycle in the guano below a bat roost feeding on detritus before they 

develop into adults and search for a host (Lewis & Lewis 1994). Both bat flies and fleas are 

found in the fur and not on the wing membranes. 
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1.5.2 Emerging infectious diseases 

 

The reported incidence of emerging infectious diseases (EIDs) has increased significantly since 

the 1940s and is thought to have peaked in the 1980’s (Jones et al. 2008). EIDs are defined as 

those that have recently increased in incidence or geographic range, recently infected a new 

host population, recently been discovered or are caused by a newly emerged pathogen 

(Daszak et al. 2001). Some of the best known EIDs include diseases such as AIDS, Ebola and 

multi-drug resistant tuberculosis. 

Of 335 EIDs from the second half of the 20th century studied by Jones et al (2008), 60% were 

zoonotic i.e. those that can be transmitted between animals and humans. Of those, 72% 

originated in wildlife. EIDs are twice as likely to be zoonotic than expected, given the 

proportion of all diseases that are zoonotic (Woolhouse & Gowtage-Sequeria 2005). In 

addition, the proportion of EIDs attributable to wildlife is thought to be increasing over time 

(Jones et al. 2008). These patterns are likely to be a result of increased contact between 

humans and animals as a result of agricultural intensification and human encroachment into 

previously wild habitats.    

Viruses account for 37-44% of emerging infectious diseases but only 15% of all human 

pathogens (Cleaveland et al. 2001; Taylor et al. 2001; Woolhouse & Gowtage-Sequeria 2005). 

The high proportion of viruses amongst EIDs is probably due to the high nucleotide 

substitution rates in many RNA viruses (Woolhouse et al. 2001) which allows them to adapt 

quickly to a new host. RNA viruses account for a number of important zoonotic pathogens 

including HIV, influenza A virus, SARS coronavirus, and Ebola virus (Woolhouse et al. 2005). 

Movement of humans and animals around the globe in recent times is likely to have resulted in 

the mixing of viruses that otherwise would have not come into contact. Such mixing can result 

in recombination among some viruses (e.g. influenza viruses), whereby large parts of the viral 

genome are swapped between virus strains generating new viruses. As a consequence 

emergence after recombination events may become more frequent amongst viruses. 

 

1.5.3 Bats as a source of zoonotic EIDS 

 

Bats have become a focus of EID research over recent years. They have been identified as the 

reservoir host of a number of zoonotic diseases of human health concern, many of them RNA 
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viruses. Studying these EID events from bats it is possible to identify trends in the conditions 

surrounding disease spillover that can inform the direction of future research. 

 

1.5.3.1 EID viruses associated with bats around the world 

 

Ebola virus and Marburg virus 

The genera Ebolavirus and Marburgvirus belongs to the family Filoviridae. The viruses have 

enveloped virus particles enclosing non-segmented, negative sense, single stranded RNA 

(ssRNA) genomes. Both viruses cause viral hemorrhagic fever with very high mortality rates in 

humans. Since 1976 there have been numerous outbreaks of Ebola virus, thought to total 2317 

cases and 1671 deaths (67% mortality) in humans, almost all confined to Africa (Pourrut et al. 

2005; Leroy et al. 2011). Marburg virus outbreaks have been more infrequent and more 

sporadic – though large outbreaks have also been confined to Africa. 

A number of surveillance and experimental infection projects have found that a range of fruit 

bats and insectivorous bats can support replication and circulation of Ebola virus without 

succumbing to disease, suggesting they may be reservoir hosts of the virus (Swanepoel et al. 

1996; Leroy et al. 2005; Pourrut et al. 2006; Leroy et al. 2009; Pourrut et al. 2009). Similarly 

Marburg virus has been associated with Rousettus aegytiacus (Egyptian fruit bats) (Towner et 

al. 2009). Studies of the 2007 outbreak of Ebola in the Democratic Republic of Congo have 

linked the Ebola virus outbreak with annual migrations of fruit bats in the area that coincided 

with hunting of bats to eat and to sell at markets (Leroy et al. 2009). 

The more common infection pathway of Ebola virus to humans may be through contact with 

infected primates, which like humans experience high mortality, however our growing 

understanding of the role of bats suggests more research in this area is needed.  

 

Hendra virus 

Hendra virus is a Henipavirus in the family Paramyxoviridae. These viruses have enveloped 

virus particles enclosing non-segmented, negative sense, ssRNA genomes. Recent work 

suggests bats are host to many paramyxoviruses including viruses closely related to human 

mumps virus, mouse pneumonia and canine distemper and may be the ancestral host of these 

viruses.  
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It is thought that horses become infected with Hendra virus by consuming fruit dropped by 

bats and contaminated with their saliva or urine, before passing the infection on to humans 

(Field et al. 2001). Up until 2011 there were 18 fatalities amongst horses and 1 fatality of a 

man who had cared for infected horses (Plowright et al. 2011). In 2011 22 horses died in 

Queensland and New South Wales. Data collected from the most recent outbreak is yet to be 

published so this discussion only considers data prior to 2011. 

Factors that may have led to the emergence of Hendra include habitat loss, urbanisation, 

seasonal changes in bat behaviour and climate. 

Deforestation has caused Australian fruit bats to move into urban environments where they 

feed on exotic and native flora (Nobel 1996; Markus & Hall 2004). Colonies numbering up to 

50,000 individuals now inhabit urban areas (Parry-Jones & Augee 2001) increasing potential 

contact rates between bats and humans or domestic animals. 

Models of disease transmission (Plowright et al. 2011) predict that large urban 

metapopulations will be persistently infected, triggering waves of outbreaks in rural 

populations, though the exact patterns depended on the levels of immunity at the outset of 

the models and the migration distance parameter used. Models also suggest that the 

seasonality of Hendra virus spillover events (May to October) may correlate to increased 

prevalence of the virus in bat populations as maternal immunity amongst juveniles wanes 

(Plowright et al. 2011). 

These SEIR (susceptible, exposed, infectious, recovered) models of Hendra virus transmission 

used life history data collected from Australian fruit bats and explored scenarios with different 

degrees of connectivity between roosts (modelled as the rate at which transmission rate 

declined with distance) and immunity (modelled as the proportion of individuals immune at 

the start of the model run), for which data are generally lacking in studies of bats and their 

pathogens. The connectivity and immunity parameters proved important for predicting the 

timing of outbreaks, their intensity, and the rate at which they spread through bat populations. 

The models also found that including heterogeneity in the duration of infections and in 

transmission rate among individuals, had significant effects on model results. As in other 

studies of disease (Lloyd-Smith et al. 2005; Beldomenico et al. 2009), this suggests that super-

spreaders, individuals responsible for a higher than expected amount of disease transmission, 

may be important in Hendra virus dynamics. Additional field studies are now required to test 

model predictions and more accurately predict transmission rates and heterogeneity. 
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Previous studies suggest that changes in immunity in bat populations may have been the cause 

of increased Hendra prevalence. A period of reduced blossom and nectar availability in 

Australia, thought to be the result of an extended wet season in 2006, resulted in lower body 

weights and no recorded births in what would normally be the birthing period of P. scapulatus 

(Plowright et al. 2008). During the same period 80% seroprevalence was observed, with the 

odds of an individual being seropositive 14-42 times higher than in any other season. The 

reduced availability of foraging habitat may have resulted in both reduced immunodefence 

and dense aggregations of P. scapulatus on limited food resources (though neither were tested 

empirically) which may have contributed to the higher than normal seroprevalence (Plowright 

et al. 2008). While this event was triggered by natural climatic events, habitat destruction and 

other anthropogenic activities that reduce the availability of foraging habitats may have similar 

effects. This response to both climate and habitat destruction should be incorporated into 

future models using information on rates of deforestation and known climate variability. 

 

Nipah virus 

Nipah virus is the only other recognised species in the genus Henipavirus. It was first recorded 

during an outbreak of febrile encephalitis in peninsula Malaysia during 1998 and 1999. The 

outbreak resulted in 265 cases and 106 human fatalities, mostly in pig farmers (Chua et al. 

2000). Swine were identified as the source of the disease in humans (Goh et al. 2000) and 1 

million pigs were slaughtered, 60% of farms were closed and 36,000 jobs and $120 million in 

exports were lost (Daszak et al. 2001). Subsequent surveillance of wild animal populations 

found antibodies to Nipah virus in a number of species of fruit bats in Malaysia (Johara et al. 

2001; Wacharapluesadee et al. 2005). 

It has been suggested that regional drought and slash and burn deforestation may have caused 

an influx of flying foxes to northern peninsula Malaysia (Chua et al. 2002). However, there is 

also evidence to suggest that bats make long distance movements in this region in the absence 

of such conditions (Breed et al. 2006). Fruit bats roost and forage in orchards which are often 

located close to piggeries in Malaysia (Breed et al. 2006), and it is thought that pigs became 

infected with Nipah virus by consuming fruit dropped by flying foxes and contaminated with 

their saliva (Chau et al. 2002). 

Since the original outbreak in Malaysia there has been a series of outbreaks in Bangladesh (Hsu 

et al. 2004; Gurley et al. 2007; Luby et al. 2009; Homaira et al. 2010). Genetic analysis 

suggested multiple spillover events from bats triggered chains of human-to-human 
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transmission (Harcourt et al. 2005) with date sap consumption a common feature of index 

cases (Luby et al. 2009). Bats have subsequently been shown to lick sap from trees being 

harvested for their sap and urinate into sap collection pots (Khan et al. 2010). Decreased food 

abundance due to habitat destruction in Bangladesh may have increased opportunistic 

foraging such as feeding on date palm sap and has been suggested to increase the likelihood of 

spillovers (Khan et al. 2010). 

Seasonal changes in the shedding of Hendra virus in colonies of Pteropus lylei, a host of Nipah 

virus, have been detected in Thailand (Wacharapluesadee et al. 2010). Higher prevalences 

were detected in May across all sites, when offspring start to separate from their mothers 

suggesting maternal immunity may protect very young bats.  

 

Severe acute respiratory syndrome (SARS) 

8096 cases of SARS resulted in 774 fatalities between 1st November 2002 and 31st July 2003 

(World Health Organisation 2011). Local transmission originated in China but rapidly spread to 

Mongolia, the Philippines, Singapore, Vietnam and Canada (World Health Organisation 2011). 

A novel Betacoronavirus, Severe acute respiratory syndrome-related coronavirus (SARS-CoV), 

was found to be associated with patients with SARS (Drosten et al. 2003; Ksiazek et al. 2003; 

Peiris et al. 2003). Coronavirus species are not uncommon in humans, however this novel virus 

caused a mortality rate of 9.5%, far greater than other human coronaviruses which are rarely 

fatal (Evans 1982). The high mortality and rapid spread of this virus made it one of the most 

important disease outbreaks in recent times. 

Coronaviruses (family Coronaviridae) have enveloped virus particles enclosing non-segmented, 

positive sense, ssRNA genomes. They have a high rate of mutation, and recombination, 

allowing them to evolve rapidly, thereby increasing their chance to infect novel host species 

(Lai & Cavanagh 1997; Graham & Baric 2010). 

The first cases of SARS appeared in restaurant workers handling wild mammals to be sold as 

food, and so preliminary surveillance work was undertaken at a live-animal market in 

Shenzhen, China (Guan et al. 2003). The study found SARS-CoV in four of five Himalayan palm 

civets (Paguma larvata) by PCR and neutralising antibodies in Himalayan palm civets, a Chinese 

ferret-badger (Melogale moschata) and a raccoon dog (Nyctereutes procyonoides). This 

showed that the markets provided an environment in which SARS-CoV could be transmitted 

between wild animals and potentially spill over to humans working there. While Palm civets 

were found to carry the virus, as they showed overt clinical symptoms when infected with 
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SARS-CoV they were not thought to be the reservoir host of the virus (Li et al. 2005). 

Surveillance of wildlife found SARS-CoV was nested within a group of closely related virues in 

Chinese horseshoe bats (Lau et al. 2005; Li et al. 2005). A temporally referenced phylogeny 

suggests SARS-CoV switched host from bats approximately 4 years prior to the SARS outbreak 

(Hon et al. 2008). Subsequent surveillance efforts identified diverse Coronaviruses from bats in 

Asia (Tang et al. 2006; Woo et al. 2006), North America (Dominguez et al. 2007), mainland 

Europe (Gloza-Rausch et al. 2008; Drexler et al. 2010; Reusken et al. 2010; Rihtaric et al. 2010; 

Drexler et al. 2011), Africa (Quan et al. 2010) and the Americas (Carrington et al. 2008; Misra 

et al. 2009; Donaldson et al. 2010). 

Few studies have looked at the dynamics of Coronaviruses within bat populations, usually 

going no further than a phylogentic analysis of Coronaviruses detected. However, two studies 

in Europe suggest that maternal immunity and the introduction of susceptible juveniles in the 

autumn may be important factors in driving disease dynamics (Gloza-Rausch et al. 2008; 

Drexler et al. 2011). 

 

1.5.3.2 EID viruses associated with bats in the UK 

 

Lyssaviruses 

Rabies is a disease caused by a number of viruses of the genus Lyssavirus within the family 

Rhabdoviridae. These viruses have enveloped virus particles enclosing non-segmented, 

negative sense, ssRNA genomes. Rabies virus (RABV) is responsible for most of the 40,000-

50,000 human deaths every year from rabies (Bourhy et al. 2005). 

The last decade has seen the eradication of RABV from most of Western and Central Europe 

(Fooks 2005), however, other lyssaviruses including European bat Lyssavirus 1 (EBLV-1) and 

European bat Lyssavirus 2 (EBLV-2) remain present. In Europe there have been approximately 

50 recorded cases of rabies in bats every year but only four human cases since 1977 (Bourhy et 

al. 2005). Eptesicus serotinus (Serotine bat) is regarded as the main reservoir of EBLV-1 

(Vazquez-Moron et al. 2008), whilst Myotis species host of EBLV-2 (Fooks et al. 2003). Unlike 

RABV which is almost always fatal (Anderson et al. 1981), EBLVs do not normally cause death 

in bats but will often be fatal for other mammals (Stantic-Pavlinic 2005; Amengual et al. 2007). 

In 2002 a Scottish bat worker died of EBLV-2 (Fooks et al. 2003) leading to a range of works on 

EBLVs in bats in the UK (Fooks et al. 2004; Brookes et al. 2005; Fooks et al. 2006; Harris et al. 

2006; Smith et al. 2006; Banyard et al. 2009; Smith et al. 2011). These reports have identified 
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antibodies to EBLV-2 at a low level in M. daubentonii (0.7-5.1%, 95% CI) within the UK (Smith 

et al. 2006). Given the low level of infection observed for EBLV-2 it has not been possible to 

examine the disease dynamics within bat populations. Data needed to allow modelling of 

lyssaviruses amongst bats includes immunological data on duration of infection and immunity 

as well as an understanding of transmission rates (Dimitrov et al. 2008). While some of this 

information is available for EBLV-1, little is available for EBLV-2. 

Pertinent to this thesis is the recent identification of Bokeloh virus (BBLV), a lyssavirus closely 

related to EBLV-2 and other bat lyssaviruses (Freuling et al. 2011). This virus was isolated from 

a M. nattereri that presented with classic symptoms of rabies (i.e. aggressive behaviour) after 

4 months in captivity. The animal died 10 days after the onset of symptoms. Whilst data is 

currently lacking on the prevalence of this virus amongst M. nattereri and other species, 

should M. nattereri prove to be a reservoir host of the virus, my studies of M. nattereri 

presented in this thesis may be a useful resource for disease models. 

 

1.5.4 Can we predict and mitigate zoonotic diseases from bats? 

 

Having reviewed some of the best studied zoonotic disease spillover events from bats to 

humans it is possible to identify commonalities that may help inform the direction of future 

work (Table 1.1).  



50 
 

 

 

Pathogen Routes of infection Drivers of emergence

Dynamics in bat 

populations Risk factors for humans Future research needed

Ebola virus

Human to human or 

infected mammal to 

human via contact with 

bodily fluids

Hunting of bats Unknown
Contact with infected 

animals or humans

Empirical data on disease 

dynamics in bats

Hendra virus Bats to horses to humans
Habitat loss and 

urbanisation

Annual cycle, possibly 

driven by seasonal influx 

of susceptible juveniles

Contact with infected 

horses

Empirical data on disease 

dynamics in fruit bats

Nipah virus

Malaysia : Bat to pig to 

human

Bangladesh : Bat to human 

(via contaminated date 

palm sap) and human to 

human 

Malaysia : 

Deforestation, 

drought, agricultural 

intensification

Bangladesh : Possibly 

deforestation

Malaysia : Annual cycle, 

possibly driven by 

seasonal influx of 

susceptible juveniles

Bangladesh : Unknown

Malaysia : Contact with 

pigs

Bangladesh : 

Consumption of raw date 

palm sap or contact with 

an infected human

Malaysia : Duration of 

maternal immunity in bats

Bangladesh : Empirical data 

on disease dynamics in fruit 

bats

SARS coronavirus

Bats to intermediate 

mammalian host to 

humans and human to 

human

High contact rates 

between animals and 

humans at wet 

markets

Maternal immunity may 

be important

Contact with infected 

animals or humans

Empirical data on disease 

dynamics in wild 

populations and studies of 

immunity

Lyssaviruses Bat to human Human contact Unknown Bat bites

Empirical data on disease 

dynamics in wild 

populations

 

Table 1.1 – Summary of previous EIDs thought to originate from bat populations 
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1.5.4.1 Drivers of disease emergence 

 

Habitat destruction has been suggested as a driver of the emergence of Hendra and Nipah 

viruses (Chau et al. 2002; Markus & Hall 2004). This has caused bats to roost closer to human 

populations and puts them under greater nutritional stress if foraging habitat is lost (Plowright 

et al. 2008). This may lead to increased pathogen prevalence among bats and contact between 

bats and humans or domestic animals. Habitat destruction has also been implicated in the 

emergence of malaria in the Amazon (Vittor et al. 2006) and Lyme disease in the United States 

(LoGiudice et al. 2003). Deforestation in both these instances led to favourable conditions for 

the vector (mosquitoes in the Amazon) or reservoir host (rodents in the United States) 

Agricultural intensification has resulted in large, dense populations of domestic animals with 

which humans have regular contact, making them suitable intermediate hosts of zoonotic 

diseases. These animals can acquire pathogens through contact with the wild reservoir host, 

which humans may have little contact with, and then spread the pathogen to other animals in 

the same herd or market providing multiple opportunities for the pathogen to infect humans 

(Field et al. 2001; Chau et al. 2002; Guan et al. 2003). In this manner bird flu (H5N1) poses a 

threat to humans where wild birds may infect domestic flocks (Webster 1997). Additionally 

pandemic H1N1 2009 (a.k.a. swine flu) spill over to humans can in part be attributable to 

dense populations of domestic pigs (Gibbs et al. 2009). 

Hunting brings humans into direct contact with wild animals and can put wildlife populations 

under increased stress. Contact with animals during hunting, butchering and consumption 

provides opportunity for the transmission of pathogens and is the route of infection for many 

cases of Ebola (Leroy et al. 2009). Additionally, hunting and culling can increase stress and 

contact rates in the reservoir host thereby increasing the prevalence of disease and the chance 

of spillover (Carter et al. 2007). Most famously, it is through the hunting of primates in Africa 

that the HIV is thought to have emerged, resulting in a devastating pandemic (Myers et al. 

1992). 

Host disease dynamics are generally poorly understood (e.g. bat lyssaviruses and Ebola). 

However, in the case of both Hendra and Nipah, seasonality in disease prevalence in wild bat 

populations is thought to increase the risk of disease spillover (Plowright et al. 2008; 

Wacharapluesadee et al. 2010). Creating models of the disease dynamics in wild bat 

populations is key to predicting disease emergence in the future. However, models of diseases 

in bat populations are rare due to a lack of empirical data with which to parameterise models 

(Dimitrov et al. 2008; Plowright et al. 2011). 
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1.5.4.2 Current predictive models of disease emergence 

 

Models of disease dynamics can predict factors that lead to an increase in prevalence within 

host populations, which in turn is likely to increase the chance of spillover to man and 

livestock. These models require accurate estimates of transmission and susceptibility. The 

former is a measure of the rate at which infected individuals expose others to a pathogen and 

the latter is a measure of the probability that an individual will become infected when they 

come into contact with an infected host. Recent studies of disease models have revealed that 

equally as important as the average rates of transmission and susceptibility is the 

heterogeneity of these values within a population (Lloyd-Smith et al. 2005; Beldomenico et al. 

2009). This is incontrast the mass action models that have been generally used in models of 

disease. Mass action assumes a constant rate of transmission between individuals and an 

equal probability of contact between any two individuals in the popualtion (McCallum et al. 

2001). Variation in transmission and susceptibility is often seen between different sexes, age 

classes and reproductive stages, and can result from differences in behaviour, immunity and 

coinfection with other pathogens. This heterogeneity, which is well documented in wildlife 

populations (Perkins et al. 2008; Luong et al. 2010), leads some individuals to be 

disproportionally important for the spread of disease, so called ‘super-spreaders’. Models that 

do not account for this natural variability where it is present cannot accurately model disease 

(Lloyd-Smith et al. 2005). 

Models of pathogens in bat populations are crude at present. Even models of Hendra virus and 

lyssaviruses lack much of the necessary empirical data needed to make accurate predictions 

(Dimitrov et al. 2008, Plowright et al. 2011). Future studies should focus on increasing our 

understanding of the structure of populations so that transmission rates, and heterogeneity in 

transmission rates can be quantified. Additionally our understanding of bat immunology is 

extremely poor despite it clearly being an important factor for determining the susceptibility of 

an individual to infection, and therefore predicting the distribution of pathogens in bat 

populations. 

 

1.5.4.3 Gaps in our understanding: Contact rates 

 

To estimate transmission rates amongst bats we need to know which bats come into contact 

with one another and how prolonged these contact events are. This includes question such as; 

how many bats does an individual come into contact with? And are these contacts with 
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random individuals or a subset of the population? Studies to date have failed to provide this 

detailed information. 

Current research operates at two scales; at the national scale and at the scale of the roost. 

Roost scale studies amongst temperate bats focus on the movement of bats between a set of 

roosts (e.g. Entwhistle et al. 2000; Park et al. 1998). These studies are limited to known roosts, 

typically large maternity roosts in human dwelling places. For example Entwhistle et al. 2000 

studied 30 roosts for 15 years in buildings in Scotland. However, these roosts were over an 

area of 100,000 hectares, while in the present study we identified 63 roosts in an area of only 

415 hectares for the same species. By limiting studies to large, previously known roosts, many 

other roosts used by individuals within the population remain unobserved. One solution to this 

problem is to use radio-tracking to locate roosts (e.g. Johnson, 2012; Garroway, 2007). 

However, not all studies that use this method investigate the occupants of a roost, limiting 

their study to a description of the roost sites used by bats, their frequency of movement and 

proximity to concurrently tracked individuals (Johnson, 2012). Some studies go a step further 

and investigate the occupants of roosts located by radio-tracking (Garroway, 2007). These 

studies can give an indication of the contact rates between the radio-tracked individuals and 

others in the population. However, these contact networks are centred on the small number of 

individuals that are being tracked and may not be representative of the population as a whole. 

As a research tool on which to base estimates of contact rates, radio-tracking studies are 

extremely limited. This is because the number of bats tracked is typically small and radio 

transmitters on temperate bats rarely last more than 2 weeks giving a short observation 

period. 

Studies that are roost-centric provide data on the number of individuals that roost together at 

any one time. These data tell us about contact rates within the roost. However, if only a small 

number of roosts are studied then estimates of contact and transmission rates at the 

population level are likely to be unreliable. To get better results roosts need to be monitored 

at a higher spatial resolution than has previously been achieved, observing a larger number of 

roosts used by individuals within a population. This approach will provide better estimates of 

contact rates between individuals within the population and will identify variability in contact 

rates within and between different classes of individuals (i.e. males, adults etc). 

At the national and continental scale studies of population genetics have been used to infer 

the connectivity of populations. Such studies of temperate bats are numerous and have 

typically shown high levels of gene flow at the national scale (e.g. Atterby et al. 2010; Bryja et 

al. 2009; Kerth et al. 2002). When results from mitochorial DNA (passed from mother to 
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offspring) are compared to results from nuclear DNA (passed from both parents to offspring) 

studies have found that for the majority of species, females are more philopatric than males 

(Castella et al. 2001; Kerth & Petit 2005; Pereira et al. 2009). Continental scale genetic studies 

have been used to predictions about the spread of disease through bat populations. Smith et 

al. 2011 studied the genetic structure of populations of Eptiscus serotinus and Myotis 

daubentonii in the UK. The authors conclude that the low genetic diversity among M. 

daubentonii suggests greater mixing in the population which would result in the increased 

likelihood of the maintenance and spread of lyssaviruses arriving from the continent. 

Conversely the greater genetic isolation by distance observed in E. serotinus was taken to 

suggest that infections would be more likely to die out than for M. daubentonii. These 

assertions assume that mating patterns, which are the direct cause of the observed genetic 

variation, correlate to contact rates. That is to say that species such as M. daubentonii which 

exhibit high degrees of outbreeding are assumed to be able to more rapidly spread disease 

through the population. This assumption is untested. M. daubentonii are known to undertake 

autumn mating when contact rates may well be high, however this only occurs for a short 

period of the year, and it is unclear how many trips an individual makes to swarming sites in a 

given year. Very little is known about the summer movements of M. daubentonii between 

roosts and populations. Without empirical measurements of this movement it is not possible 

to reliably predict contact rates and transmission, and therefore the likely spread of disease, 

from large scale genetic analyses such as these. 

Contact rates within bat populations cannot be accurately estimated using current methods 

such as studies focused on a small number of large roosts, radio-tracking, or studies of 

population genetics. Future work should study large numbers of roosts at high spatial and 

temporal resolution. These studies will provide empirical data suitable for estimating contact 

rates and informing epidemiological models. 

Future studies of contact rates amongst bats will benefit from advances made in the field of 

network analysis described earlier. These analyses quantify contact networks and can be used 

to assess the heterogeneity of transmission rates (Hamede et al. 2009; Perkins et al. 2009). 

These analyses may also help to identify super-spreaders who would be preferential targets of 

disease control methods such as vaccination or culling. Temporal variation should also be 

considered. In other species, marked seasonal variation has been noted in contact rates, as in 

networks of Tasmanian devils (Sarcophilus harrisii) (Hamede et al. 2009). Given the complex 

life-history of bats in temperate regions, similar variation in social structure would be 

expected. 
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1.5.4.4 Gaps in our understanding: Susceptibility 

 

Susceptibility is a measure of the probability that an individual will become infected when they 

come into contact with an infective host. This is dictated by the individual’s immune system. 

Many aspects of hosts’ immune system are important for estimating host susceptibility 

including the half-life of antibodies and the effectiveness and duration of maternal immunity. 

The immunology of temperate bats is poorly understood. The only detailed research has 

explored the immune response of bats after exposure to lyssaviruses (O'Shea et al. 2003; 

Turmelle et al. 2010). 

This thesis does not explore the immune system of bats, instead focussing on the contact rate 

element of transmission, however I make recommendations in the discussion chapter for areas 

of future research in immunology.  

 

1.5.4.5 Gaps in our understanding: Disease surveillance 

 

Pathogens that spill over to human and domestic animal populations from wildlife are often 

unknown prior to emergence (e.g. Ebola, SARS, HIV). Identifying pathogens of potential risk to 

human health prior to their emergence is clearly important and this has spurred a range of 

disease surveillance projects amongst wild bats and other animal populations (Donaldson et al. 

2010; Phan et al. 2011; Tong et al. 2012). Ideally these surveillance studies should also attempt 

to quantify the disease dynamics within the populations and identify possible pathways of 

disease emergence to humans or other animals that could act as intermediate hosts. In 

practise such work is often funded only after a particular pathogen has emerged and caused 

morbidity or mortality in humans or domestic animals. 

Disease surveillance amongst British bats is currently limited. Most work has focussed on 

Lyssaviruses (Fooks et al. 2004; Brookes et al. 2005; Fooks et al. 2006; Harris et al. 2006; Smith 

et al. 2006; Banyard et al. 2009; Smith et al. 2011), though other work has identified Babesia 

sp., Bartonella sp., Borrelia burgdorferi sensu lato and trypanosomes in blood samples 

(Gardner & Molyneux 1987; Concannon et al. 2005; Reeves et al. 2007; Evans et al. 2009; 

Hamilton et al. 2012). Focusing surveillance on diseases of greatest concern, notably viruses 

(see 1.5.2), is needed in the UK to identify diseases of human health concern in wild bat 

populations.  
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1.6 The study system 

 

The primary study system used in this thesis are populations of three insectivorous bats 

species (M. daubentonii, M. nattereri and Plecotus auritus (Brown long-eared bat)) in Wytham 

Woods, Oxfordshire. Some data were also used from a few other sites in the South-west of 

England. 

 

1.6.1 The study site 

 

Wytham Woods (Latitude, 51°77’27”; Longitude, -1°33’41”), is approximately 415 hectares of 

semi-natural ancient deciduous woodland and 18th-20th century plantations. The woods have 

been in the ownership of the University of Oxford since 1942, and since then have been used 

for a wide range of research into plants, animals and climate. Perhaps the most well know 

research undertaken at Wytham Woods is the Edward Grey Institute’s (EGI) work on Parus 

major (Great tits) and Cyanistes caeruleus (Blue tits) which has now been running for over 60 

years. An integral part of this research is over 1150 georeferenced woodcrete bird boxes 

distributed throughout the wood. These numbered boxes are used as roost sites by bats from 

early May to mid-October after the birds have stopped using them. This provides a rare level of 

access to the bat populations present in the wood as boxes are easily accessible and several 

colonies can be located in a single day (median = 3). The presence of so many artificial roosts 

may increase the density of bats if roosts would normally be limiting. It is also unclear what 

proportion of the population present use the boxes and whether some bats avoid them. While 

these factors may have some effect on the bat population in Wytham Woods compared to 

sites with only ‘natural’ roosts, the benefits the site provides in terms of access and 

accompanying long term datasets make Wytham Woods a very valuable resource for the study 

of bats. 

Wytham Woods is part of the Environmental Change Network (ECN), a collection of sites 

where long term data is collected to analyse changes in the environment. ECN climate data 

used in this thesis include temperature, humidity, rainfall and wind speed. 

Remarkably, for this most studied of woods, prior to work published from this thesis, bats in 

Wytham Woods had not been the subject of any published research. 
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1.6.2 The study species 

 

M. daubentonii (Daubenton’s bat) is a 7-15g insectivorous bat that forages over water where it 

catches the majority of its prey (Jones & Rayner 1988; Akasaka et al. 2009; Langton et al. 2010; 

Lucan & Radil 2010). M. daubentonii roost in trees and man-made structures close to water 

(Boonman 2000; Altringham 2003). In the summer females form nursery colonies in which 

young are raised. Males are sometimes found in these roosts, though more often they are 

found in male only bachelor colonies (Altringham 1996). This species attends swarming sites in 

the autumn where it is thought that mating occurs, though mating also occurs late in the 

season at summer roosting sites (Senior et al. 2005). 

M. nattereri (Natterer’s bat) is a 6-12g insectivorous bat that catches insects in the air and 

gleans them from the surface of vegetation. Adapted for this method of hunting, M. nattereri 

has broader wings and a slower flight speed than M. daubentonii (Altringham 2003). This 

species is associated with deciduous woodland (Parsons & Jones 2003; Smith & Racey 2008; 

Boughey et al. 2011) for both foraging and roosting habitat. M. nattereri sexes roost apart in 

the summer when females form nursery colonies, however, M. nattereri males do not typically 

form large bachelor colonies. In the Autumn M. nattereri travel to swarming sites where they 

may account for up to 80% of individuals (Altringham 2003; Rivers et al. 2006). It is thought 

that the majority of mating amongst M. nattereri occurs at these sites (Rivers et al. 2005). 

P. auritus (Brown long-eared bat)  is a 6-12g insectivorous bat which specialises in using 

passive listening to locate and catch insects close to and on vegetation. This species has broad 

wings and can hover as it gleans prey from vegetation. Moths are known to be an important 

component of the diet of this species which forages and roosts in deciduous woodland 

(Entwistle et al. 1996, 1997; Boughey et al. 2011). During the summer it is suggested that 

males and females roost together in contrast to the other two main study species (Altringham 

2003). P. auritus are also found at swarming sites though typically in low numbers, beyond this 

little is known about their mating habits. A comparison of the three species is shown in Table 

1.2. 

A small number of samples were collected from bats at sites other than Wytham Woods and 

from species other than those described above. These sites include Savernake forest in 

Wiltshire and a number of swarming sites in Devon and Wiltshire. Species sampled at these 

sites other than those previously described include Rhinolophus hipposideros (Lesser 

Horseshoe), R. ferrumequinum (Greater Horseshoe), Pipistrellus pipistrellus (Common 

Pipistrelle) and Barbastella barbastellus (Barbastelle).  
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Species Weight (g) Wing area (m2)

Aspect ratio 

(Wingspan2/wing area) Foraging habitat Roosting habitat Prey Foraging strategy

M. daubentonii 7-15g 0.0098m2 6.3
Over calm bodies 

of water

Trees or man-made 

structures close to 

water

Mainly fl ies 

hatched from 

aquatic larvae

Gleans insects from the 

water's surface and catches 

insects flying low over water

M. nattereri 6-12g 0.0113m2 6.4
Deciduous 

woodland

Trees or man-made 

structures in or close 

to deciduous 

woodland

Generalist, 

including large 

fl ies and spiders

Gleans insects from the 

surface of vegetation and 

catches insects in mid fl ight

P. auritus 6-12g 0.0124m2 5.7
Open deciduous 

woodland

Trees or man-made 

structures in or close 

to deciduous 

woodland

Moths and fl ies

Gleans insects from the 

surface of vegetation using 

passive listening and sight

 

Table 1.2 – Comparison of the morphology and ecology of the three species studied in detail at Wytham Woods. Data are taken from Altringham (2003) and Norberg 

and Rayner (1987) 
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1.6.3 Ethical approval and licensing 

 

All procedures undertaken in the course of this thesis were approved by the Biosciences Ethics 

Committee, University of Exeter, and carried out under an appropriate Natural England licence 

(20113601 and previous licences). 
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1.7 Thesis aims 

 

Having identified conservation threats to bats and information gaps for zoonotic disease 

prediction amongst bats in the UK, this thesis aims to address the following specific aims: 

 

1. Investigate the social structure of M. daubentonii and M. nattereri populations by 

monitoring colony composition and using social networks analysis. This will give a 

better understanding of contact rates between individuals in a population which can 

be used to make predictions about the spread of disease. 

This analysis will also explore the area needed to support the roosting requirements of 

a social group which may have implications for the conservation of these bat species. 

 

 

2 Assess whether the social structure of bat populations in Wytham woods is a result of 

roost limitation, or primarily driven by social behaviour. This will have implications for 

the extrapolation of the results from this thesis to other locations. 

This work will also provide information of interest for conservation, such as habitat 

preference, and for this reason P. auritus will also be included in this analysis. 

 

 

3 Undertake surveillance of pathogens of potential human health concern in wild bat 

populations in Britain and place novel pathogens in a phylogeny of their genus. 

 

 

4 Analyse the distribution of ectoparasites and pathogens to assess whether host 

ecology and social structure drive parasite and pathogen burden in the study system. 

Additionally, assess whether climatic variables, ectoparasites and pathogens have a 

measureable impact on the body condition of individuals. 

 

 

Collectively these data aim to characterise the population of bats in Wytham Woods for the 

first time, provide detailed information on bat habitat use and social structure at a high spatial 

resolution, identify novel pathogens, link ectoparasite and pathogen prevalence to body 
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condition and establish a basis of understanding the raises new tractable questions for future 

research.  



62 
 

1.8 References 

 

Akasaka T., Nakano D. & Nakamura F. (2009). Influence of prey variables, food supply, and 

river restoration on the foraging activity of Daubenton's bat (Myotis daubentonii) in 

the Shibetsu River, a large lowland river in Japan. Biological Conservation, 142, 1302-

1310. 

Altringham J.D. (1996). Bats Biology and Behaviour. Oxford University Press, Oxford. 

Altringham J.D. (2003). British Bats. HarperCollins, London. 

Amengual B., Bourhy H., Lopez-Roig M. & Serra-Cobo J. (2007). Temporal dynamics of 

European bat Lyssavirus type 1 and survival of Myotis myotis bats in natural colonies. 

PLoS ONE, 2, e566. 

Anderson R.M., Jackson H.C., May R.M. & Smith A.M. (1981). Population-dynamics of fox 

rabies in Europe. Nature, 289, 765-771. 

Atterby H., Aegerter J.N., Smith G.C., Conyers C.M., Allnutt T.R., Ruedi M. & MacNicoll A.D. 

(2010). Population genetic structure of the Daubenton's bat (Myotis daubentonii) in 

western Europe and the associated occurrence of rabies. European Journal of Wildlife 

Research, 56, 67-81. 

Aureli F., Schaffner C.M., Boesch C., Bearder S.K., Call J., Chapman C.A., Connor R., Di Fiore A., 

Dunbar R.I.M., Henzi S.P., Holekamp K., Korstjens A.H., Layton R., Lee P., Lehmann J., 

Manson J.H., Ramos-Fernandez G., Strier K.B. & Van Schaik C.P. (2008). Fission-fusion 

dynamics new research frameworks. Current Anthropology, 49, 627-654. 

Baker A.S. (2006). Identifying ticks and mites of British bats. In: Bat Care News. Bat 

Conservation Trust. 

Banyard A.C., Johnson N., Voller K., Hicks D., Nunez A., Hartley M. & Fooks A.R. (2009). 

Repeated detection of European bat lyssavirus type 2 in dead bats found at a single 

roost site in the UK. Archives of Virology, 154, 1847-1850. 

Beldomenico P.M., Telfer S., Gebert S., Lukomski L., Bennett M. & Begon M. (2009). The vicious 

circle and infection intensity: The case of Trypanosoma microti in field vole 

populations. Epidemics, 1, 162-167. 

Bennett B.S. & Thies M.L. (2007). Organochlorine pesticide residues in guano of Brazilian free-

tailed bats, Tadarida brasiliensis Saint-Hilaire, from east Texas. Bulletin of 

Environmental Contamination and Toxicology, 78, 191-194. 

Beyer H.L., Hampson K., Lembo T., Cleaveland S., Kaare M. & Haydon D.T. (2012). The 

implications of metapopulation dynamics on the design of vaccination campaigns. 

Vaccine, 30, 1014-1022. 



63 
 

Billeter S.A., Hayman D.T.S., Peel A.J., Baker K., Wood J.L.N., Cunningham A., Suu-Ire R., 

Dittmar K. & Kosoy M.Y. (2012). Bartonella species in bat flies (Diptera: Nycteribiidae) 

from western Africa. Parasitology, 139, 324-329. 

Boonman M. (2000). Roost selection by noctules (Nyctalus noctula) and Daubenton's bats 

(Myotis daubentonii). Journal of Zoology, 251, 385-389. 

Boughey K.L., Lake I.R., Haysom K.A. & Dolman P.M. (2011). Effects of landscape-scale 

broadleaved woodland configuration and extent on roost location for six bat species 

across the UK. Biological Conservation, 144, 2300-2310. 

Bourhy H., Dacheux L., Strady C. & Mailles A. (2005). Rabies in Europe in 2005. 

Eurosurveillance, 10, 213-216. 

Boyles J.G., Cryan P.M., McCracken G.F. & Kunz T.H. (2011). Economic importance of bats in 

agriculture. Science, 332, 41-42. 

Brashares J.S., Arcese P., Sam M.K., Coppolillo P.B., Sinclair A.R.E. & Balmford A. (2004). 

Bushmeat hunting, wildlife declines, and fish supply in West Africa. Science, 306, 1180-

1183. 

Breed A.C., Field H.E., Epstein J.H. & Daszak P. (2006). Emerging henipaviruses and flying foxes 

- Conservation and management perspectives. Biological Conservation, 131, 211-220. 

Bryja J., Kanuch P., Fornuskova A., Bartonicka T. & Rehak Z. (2009). Low population genetic 

structuring of two cryptic bat species suggests their migratory behaviour in continental 

Europe. Biological Journal of the Linnean Society, 96, 103-114. 

Brook B.W., Sodhi N.S. & Ng P.K.L. (2003). Catastrophic extinctions follow deforestation in 

Singapore. Nature, 424, 420-423. 

Brookes S.M., Aegerter J.N., Smith G.C., Healy D.M., Jolliffe T.A., Swift S.M., Mackie I.J., 

Pritchard S., Racey P.A., Moore N.P. & Fooks A.R. (2005). European bat lyssavirus in 

Scottish bats. Emerging Infectious Diseases, 11, 572-578. 

Brosset A., CharlesDominique P., Cockle A., Cosson J.F. & Masson D. (1996). Bat communities 

and deforestation in French Guiana. Canadian Journal of Zoology-Revue Canadienne 

De Zoologie, 74, 1974-1982. 

Carrington C.V.F., Foster J.E., Zhu H.C., Zhang J.X., Smith G.J.D., Thompson N., Auguste A.J., 

Ramkissoon V., Adesiyun A.A. & Guan Y. (2008). Detection and phylogenetic analysis of 

group 1 coronaviruses in South American bats. Emerging Infectious Diseases, 14, 1890-

1893. 

Carter S.P., Delahay R.J., Smith G.C., Macdonald D.W., Riordan P., Etherington T.R., Pimley E.R., 

Walker N.J. & Cheeseman C.L. (2007). Culling-induced social perturbation in Eurasian 

badgers Meles meles and the management of TB in cattle: an analysis of a critical 



64 
 

problem in applied ecology. Proceedings of the Royal Society B – Biological Sciences, 

274, 2769-2777. 

Castella V. Ruedi M., Excoffier L., Ibáñez C., Arlettaz R., Hausser J. (2001). Is the Gibraltar Strait 

a barrier to gene flow for the bat Myotis myotis (Chiroptera: Vespertilionidae)?  

Molecular Ecology, 9 (11), 1761-1772. 

Cheke A.S. & Dahl J.F. (1981). The status of bats on Western Indian-Ocean islands, with special 

reference to Pteropus. Mammalia, 45, 205-238. 

Chua K.B., Bellini W.J., Rota P.A., Harcourt B.H., Tamin A., Lam S.K., Ksiazek T.G., Rollin P.E., 

Zaki S.R., Shieh W.J., Goldsmith C.S., Gubler D.J., Roehrig J.T., Eaton B., Gould A.R., 

Olson J., Field H., Daniels P., Ling A.E., Peters C.J., Anderson L.J. & Mahy B.W.J. (2000). 

Nipah virus: A recently emergent deadly paramyxovirus. Science, 288, 1432-1435. 

Chua K.B., Chua B.H. & Wang C.W. (2002). Anthropogenic deforestation, El Nino and the 

emergence of Nipah virus in Malaysia. Malaysian Journal of Pathology, 24, 15-21. 

Clark D.R. (1979). Lead concentrations - bats vs terrestrial small mammals collected near a 

major highway. Environmental Science & Technology, 13, 338-341. 

Clark D.R. (1986). Toxicity of methyl parathion to bats - mortality and coordination loss. 

Environmental Toxicology and Chemistry, 5, 191-195. 

Clark D.R. (1988). How sensitive are bats to insecticides. Wildlife Society Bulletin, 16, 399-403. 

Clark D.R., Laval R.K. & Swineford D.M. (1978). Dieldrin-induced mortality in an endangered 

species, Gray Bat (Myotis grisescens). Science, 199, 1357-1359. 

Clark D.R. & Rattner B.A. (1987). Orthene toxicity to Little Brown Bats (Myotis lucifugus) - 

Acetylcholinesterase inhibition, coordination loss, and mortality. Environmental 

Toxicology and Chemistry, 6, 705-708. 

Clawson R.L. & Clark D.R. (1989). Pesticide contamination of endangered Gray Bats and their 

food base in Boone County, Missouri, 1982. Bulletin of Environmental Contamination 

and Toxicology, 42, 431-437. 

Cleaveland S., Laurenson M.K. & Taylor L.H. (2001). Diseases of humans and their domestic 

mammals: pathogen characteristics, host range and the risk of emergence. 

Philosophical Transactions of the Royal Society of London Series B – Biological Sciences 

T Roy Soc B, 356, 991-999. 

Cleveland C.J., Betke M., Federico P., Frank J.D., Hallam T.G., Horn J., Lopez J.D., McCracken 

G.F., Medellin R.A., Moreno-Valdez A., Sansone C.G., Westbrook J.K. & Kunz T.H. 

(2006). Economic value of the pest control service provided by Brazilian free-tailed 

bats in south-central Texas. Frontiers in Ecology and the Environment, 4, 238-243. 

Craig P., Trail P. & Morrell T.E. (1994). The decline of fruit bats in American-Samoa due to 

hurricanes and overhunting. Biological Conservation, 69, 261-266. 



65 
 

Daszak P., Cunningham A.A. & Hyatt A.D. (2001). Anthropogenic environmental change and 

the emergence of infectious diseases in wildlife. In: 3rd Annual Conference on New and 

Re-Emerging Infectious Diseases - In Honor of Norman Dion Levine Urbana, Illinois, pp. 

103-116. 

Davis R.B., Herreid C.F. & Short H.L. (1962). Mexican free-tailed bats in texas Ecological 

Monographs, 32, 311-346. 

de Lacerda A.E.B., Kanashiro M. & Sebbenn A.M. (2008). Long-pollen movement and deviation 

of random mating in a low-density continuous population of a tropical tree Hymenaea 

courbaril in the Brazilian Amazon. Biotropica, 40, 462-470. 

de Merode E., Homewood K. & Cowlishaw G. (2004). The value of bushmeat and other wild 

foods to rural households living in extreme poverty in Democratic Republic of Congo. 

Biological Conservation, 118, 573-581. 

Desmarais D.J., Mitchell J.M., Meinschein W.G. & Hayes J.M. (1980). The carbon isotope 

biogeochemistry of the individual hydrocarbons in bat guano and the ecology of the 

insectivorous bats in the region of Carlsbad, New-Mexico. Geochimica et 

Cosmochimica Acta, 44, 2075-2086. 

Dick C.W. & Patterson B.D. (2006). Bat flies: Obligate ectoparasites of bats In: Micromammals 

and Macroparasites (eds. Morand S, Krasnov BR & Poulin R). Springer Japan, pp. 179-

194. 

Dimitrov D.T., Hallam T.G., Rupprecht C.E. & McCracken G.F. (2008). Adaptive modeling of viral 

diseases in bats with a focus on rabies. Journal of Theoretical Biology, 255, 69-80. 

Dominguez S.R., O'Shea T.J., Oko L.M. & Holmes K.V. (2007). Detection of group 1 

coronaviruses in bats in North America. Emerging Infectious Diseases, 13, 1295-1300. 

Donaldson E.F., Haskew A.N., Gates J.E., Huynh J., Moore C.J. & Frieman M.B. (2010). 

Metagenomic analysis of the viromes of three North American bat species: viral 

diversity among different bat species that share a common habitat. Journal of Virology, 

84, 13004-13018. 

Drexler J.F., Corman V.M., Wegner T., Tateno A.F., Zerbinati R.M., Gloza-Rausch F., Seebens A., 

Muller M.A. & Drosten C. (2011). Amplification of emerging viruses in a bat colony. 

Emerging Infectious Diseases, 17, 449-456. 

Drexler J.F., Gloza-Rausch F., Glende J., Corman V.M., Muth D., Goettsche M., Seebens A., 

Niedrig M., Pfefferle S., Yordanov S., Zhelyazkov L., Hermanns U., Vallo P., Lukashev A., 

Muller M.A., Deng H.K., Herrler G. & Drosten C. (2010). Genomic characterization of 

Severe Acute Respiratory Syndrome-Related coronavirus in European bats and 

classification of coronaviruses based on partial RNA-Dependent RNA polymerase gene 

sequences. Journal of Virology, 84, 11336-11349. 



66 
 

Drosten C., Gunther S., Preiser W., van der Werf S., Brodt H.R., Becker S., Rabenau H., Panning 

M., Kolesnikova L., Fouchier R.A.M., Berger A., Burguiere A.M., Cinatl J., Eickmann M., 

Escriou N., Grywna K., Kramme S., Manuguerra J.C., Muller S., Rickerts V., Sturmer M., 

Vieth S., Klenk H.D., Osterhaus A., Schmitz H. & Doerr H.W. (2003). Identification of a 

novel coronavirus in patients with severe acute respiratory syndrome. New England 

Journal of Medicine, 348, 1967-1976. 

Eidels R.R., Whitaker J.O. & Sparks D.W. (2007). Insecticide residues in bats and guano from 

Indiana. Proceedings of the Indiana Academy of Science, 116, 50-57. 

Encarnação J. (2006). Estimation of food intake and ingested energy in Daubenton’s bats 

(Myotis daubentonii) during pregnancy and spermatogenesis. European Journal of 

Wildlife Research, 52, 221-227. 

Entwistle A.C., Racey P.A. & Speakman J.R. (1996). Habitat exploitation by a gleaning bat, 

Plecotus auritus. Philosophical Transactions of the Royal Society of London Series B – 

Biological Sciences, 351, 921-931. 

Entwistle A.C., Racey P.A. & Speakman J.R. (1997). Roost selection by the brown long-eared bat 

Plecotus auritus. Journal of Applied Ecology, 34, 399-408. 

Entwistle A.C., Racey P.A. & Speakman J.R. (2000). Social and population structure of a 

gleaning bat, Plecotus auritus. Journal of Zoology, 252(1), 11-17. 

Evans A.S. (1982). Viral Infections of Humans. Plenum Publishing Corporation, New York. 

Evans G.O. (1968). The external morphology of the post-embryonic developmental stages of 

Spinturnix myoti. Acarologia, 4, 589-608. 

Field H., Young P., Yob J.M., Mills J., Hall L. & Mackenzie J. (2001). The natural history of 

Hendra and Nipah viruses. Microbes and Infection, 3, 307-314. 

Fisher B., Turner R.K. & Morling P. (2009). Defining and classifying ecosystem services for 

decision making. Ecological Economics, 68, 643-653. 

Flack J.C., Girvan M., de Waal F.B.M. & Krakauer D.C. (2006). Policing stabilizes construction of 

social niches in primates. Nature, 439, 426-429. 

Foley J.A., DeFries R., Asner G.P., Barford C., Bonan G., Carpenter S.R., Chapin F.S., Coe M.T., 

Daily G.C., Gibbs H.K., Helkowski J.H., Holloway T., Howard E.A., Kucharik C.J., 

Monfreda C., Patz J.A., Prentice I.C., Ramankutty N. & Snyder P.K. (2005). Global 

consequences of land use. Science, 309, 570-574. 

Fooks A.R. (2005). Rabies remains a 'Neglected disease'. Eurosurveillance, 10, 211-212. 

Fooks A.R., Brookes S.M., Healy D., Smith G.C., Aegerter J., Harris S.L., Jones G., Brash M., 

Racey P., Swift S., Mackie I., Pritchard S. & Landeg F. (2004). Detection of antibodies to 

EBLV-2 in Daubenton's bats in the UK. Veterinary Record, 154, 245-246. 



67 
 

Fooks A.R., Brookes S.M., Johnson N., McElhinney L.M. & Hutson A.M. (2003). European bat 

Lyssaviruses: An emerging zoonosis. Epidemiology and Infection, 131, 1029-1039. 

Fooks A.R., Marston D., Parsons G., Earl D., Dicker A. & Brookes S.M. (2006). Isolation of EBLV-2 

in a Daubenton's bat (Myotis daubentonii) found in Oxfordshire. Veterinary Record, 

159, 534-535. 

Fooks A.R., McElhinney L.M., Pounder D.J., Finnegan C.J., Mansfield K., Johnson N., Brookes 

S.M., Parsons G., White K., McIntyre P.G. & Nathwani D. (2003). Case report: Isolation 

of a European bat lyssavirus type 2a from a fatal human case of rabies encephalitis. 

Journal of Medical Virology, 71, 281-289. 

Fortuna M.A., Popa-Lisseanu G., Ibanez C. & Bascompte J. (2009). The roosting spatial network 

of a bird-predator bat. Ecology, 90, 934-944. 

Freuling C.M., Beer M., Conraths F.J., Finke S., Hoffmann B., Keller B., Kliemt J., Mettenleiter 

T.C., Mühlbach E., Teifke J.P., Wohlsein P. & Müller T. (2011). Novel lyssavirus in 

Natterer's bat, Germany. Emerging infectious diseases, 17, 1519-1522 

Fujita M.S. & Tuttle M.D. (1991). Flying foxes (Chiroptera, Pteropodidae) - Threatened animals 

of key ecological and economic importance. Conservation Biology, 5, 455-463. 

Gardner R.A. & Molyneux D.H. (1988). Polychromophilus murinus - A malarial parasite of bats - 

Life-history and ultrastructural studies. Parasitology, 96, 591-605. 

Garroway C.J. & Broders H.G. (2007). Nonrandom associated patterns at northern long-eared 

bat maternity roosts. Canadian Journal of Zoology, 85, 956-964. 

Geluso K.N., Altenbach J.S. & Wilson D.E. (1976). Bat mortality - Pesticide poisoning and 

migratory stress. Science, 194, 184-186. 

Gibbs A.J., Armstrong J.S. & Downie J.C. (2009). From where did the 2009 'swine-origin' 

influenza A virus (H1N1) emerge? Virology Journal, 6. 

Gloza-Rausch F., Ipsen A., Seebens A., Gottsche M., Panning M., Drexler J.F., Petersen N., 

Annan A., Grywna K., Muller M., Pfefferle S. & Drosten C. (2008). Detection and 

prevalence patterns of group I coronaviruses in bats, northern Germany. Emerging 

Infectious Diseases, 14, 626-631. 

Goh K.J., Tan C.T., Chew N.K., Tan P.S.K., Kamarulzaman A., Sarji S.A., Wong K.T., Abdullah 

B.J.J., Chua K.B. & Lam S.K. (2000). Clinical features of nipah virus encephalitis among 

pig farmers in Malaysia. New England Journal of Medicine, 342, 1229-1235. 

Graham R.L. & Baric R.S. (2010). Recombination, reservoirs, and the modular spike: 

Mechanisms of coronavirus cross-species transmission. Journal of Virology, 84, 3134-

3146. 

Guan Y., Zheng B.J., He Y.Q., Liu X.L., Zhuang Z.X., Cheung C.L., Luo S.W., Li P.H., Zhang L.J., 

Guan Y.J., Butt K.M., Wong K.L., Chan K.W., Lim W., Shortridge K.F., Yuen K.Y., Peiris 



68 
 

J.S.M. & Poon L.L.M. (2003). Isolation and characterization of viruses related to the 

SARS coronavirus from animals in Southern China. Science, 302, 276-278. 

Guilliatt R. (2011). The battle brewing over bats, the pariah of Australian wildlife. In: The 

Weekend Australian New South Wales, Australia. 

Guimaraes P.R., de Menezes M.A., Baird R.W., Lusseau D., Guimaraes P. & dos Reis S.F. (2007). 

Vulnerability of a killer whale social network to disease outbreaks. Physical Review E, 

76. 

Gurley E.S., Montgomery J.M., Hossain M.J., Bell M., Azad A.K., Islam M.R., Molla M.A.R., 

Carroll D.S., Ksiazek T.G., Rota P.A., Lowe L., Comer J.A., Rollin P., Czub M., Grolla A., 

Feldmann H., Luby S.P., Woodward J.L. & Breiman R.F. (2007). Person-to-person 

transmission of Nipah virus in a Bangladeshi community. Emerging Infectious Diseases, 

13, 1031-1037. 

Hamede R.K., Bashford J., McCallum H. & Jones M. (2009). Contact networks in a wild 

Tasmanian devil (Sarcophilus harrisii) population: using social network analysis to 

reveal seasonal variability in social behaviour and its implications for transmission of 

devil facial tumour disease. Ecology Letters, 12, 1147-1157. 

Harcourt B.H., Lowe L., Tamin A., Liu X., Bankamp B., Bowden N., Rollin P.E., Comer J.A., 

Ksiazek T.G., Hossain M.J., Gurley E.S., Breiman R.F., Bellini W.J. & Rota P.A. (2005). 

Genetic characterization of Nipah virus, Bangladesh, 2004. Emerging Infectious 

Diseases, 11, 1594-1597. 

Harris S.L., Brookes S.M., Jones G., Hutson A.M., Racey P.A., Aegerter J., Smith G.C., 

McElhinney L.M. & Fooks A.R. (2006). European bat lyssaviruses: Distribution, 

prevalence and implications for conservation. Biological Conservation, 131, 193-210. 

Haydon D.T., Randall D.A., Matthews L., Knobel D.L., Tallents L.A., Gravenor M.B., Williams 

S.D., Pollinger J.P., Cleaveland S., Woolhouse M.E.J., Sillero-Zubiri C., Marino J., 

Macdonald D.W. & Laurenson M.K. (2006). Low-coverage vaccination strategies for the 

conservation of endangered species. Nature, 443, 692-695. 

Homaira N., Rahman M., Hossain M.J., Nahar N., Khan R., Rahman M., Podder G., Nahar K., 

Khan D., Gurley E.S., Rollin P.E., Comer J.A., Ksiazek T.G. & Luby S.P. (2010). Cluster of 

Nipah virus infection, Kushtia district, Bangladesh, 2007. Plos One, 5. 

Hon C.C., Lam T.Y., Shi Z.L., Drummond A.J., Yip C.W., Zeng F., Lam P.Y. & Leung F.C.C. (2008). 

Evidence of the recombinant origin of a bat Severe Acute Respiratory Syndrome 

(SARS)-like coronavirus and its implications on the direct ancestor of SARS coronavirus. 

Journal of Virology, 82, 1819-1826. 



69 
 

Hsu V.P., Hossain M.J., Parashar U.D., Ali M.M., Ksiazek T.G., Kuzmin I., Niezgoda M., 

Rupprecht C., Bresee J. & Breiman R.F. (2004). Nipah virus encephalitis reemergence, 

Bangladesh. Emerging Infectious Diseases, 10, 2082-7. 

Hurka H. (1964). Distribution, bionomy and ecology of the European bat flies with special 

regard to the Czechoslovak fauna (dip., Nycteribiidae). Acta Universitatis Carolinae - 

Biologica, 1964, 167-234. 

Hutson A. M. (1984). Keds, flat-flies and bat-flie: Diptera, Hippoboscidae and Nycteribiidae. 

Royal Entomological Society, UK. 

Hutson A.M., Mickleburgh S.P. & Racey P.A. (1993). Global action plan for microchiropteran 

bats. In. IUCN Gland, Switzerland. 

Jefferies D.J. (1972). Organochlorine insecticide residues in British bats and their significance. 

Journal of Zoology, 166, 245-263. 

Jepsen G.L. (1966). Early Eocene bat from Wyoming. Science, 154, 1333-1339. 

Johara M.Y., Field H., Rashdi A.M., Morrissy C., van der Heide B., Rota P., bin Adzhar A., White 

J., Daniels P., Jamaluddin A. & Ksiazek T. (2001). Nipah virus infection in bats (order 

Chiroptera) in peninsular Malaysia. Emerging Infectious Diseases, 7, 439-441. 

Johnson J.B., Ford M.W. & Edwards J.W. (2012). Roost networks of northern myotis (Myotis 

septentrionalis) in a managed landscape. Forest Ecology and Management, 266, 223-

231. 

Jones G. & Rayner J.M.V. (1988). Flight performance, foraging tactics and echolocation in free-

living daubentons bats Myotis daubentonii (Chiroptera, Vespertilionidae). Journal of 

Zoology, 215, 113-132. 

Jones K.E., Patel N.G., Levy M.A., Storeygard A., Balk D., Gittleman J.L. & Daszak P. (2008). 

Global trends in emerging infectious diseases. Nature, 451, 990-U4. 

Kamins A.O., Restif O., Ntiamoa-Baidu Y., Suu-Ire R., Hayman D.T.S., Cunningham A.A., Wood 

J.L.N. & Rowcliffe J.M. (2011). Uncovering the fruit bat bushmeat commodity chain and 

the true extent of fruit bat hunting in Ghana, West Africa. Biological Conservation, 144, 

3000-3008. 

Kerth G., Almasi B., Ribi N., Thiel D. & Lupold S. (2003). Social interactions among wild female 

Bechstein's bats (Myotis bechsteinii) living in a maternity colony. Acta Ethologica, 5, 

107-114. 

Kerth G. & Konig B. (1999). Fission, fusion and nonrandom associations in female Bechstein's 

bats (Myotis bechsteinii). Behaviour, 136, 1187-1202. 

Kerth G., Perony N. & Schweitzer F. (2011). Bats are able to maintain long-term social 

relationships despite the high fission-fusion dynamics of their groups. Proceedings of 

the Royal Society B – Biological Sciences. 



70 
 

Kerth G., Petit E. (2005). Colonization and dispersal in a social species, the Bechstein’s bat 

(Myotis bechsteinii). Molecular Ecology, 14 (13), 3943-3950. 

Kerth G., Safi K., König B. (2002). Mean colony relatedness is a poor predictor of colony 

structure and female philopatry in the communally breeding Bechstein’s bat (Myotis 

bechsteinii). Behavioural Ecology and Sociobiolog, 52, 203-210. 

Khan M.S.U., Hossain J., Gurley E.S., Nahar N., Sultana R. & Luby S.P. (2010). Use of infrared 

camera to understand bats' access to date palm sap: Implications for preventing Nipah 

virus transmission. Ecohealth, 7, 517-525. 

Ksiazek T.G., Erdman D., Goldsmith C.S., Zaki S.R., Peret T., Emery S., Tong S.X., Urbani C., 

Comer J.A., Lim W., Rollin P.E., Dowell S.F., Ling A.E., Humphrey C.D., Shieh W.J., 

Guarner J., Paddock C.D., Rota P., Fields B., DeRisi J., Yang J.Y., Cox N., Hughes J.M., 

LeDuc J.W., Bellini W.J. & Anderson L.J. (2003). A novel coronavirus associated with 

Severe Acute Respiratory Syndrome. New England Journal of Medicine, 348, 1953-

1966. 

Kunz T.H., de Torrez E.B., Bauer D., Lobova T. & Fleming T.H. (2011). Ecosystem services 

provided by bats. Annals of the New York Academy of Sciences, 1223, 1-38. 

Kunz T.H. & Stern A.A. (1995). Maternal investment and post-natal growth in bats. In: Ecology, 

Evolution and Behaviour of Bats (eds. Racey PA & Swift SM), pp. 123-138. 

Kunz T.H., Whitaker J.O. & Wadanoli M.D. (1995). Dietary energetics of the insectivorous 

Mexican free-tailed bat (Tadarida brasiliensis) during pregnancy and lactation. 

Oecologia, 101, 407-415. 

Kurta A., Bell G.P., Nagy K.A. & Kunz T.H. (1989). Energetics of pregnancy and lactation in free-

ranging Little brown bats (Myotis lucifugus). Physiological Zoology, 62, 804-818. 

Kuvlesky W.P., Brennan L.A., Morrison M.L., Boydston K.K., Ballard B.M. & Bryant F.C. (2007). 

Wind energy development and wildlife conservation: Challenges and opportunities. 

Journal of Wildlife Management, 71, 2487-2498. 

Lai M.M.C. & Cavanagh D. (1997). The molecular biology of coronaviruses. In: Advances in Virus 

Research, Vol 48. Academic Press Inc San Diego, pp. 1-100. 

Langton S.D., Briggs P.A. & Haysom K.A. (2010). Daubenton's bat distribution along rivers - 

developing and testing a predictive model. Aquatic Conservation-Marine and 

Freshwater Ecosystems, 20, S45-S54. 

Lau S.K.P., Woo P.C.Y., Li K.S.M., Huang Y., Tsoi H.W., Wong B.H.L., Wong S.S.Y., Leung S.Y., 

Chan K.H. & Yuen K.Y. (2005). Severe Acute Respiratory Syndrome coronavirus-like 

virus in Chinese horseshoe bats. Proceedings of the National Academy of Sciences of 

the United States of America, 102, 14040-14045. 



71 
 

Leroy E.M., Epelboin A., Mondonge V., Pourrut X., Gonzalez J.P., Muyembe-Tamfum J.J. & 

Formenty P. (2009). Human Ebola outbreak resulting from direct exposure to fruit bats 

in Luebo, Democratic Republic of Congo, 2007. Vector-Borne and Zoonotic Diseases, 9, 

723-728. 

Leroy E.M., Gonzalez J.P. & Baize S. (2011). Ebola and Marburg haemorrhagic fever viruses: 

major scientific advances, but a relatively minor public health threat for Africa. Clinical 

Microbiology and Infection, 17, 964-976. 

Leroy E.M., Kumulungui B., Pourrut X., Rouquet P., Hassanin A., Yaba P., Delicat A., Paweska 

J.T., Gonzalez J.P. & Swanepoel R. (2005). Fruit bats as reservoirs of Ebola virus. 

Nature, 438, 575-576. 

Lewis R.E. & Lewis J.H. (1994). Siphonaptera of North-America North of Mexico - 

Ischnopsyllidae. Journal of Medical Entomology, 31, 348-368. 

Li W.D., Shi Z.L., Yu M., Ren W.Z., Smith C., Epstein J.H., Wang H.Z., Crameri G., Hu Z.H., Zhang 

H.J., Zhang J.H., McEachern J., Field H., Daszak P., Eaton B.T., Zhang S.Y. & Wang L.F. 

(2005). Bats are natural reservoirs of SARS-like coronaviruses. Science, 310, 676-679. 

Lloyd-Smith J.O., Schreiber S.J., Kopp P.E. & Getz W.M. (2005). Superspreading and the effect 

of individual variation on disease emergence. Nature, 438, 355-359. 

LoGiudice K., Ostfeld R.S., Schmidt K.A. & Keesing F. (2003). The ecology of infectious disease: 

Effects of host diversity and community composition on Lyme disease risk. Proceedings 

of the National Academy of Sciences of the United States of America, 100, 567-571. 

Luby S.P., Gurley E.S. & Hossain M.J. (2009). Transmission of human infection with Nipah virus. 

Clinical Infectious Diseases, 49, 1743-1748. 

Lucan R.K. & Radil J. (2010). Variability of foraging and roosting activities in adult females of 

Daubenton's bat (Myotis daubentonii) in different seasons. Biologia, 65, 1072-1080. 

Luong L.T., Perkins S.E., Grear D.A., Rizzoli A. & Hudson P.J. (2010). The relative importance of 

host characteristics and co-infection in generating variation in Heligmosomoides 

polygyrus fecundity. Parasitology, 137, 1003-1012. 

Markus N. & Hall L. (2004). Foraging behaviour of the black flying-fox (Pteropus alecto) in the 

urban landscape of Brisbane, Queensland. Wildlife Research, 31, 345-355. 

McCallum H., Barlow N., Hone J. (2001). How should pathogen transmission be modelled? 

Trends in Ecology and Evolution, 16 (6), 295-300. 

Mickleburgh S.P, Waylen K. & Racey P. (2009). Bats as bushmeat: a global review. Oryx, 43, 

217-234. 

Mickleburgh S.P., Hutson A.M. & Racey P.A. (2002). A review of the global conservation status 

of bats. Oryx, 36, 18-34. 



72 
 

Milner-Gulland E.J. & Bennett E.L. (2003). Wild meat: the bigger picture. Trends in Ecology & 

Evolution, 18, 351-357. 

Misra V., Dumonceaux T., Dubois J., Willis C., Nadin-Davis S., Severini A., Wandeler A., Lindsay 

R. & Artsob H. (2009). Detection of polyoma- and corona- viruses in bats of Canada. 

Journal of General Virology, 90, 2015-2022. 

Mitchell-Jones A.J. & McLeish A.P. (2004). Bat Worker's Manual - 3rd Edition. In. Joint Nature 

Conservation Committee Peterborough. 

Mizutani H., McFarlane D.A. & Kabaya Y. (1992). Nitrogen and carbon isotope study of bat 

guano core from Eagle Creek Cave, Arizona, U.S.A. Mass Spectroscopy, 40, 57-65. 

Mohd-Azlan J., Zubaid A. & Kunz T.H. (2001). Distribution, relative abundance, and 

conservation status of the large flying fox, Pteropus vampyrus, in peninsular Malaysia: 

a preliminary assessment. Acta Chiropterologica, 3, 149-162. 

Myers G., Macinnes K. & Korber B. (1992). The emergence of Simian Human Immunodeficiency 

Viruses. Aids Research and Human Retroviruses, 8, 373-386. 

Nam D.H., Yates D., Ardapple P., Evers D.C., Schmerfeld J. & Basu N. (2012). Elevated mercury 

exposure and neurochemical alterations in little brown bats (Myotis lucifugus) from a 

site with historical mercury contamination. Ecotoxicology, 21, 1094-1101. 

Nobel I. (1996). Land resources. In: Australia: state of the environment 1996. CSIRO Publishing 

Collingwood, Australia. 

Norberg U.M. & Rayner J.M.V. (1987). Ecological morphology and flight in bats (Mammalia, 

Chiroptera) - Wing adaptations, flight performance, foraging strategy and 

echolocation. Philosophical Transactions of the Royal Society of London Series B – 

Biological Sciences, 316, 337-419. 

O'Donnell C.F.J. (2000a). Conservation status and causes of decline of the threatened New 

Zealand Long-tailed Bat Chalinolobus tuberculatus (Chiroptera : Vespertilionidae). 

Mammal Review, 30, 89-106. 

O'Donnell C.F.J. (2000b). Cryptic local populations in a temperate rainforest bat Chalinolobus 

tuberculatus in New Zealand. Animal Conservation, 3, 287-297. 

O'Shea T.J., Shankar V., Bowen R.A., Rupprecht C.E. & Wimsatt J.H. (2003). Do bats acquire 

immunity to rabies? Evidence from the field. Bat Research News, 44, 161. 

Ortega J. & Maldonado J.E. (2006). Female interactions in harem groups of the Jamaican fruit-

eating bat, Artibeus jamaicensis (Chiroptera : Phyllostomidae). Acta Chiropterologica, 

8, 485-495. 

Park K.J., Muller C.T., Markman S., Swinscow-Hall O., Pascoe D. & Buchanan K.L. (2009). 

Detection of endocrine disrupting chemicals in aerial invertebrates at sewage 

treatment works. Chemosphere, 77, 1459-1464. 



73 
 

Park K.J., Masters E. & Altringham J.D. (1998). Social structure of three sympatric bat species 

(Vespertilionidae). Journal of Zoology, 244(3), 379-389. 

Parry-Jones K.A. & Augee M.L. (2001). Factors affecting the occupation of a colony site in 

Sydney, New South Wales by the Grey-headed Flying-fox Pteropus poliocephalus 

(Pteropodidae). Austral Ecology, 26, 47-55. 

Parsons K.N. & Jones G. (2003). Dispersion and habitat use by Myotis daubentonii and Myotis 

nattereri during the swarming season: implications for conservation. Animal 

Conservation, 6, 283-290. 

Peiris J.S.M., Lai S.T., Poon L.L.M., Guan Y., Yam L.Y.C., Lim W., Nicholls J., Yee W.K.S., Yan 

W.W., Cheung M.T., Cheng V.C.C., Chan K.H., Tsang D.N.C., Yung R.W.H., Ng T.K. & 

Yuen K.Y. (2003). Coronavirus as a possible cause of Severe Acute Respiratory 

Syndrome. Lancet, 361, 1319-1325. 

Pereira M.J.R., Salgueiro P., Rodrigues L., Coelho M.M., Palmeirim M. (2009).Population 

structure of a cave-dwelling bat, Miniopterus schreibersii: Does if reflect history and 

social organization? Journal of Heredity, 100 (5), 533-544. 

Peres C.A. (2000). Effects of subsistence hunting on vertebrate community structure in 

Amazonian forests. Conservation Biology, 14, 240-253. 

Perkins S.E., Cagnacci F., Stradiotto A., Arnoldi D. & Hudson P.J. (2009). Comparison of social 

networks derived from ecological data: implications for inferring infectious disease 

dynamics. Journal of Animal Ecology, 78, 1015-1022. 

Perkins S.E., Ferrari M.F. & Hudson P.J. (2008). The effects of social structure and sex-biased 

transmission on macroparasite infection. Parasitology, 135, 1561-1569. 

Phan T.G., Kapusinszky B., Wang C.L., Rose R.K., Lipton H.L. & Delwart E.L. (2011). The fecal 

viral flora of wild rodents. Plos Pathogens, 7. 

Plowright R.K., Field H.E., Smith C., Divljan A., Palmer C., Tabor G., Daszak P. & Foley J.E. (2008). 

Reproduction and nutritional stress are risk factors for Hendra virus infection in little 

red flying foxes (Pteropus scapulatus). Proceedings of the Royal Society B-Biological 

Sciences, 275, 861-869. 

Plowright R.K., Foley P., Field H.E., Dobson A.P., Foley J.E., Eby P. & Daszak P. (2011). Urban 

habituation, ecological connectivity and epidemic dampening: the emergence of 

Hendra virus from flying foxes (Pteropus spp.). Proceedings of the Royal Society B-

Biological Sciences, 278, 3703-3712. 

Popa-Lisseanu A.G., Bontadina F., Mora O. & Ibanez C. (2008). Highly structured fission-fusion 

societies in an aerial-hawking, carnivorous bat. Animal Behaviour, 75, 471-482. 

Pourrut X., Delicat A., Rollin P.E., Ksiazek T.G., Gonzalez J.P. & Leroy E.M. (2006). Spatial and 

temporal patterns of Zaire ebolavirus antibody prevalence in the possible reservoir bat 



74 
 

species. In: Symposium on Recent Advances and Future Challenges in Filovirus 

Research. University of Chicago Press Winnipeg, Canada, pp. S176-S183. 

Pourrut X., Kumulungui B., Wittmann T., Moussavou G., Delicat A., Yaba P., Nkoghe D., 

Gonzalez J.P. & Leroy E.M. (2005). The natural history of Ebola virus in Africa. Microbes 

and Infection, 7, 1005-1014. 

Pourrut X., Souris M., Towner J.S., Rollin P.E., Nichol S.T., Gonzalez J.P. & Leroy E. (2009). Large 

serological survey showing cocirculation of Ebola and Marburg viruses in Gabonese bat 

populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus. BMC 

Infectious Diseases, 9, 10. 

Quan P.L., Firth C., Street C., Henriquez J.A., Petrosov A., Tashmukhamedova A., Hutchison S.K., 

Egholm M., Osinubi M.O.V., Niezgoda M., Ogunkoya A.B., Briese T., Rupprecht C.E. & 

Lipkin W.I. (2010). Identification of a Severe Acute Respiratory Syndrome coronavirus-

like virus in a leaf-nosed bat in Nigeria. Mbio, 1. 

Racey P.A. & Entwistle A.C. (2003). Conservation Ecology of Bats. In: Bat Ecology (eds. Kunz TH 

& Fenton MB). The University of Chicago Press Chicago, pp. 680-743. 

Racey P.A. & Swift S.M. (1986). The residual effects of remedial timber treatments on bats. 

Biological Conservation, 35, 205-214. 

Reusken C.B.E.M., Lina P.H.C., Pielaat A., de Vries A., Dam-Deisz C., Adema J., Drexler J.F., 

Drosten C. & Kooi E.A. (2010). Circulation of group 2 coronaviruses in a bat species 

common to urban areas in Western Europe. Vector-Borne and Zoonotic Diseases, 10, 

785-791. 

Rihtaric D., Hostnik P., Steyer A., Grom J. & Toplak I. (2010). Identification of SARS-like 

coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia. Archives of 

Virology, 155, 507-514. 

Riley J. (2002). Mammals on the Sangihe and Talaud Islands, Indonesia, and the impact of 

hunting and habitat loss. Oryx, 36, 288-296. 

Rivers N.M., Butlin R.K. & Altringham J.D. (2005). Genetic population structure of Natterer's 

bats explained by mating at swarming sites and philopatry. Molecular Ecology, 14, 

4299-4312. 

Rivers N.M., Butlin R.K. & Altringham J.D. (2006). Autumn swarming behaviour of Natterer's 

bats in the UK: Population size, catchment area and dispersal. Biological Conservation, 

127, 215-226. 

Ryser G.R. & Popovici R. (1999). The fiscal impact of the congress avenue bridge bat colony on 

the city of Austin. In. Bat Conservation International Austin, TX. 

Safi K. (2008). Social bats: The males' perspective. Journal of Mammalogy, 89, 1342-1350. 



75 
 

Sapolsky R.M. (2005). The influence of social hierarchy on primate health. Science, 308, 648-

652. 

Schober W. & Grimmberger E. (1997). The Bats of Europe and North America. T.F.H. 

Publications, Neptune. 

Senior P., Butlin R.K. & Altringham J.D. (2005). Sex and segregation in temperate bats. 

Proceedings of the Royal Socity B – Biological Sciences, 272, 2467-2473. 

Senthilkumar K., Kannan K., Subramanian A. & Tanabe S. (2001). Accumulation of 

organochlorine pesticides and polychlorinated biphenyls in sediments, aquatic 

organisms, birds, bird eggs and bat collected from South India. Environmental Science 

and Pollution Research, 8, 35-47. 

Smith G.C., Aegerter J.N., Allnutt T.R., MacNicoll A.D., Learmount J., Hutson A.M. & Atterby H. 

(2011). Bat population genetics and Lyssavirus presence in Great Britain. Epidemiology 

and Infection, 139, 1463-1469. 

Smith G.C., Brookes S.M., Harris S.L., Aegerter J.N., Jones G. & Fooks A.R. (2006). EBLV-2 

prevalence in the United Kingdom as determined by surveillance testing. In: First 

International Conference on Rabies in Europe (eds. Dodet B, Schudel A, Pastoret PP & 

Lombard M) Kiev, Ukraine, pp. 265-271. 

Smith P.G. (2000). Habitat preference, range use and roosting ecology of Natterer's bats 

(Myotis nattereri) in a grassland-woodland landscape. University of Aberdeen 

Aberdeen. 

Smith P.G. & Racey P.A. (2008). Natterer's bats prefer foraging in broad-leaved woodlands and 

river corridors. Joural of Zoology, 275, 314-322. 

Soares B.S., Nepstad D.C., Curran L.M., Cerqueira G.C., Garcia R.A., Ramos C.A., Voll E., 

McDonald A., Lefebvre P. & Schlesinger P. (2006). Modelling conservation in the 

Amazon basin. Nature, 440, 520-523. 

Stansley W., Roscoe D.E., Hawthorne E. & Meyer R. (2001). Food chain aspects of chlordane 

poisoning in birds and bats. Archives of Environmental Contamination and Toxicology, 

40, 285-291. 

Stantic-Pavlinic M. (2005). Public health concerns in bat rabies across Europe. Eurosurveillance, 

10, 217-220. 

Struebig M.J., Harrison M.E., Cheyne S.M. & Limin S.H. (2007). Intensive hunting of large flying 

foxes Pteropus vampyrus natunae in Central Kalimantan, Indonesian Borneo. Oryx, 41, 

390-393. 

Swanepoel R., Leman P.A., Burt F.J., Zachariades N.A., Braack L.E.O., Ksiazek T.G., Rollin P.E., 

Zaki S.R. & Peters C.J. (1996). Experimental inoculation of plants and animals with 

Ebola virus. Emerging Infectious Diseases, 2, 321-325. 



76 
 

Tang X.C., Zhang J.X., Zhang S.Y., Wang P., Fan X.H., Li L.F., Li G., Dong B.Q., Liu W., Cheung C.L., 

Xu K.M., Song W.J., Vijaykrishna D., Poon L.L.M., Peiris J.S.M., Smith G.J.D., Chen H. & 

Guan Y. (2006). Prevalence and genetic diversity of coronaviruses in bats from China. 

Journal of Virology, 80, 7481-7490. 

Taylor L.H., Latham S.M. & Woolhouse M.E.J. (2001). Risk factors for human disease 

emergence. Philosophical Transactions of the Royal Society of London Series B – 

Biological Sciences, 356, 983-989. 

Teeling E.C., Springer M.S., Madsen O., Bates P., O'Brien S.J. & Murphy W.J. (2005). A 

molecular phylogeny for bats illuminates biogeography and the fossil record. Science, 

307, 580-584. 

Tong S.X., Li Y., Rivailler P., Conrardy C., Castillo D.A.A., Chen L.M., Recuenco S., Ellison J.A., 

Davis C.T., York I.A., Turmelle A.S., Moran D., Rogers S., Shi M., Tao Y., Weil M.R., Tang 

K., Rowe L.A., Sammons S., Xu X.Y., Frace M., Lindblade K.A., Cox N.J., Anderson L.J., 

Rupprecht C.E. & Donis R.O. (2012). A distinct lineage of influenza A virus from bats. 

Proceedings of the National Academy of Sciences of the United States of America, 109, 

4269-4274. 

Turmelle A.S., Jackson F.R., Green D., McCracken G.F. & Rupprecht C.E. (2010). Host immunity 

to repeated rabies virus infection in big brown bats. Journal of General Virology, 91, 

2360-2366. 

Towner J.S., Amman B.R., Sealy T.K., Carroll S.A.R., Comer J.A., Kemp A., Swanepoel R., 

Paddock C.D., Balinandi S., Khristova M.L., Formenty P.B.H., Albarino C.G., Miller D.M., 

Reed Z.D., Kayiwa J.T., Mills J.N., Cannon D.L., Greer P.W., Byaruhanga E., Farnon E.C., 

Atimnedi P., Okware S., Katongole-Mbidde E., Downing R., Tappero J.W., Zaki S.R., 

Ksiazek T.G., Nichol S.T. & Rollin P.E. (2009). Isolation of genetically diverse Marburg 

viruses from Egyptian fruit bats. Plos Pathogens, 5, 9. 

Vazquez-Moron S., Juste J., Ibanez C., Ruiz-Villamor E., Avellon A., Vera M. & Echevarria J.E. 

(2008). Endemic circulation of European bat lyssavirus type 1 in serotine bats, Spain. 

Emerging Infectious Diseases, 14, 1263-1266. 

Vittor A.Y., Gilman R.H., Tielsch J., Glass G., Shields T., Lozano W.S., Pinedo-Cancino V. & Patz 

J.A. (2006). The effect of deforestation on the human-biting rate of Anopheles darlingi, 

the primary vector of falciparum malaria in the Peruvian Amazon. American Journal of 

Tropical Medicine and Hygiene, 74, 3-11. 

Vonhof M.J., Whitehead H. & Fenton M.B. (2004). Analysis of Spix's disc-winged bat association 

patterns and roosting home ranges reveal a novel social structure among bats. Animal 

Behaviour, 68, 507-521. 



77 
 

Wacharapluesadee S., Boongird K., Wanghongsa S., Ratanasetyuth N., Supavonwong P., 

Saengsen D., Gongal G.N. & Hemachudha T. (2010). A Longitudinal Study of the 

Prevalence of Nipah Virus in Pteropus lylei Bats in Thailand: Evidence for Seasonal 

Preference in Disease Transmission. Vector-Borne and Zoonotic Diseases, 10, 183-190. 

Wacharapluesadee S., Lumlertdacha B., Boongird K., Wanghongsa S., Chanhome L., Rollin P., 

Stockton P., Rupprecht C.E., Ksiazek T.G. & Hemachudha T. (2005). Bat Nipah virus, 

Thailand. Emerging Infectious Diseases, 11, 1949-1951. 

Walker L.A., Simpson V.R., Rockett L., Wienburg C.L. & Shore R.F. (2007). Heavy metal 

contamination in bats in Britain. Environmental Pollution, 148, 483-490. 

Webster R.G. (1997). Influenza virus: transmission between species and relevance to 

emergence of the next human pandemic. Archives of Virology, 105-113. 

Wiles G.J. & Brooke A.P. (2010). Conservation threats to bats in the tropical pacific islands and 

insular southeast Asia. In: Island Bats: Evolution, Ecology, and Conservation (eds. 

Fleming TH & Racey PA). University of Chicago Press, Chicago. 

Wiles G.J., Engbring J. & Otobed D. (1997). Abundance, biology, and human exploitation of 

bats in the Palau Islands. Journal of Zoology, 241, 203-227. 

Wilkie D.S. & Carpenter J.F. (1999). Bushmeat hunting in the Congo Basin: an assessment of 

impacts and options for mitigation. Biodiversity and Conservation, 8, 927-955. 

Willis C.K.R. & Brigham R.M. (2004). Roost switching, roost sharing and social cohesion: forest-

dwelling Big brown bats, Eptesicus fuscus, conform to the fission-fusion model. Animal 

Behaviour, 68, 495-505. 

Wittemyer G., Douglas-Hamilton I. & Getz W.M. (2005). The socioecology of elephants: 

analysis of the processes creating multitiered social structures. Animal Behaviour, 69, 

1357-1371. 

Woo P.C.Y., Lau S.K.P., Li K.S.M., Poon R.W.S., Wong B.H.L., Tsoi H.W., Yip B.C.K., Huang Y., 

Chan K.H. & Yuen K.Y. (2006). Molecular diversity of coronaviruses in bats. Virology, 

351, 180-187. 

Woolhouse M.E.J. & Gowtage-Sequeria S. (2005). Host range and emerging and reemerging 

pathogens. Emerging Infectious Diseases, 11, 1842-1847. 

Woolhouse M.E.J., Haydon D.T. & Antia R. (2005). Emerging pathogens: the epidemiology and 

evolution of species jumps. Trends in Ecology & Evolution, 20, 238-244. 

Woolhouse M.E.J., Taylor L.H. & Haydon D.T. (2001). Population biology of multihost 

pathogens. Science, 292, 1109-1112. 

World Health Organisation (2011). Summary of probable SARS cases with onset of illness from 

1 November 2002 to 31 July 2003. URL 

http://www.who.int/csr/sars/country/table2004_04_21/en/index.html 



78 
 

Zahn A. & Rupp D. (2004). Ectoparasite load in European vespertilionid bats. Journal of 

Zoology, 262, 383-391. 

  



79 
 

2 Woodland bats form tight-knit social groups with exclusive 

roost home ranges 

 

2.1 Introduction 

 

Bats are a species-rich taxon with over 1100 species globally. They are long lived and have a 

range of social structures. Although some species are solitary, most are social for at least part 

of the year: colonies, which can be mixed or single-sex, commonly contain tens to hundreds of 

individuals (Altringham 1996; Kunz & Fenton 2003). This heterogeneity makes bats an ideal 

taxon for the study of social structure. The social structure adopted determines, among other 

factors, mating opportunities, information transfer about food sources and predators, and 

exposure to parasites and pathogens. 

The social structure of a population can be defined by the physical proximity of individuals 

through time. Social network analysis (SNA) uses observations of interactions between 

individuals to construct an approximation of the overall population social network, and 

provide metrics that quantify its structure.  

Network analysis originated in the mathematical sciences and has since branched out into 

economics, politics, human sociology, and more recently animal sociology (Wey et al. 2008). 

Studies have explored social structure in primates (Bezanson et al. 2008; Henzi et al. 2009; 

Kasper & Voelkl 2009; Ramos-Fernandez et al. 2009) marine mammals (Lusseau 2003; Lusseau 

et al. 2006; Wolf et al. 2007; Lusseau & Conradt 2009; Whitehead & Van Parijs 2010), bats 

(O'Donnell 2000; Vonhof et al. 2004; Garroway & Broders 2007; Fortuna et al. 2009; Chaverri 

2010; Patriquin et al. 2010; Kerth et al. 2011), reptiles (Godfrey et al. 2010), birds (McDonald 

2007, 2009), elephants (Wittemyer et al. 2005), fish (Croft et al. 2004; Croft et al. 2006) and 

others. These studies explore, amongst other things, the effects of removing key individuals, 

the implications for disease transmission, the influence of individuals in group decision making, 

the spatial organisation of social groups and the evolution of sociality. 

Previous SNAs of bats have considered a single species and most have focused on a single 

location. These studies have furthered our understanding of fission-fusion dynamics: the 

frequent subdivision and recombination within social groups that is observed in many bat 

species (Kerth, 2011). Studies of the spatial arrangement of social groups identified in SNAs 

have found that whilst some bat species’ form social groups occupying exclusive roost home 
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ranges (O'Donnell 2000; Fortuna et al. 2009) others have broadly overlapping roost home 

ranges (Vonhof et al. 2004). 

Social networks based on cohabitation, as in the present study, provide quantitative 

information on contact rates, and their heterogeneity, within a population. These variables 

have been shown to be important in models of disease transmission (Lloyd-Smith et al. 2005; 

Beldomenico & Begon 2010) where it has frequently been observed that a small number of 

individuals, with a large number of contacts, account for the majority of disease transmission 

(Kramer-Schadt et al. 2009; Perkins et al. 2009; Beldomenico & Begon 2010; Gardy et al. 2011). 

This is different from the, commonly implemented, theory of mass action, whereby contact 

rate is assumed to be uniform between all individuals (McCallum et al. 2001).  

In addition to contact rates, disease transmission is influenced by network structure. 

Populations with strong social structure, in which intergroup contact is low, often have 

reduced overall prevalence of disease and select for chronic benign infections as herd 

immunity within a sub-group is quickly achieved (Eames 2007). In these networks the spread of 

disease can be controlled by targeting intervention at individuals that transmit disease 

between groups. As outlined in the introduction to this thesis, little is known about contact 

rates or population structure in bat populations (1.5.4.2), this work therefore provides 

valuable new information.  

Here I use SNA to study M. daubentonii and M. nattereri, medium sized insectivorous bats 

weighing 7-15g and 6-12g respectively. M. daubentonii typically forages over water whereas 

M. nattereri is a woodland specialist. Both species roost in tree holes and man-made 

structures close to their foraging sites and form nursery colonies during the summer in which 

young are born. These colonies form from May to June and split up once the once young are 

independent, from August to September (Altringham 2003). Both sexes of M. nattereri are 

philopatric, returning from hibernation to spend the summer at the site of their birth (Rivers et 

al. 2006). Studies of M. daubentonii population genetics suggest that males are likely to 

account for most dispersal whilst females are generally philopatric (Ngamprasertwong et al. 

2008, Smith et al. 2011). Ngamprasertwong et al. (2008) Compared the variation in 

mitochondrial DNA (passed to offspring from the mother) and microsatellite DNA (passed to 

the offspring from both parents) and found much greater variation amongst mitochondrial 

DNA than microsatellite DNA. M. daubentonii adult males form bachelor colonies in the 

summer numbering up to 60 individuals at some sites in the UK (Altringham 1996). M. 

nattereri also, though less frequently, form bachelor colonies of up to 28 individuals (Swift 

1997). Like other Myotis bats, both species attend swarming sites, typically cave or mine 
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entrances, in late summer to early autumn. These sites are thought to be important for 

mating, though some mating may also occur late in the season at summer roosting sites 

(Senior et al. 2005) and during the winter at hibernacula (Altringham 2003). 

Our study was undertaken in Wytham Woods, Oxfordshire. This intensively studied ecosystem 

has advantages for sampling and recapturing bats, and analysing their social networks, since 

they utilise many of over 1150 georeferenced bird boxes distributed throughout the wood. 

This work reveals contrasting social and spatial structures in the two species with implications 

for predicting disease transmission within the system. Additionally the results have 

implications for mating strategies, information transfer, and bat conservation. The study is the 

first SNA of bats to compare two species in the same location and provides a basis for future 

comparative analyses of these bats in a tractable study system.  
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2.2 Methods 

 

2.2.1 Fieldwork 

 

Bats were captured and ringed between May and mid-October annually, from 2006 to 2010, at 

Wytham Woods (Latitude, 51°77’27”; Longitude, -1°33’41”). This 415 hectare site is composed 

of semi-natural ancient deciduous woodland and 18th-20th century plantations. Over 1150 

woodcrete bird boxes are dispersed through the woods and these are frequently used by bats 

from early May to mid-October, after which they migrate to unknown hibernation sites. The 

birds, for whom the boxes are designed, do not occupy the boxes after May. To minimise 

disturbance boxes were not checked more than once within a two week period and females 

with attached young were not handled. Areas with higher occupancy rates (pers. obs.) were 

sampled more frequently to maximise data collection (Figure 2.1). 

 

 

Figure 2.1 – Distribution of sampling effort across bird boxes. Three polygons show examples of the 

typical area of boxes checked in a day 
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Bats were ringed with 2.9mm aluminium armbands bearing a unique identification number 

(The Mammal Society, UK under Natural England license no. 20113601 and previous licences) 

and classed as juveniles, if the joints between the metacarpals and phalanx were not fully 

ossified (Racey 1974; Mitchell-Jones & McLeish 2004). 

Sex and reproductive status were also recorded. Female reproductive status was divided into 4 

categories; pregnant, lactating, post-lactating and non-breeding. Pregnant bats were identified 

from their weight and gentle palpation of the abdomen. Lactating bats have enlarged nipples 

and an absence of hair both on the nipple and in a c.3mm circle around the nipple. Post-

lactating females’ nipples are enlarged, dark in colour and the hairs surrounding the nipple 

may have begun to grow back but are short. Non-breeding females have no swelling in the 

nipple and no loss of hair. 

Colonies were divided into three types according the composition of adults: those dominated 

(>66.6% of total) by adult females, those dominated by adult males (>66.6% of total) and those 

with mixed adult sexes. Bats found roosting on their own were recorded as solitary. Three time 

periods were defined: pre-nursery, nursery and post-nursery. The nursery period was defined 

as the time between the first and last recorded colonies of lactating females with juveniles. 

These dates varied from year to year, since the timing of births is weather dependent. 

 

2.2.2 Social network analysis 

 

A social interaction, or ‘association’, was said to exist between two individuals if they were 

found roosting together. The strength of association between two individuals was calculated 

using the simple ratio equation (Ginsberg & Young 1992). Strength of association (AIij) was 

calculated using the number of occasions when both individuals were observed together (x), 

the number of occasions individual i was observed and j was not (yi), the number of occasions 

individual j was observed and i was not (yj), and the number of occasions both individuals were 

observed but not together (yij). 
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2.2.3 Structural analysis 

 

A social network in which individuals associate non-randomly is defined by the presence of 

preferred and avoided associations. As a consequence the distribution of association strengths 

is bimodal; association strengths are either small (avoidance) or large (association). The mean 

association strength in non-random social networks therefore has a higher standard deviation 

and coefficient of variance (standard deviation/mean) than random networks. Formal tests of 

non-randomness of the observed networks were conducted using methods described by 

Bejder et al (1998) with modifications from Whitehead (2008). This method has been used 

previously in the analysis of social networks in bats (Garroway & Broders 2007). Random 

networks were generated by permuting the composition of colonies sampled on the same day 

whilst keeping colony sizes the same as those observed. By keeping group sizes the same it 

was possible to control for the possibility that the structure observed is a result of non-social, 

random aggregations. As most days’ sampling were in a specific area of woodland, permuting 

roost composition within day accounts for some of the effects spatial sampling may have on 

the apparent social structure. 

Visualisation of the observed networks was undertaken using Netdraw v.2 (Borgatti 2002). 

Within these visualisations individuals are represented by nodes and an association between 

two individuals is represented by a line connecting them. 

Individuals captured only once (Table 2.1) were excluded from the analysis of social networks 

and associations were removed if their strength was less than half the mean non-zero 

association strength of the random networks. This cut-off was selected as the cut-off values 

produced were similar to those used in previous studies of bats (Vonhof et al. 2004; Garroway 

& Broders 2007; Patriquin et al. 2010) and account for variation in structure between random 

permutations of different networks. By removing weak associations, that could have come 

about by chance, we can better analyse the core social structure of the network (Croft et al. 

2008). Individuals captured more than once with no associations (n = 11) were also removed 

from the analyses. 
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Species 1 2 3 4 5 6 7 8 9 10 Total

Proportion captured 

more than once

Male 430 118 59 14 7 0 1 0 0 0 629 0.32

Female 204 55 33 27 13 11 4 0 2 0 349 0.42

Total 634 173 92 41 20 11 5 0 2 0 978 0.35

Male 97 43 18 12 9 2 0 1 0 0 182 0.47

Female 101 71 42 40 25 14 8 7 4 3 315 0.68

Total 198 114 60 52 34 16 8 8 4 3 497 0.60

Number of times captured

M. daubentonii

M. nattereri

 

Table 2.1 – Summary of the frequency distribution of captured bats by species and sex 

 

Individuals were assigned to social groups using the Girvan-Newman method (Girvan & 

Newman 2002). This top-down method, successively removes the association with the highest 

value of ‘betweeness’. Betweeness is the number of shortest paths, connecting individuals in 

the network, which contain a given association. Associations with high values of betweeness 

are those that connect clusters with otherwise low interconnectivity and by removing them 

the network is broken down into an increasing number of unconnected components. Each 

time a new component is created the modularity of the network is calculated (Newman & 

Girvan 2004). Modularity is calculated using all associations from the original network and is 

the difference between the observed fraction of associations that are within components and 

the fraction expected if associations connected individuals at random. Modularity ranges from 

0 to 1, with values over 0.3 regarded as evidence of social structure (Newman & Girvan 2004). 

The division of individuals to components by the Girvan-Newman method that produces the 

highest modularity value is selected as the best representation of social groups. This method is 

particularly appropriate for populations with strong social structure such as those in this study. 

Evidence of assortment by sex within social networks was examined using join-count in UCInet 

(Borgatti et al. 2002) using 10,000 permutations. This test compares the number of male-male, 

female-female and intersex associations in the dataset with the number expected by chance. 

 

2.2.4 Spatial Analysis 

 

Roost home ranges of social groups were estimated using minimum convex polygons (MCPs) 

after the removal of roosts used by a single individual (M. daubentonii = 44; M. nattereri = 24) 

and those isolated by over 1km (M. daubentonii = 1; M. nattereri = 1). Using ArcMap (ESRI v. 
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9.3, 2008) and Hawth’s tools (v. 3.27) MCPs were created and cropped so that habitats such as 

grassland, which do not provide roosting opportunities, were removed. 

Radio-tracking was undertaken in August 2009 and 2010 to compare roost home range 

estimates produced from the SNA to the roost use of individually tracked bats. Four adult 

female M. daubentonii were fitted with radio transmitters weighing 0.35g or 0.42g (Holohil, 

Canada, type LB-2N). All tags weighed less than 5% of the body weight of the bat (4.1-4.7%) 

and were attached by a licensed bat worker using a previously described method (Kelly et al. 

2008). Bats were located at their day roosts using an Australis receiver (Titley Electronics Ltd, 

Australia) and a Yagi 3-element directional antennae (Biotrack Ltd, Wareham, UK). Tree roost 

locations were recorded by GPS and mapped using ArcMap. 

 

2.2.5 Temporal analysis 

 

The temporal structure of associations was examined using the lagged association rate 

(Vonhof et al. 2004; Whitehead 2008). This gives the probability that, after being found 

together, two individuals will be found together at a set time interval in the future. These 

trends were calculated for each of the four classes of association within each species (male-

male, female-female, male-female and female-male) and compared to the expected trend if 

individuals were to associate randomly, the null association rate. Standard errors were 

calculated for these trends by jack-knifing the data over a period of 30 days. 

 

2.2.6 Statistical analysis 

 

All statistical analyses were undertaken in R version 2.11.0 (R Development Core Team 2011). 

Differences in the relative abundance of colony types between species were analysed using 

chi-squared tests, comparing proportions within the same season, with Bonferroni corrections. 

Similarly chi-squared tests were used in the statistical analysis of sex ratio data to test for 

differences from a 1:1 ratio. When testing for differences in sex ratio between species a 

generalised linear mixed effects model with binomial error structure was used with year and 

time period included as random effects using R package ‘lme4’ (Bates et al. 2011). Recapture 

rates were compared by species and sex using a generalised linear model with a Poisson error 

structure. There was no improvement when instead using a negative binomial error structure, 

tested using R package ‘pscl’ (Jackman 2011). The correlation between the area of a social 
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group’s roost home range and the number of individuals in the social group, species and 

sampling effort was examined using a multiple regression. Sampling effort was calculated as 

the average number of recaptures per individual for each social group.  
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2.3 Results 

 

Over five consecutive summers we performed 7578 box checks, finding bats on 625 occasions. 

A total of 490 M. nattereri and 978 M. daubentonii were ringed from 379 colonies (Appendix, 

Table 7.1). Individuals captured only once were removed prior to SNA leaving 299 M. nattereri 

and 344 M. daubentonii captured on average 3.6 (range 2-10) and 2.9 (range 2-9) times 

respectively (Table 2.1). Due to the limited number of recaptures (Table 2.1) it was not 

possible to analyse the social structure separately for the nursery and post-nursery period or 

for each year of the study and so all data were combined for SNA. The two bat species were 

never found in the same roost at the same time, however, 27 roosts (of 293) were used by 

both species at different times (Figure 2.2). This is not significantly different from the number 

of boxes we would expect the species to share if they were roosting randomly within the 

woods (χ2 = 0.48, df = 1, p = 0.49). 

 

Figure 2.2 – The spatial distribution of roosts used by M. nattereri (red) and M. daubentonii (blue) and 

both species (white). Both species have been found in a large number of roosts though occupy few on 

any given day, suggesting that roosts are not limiting at this site 
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2.3.1 Species specific differences in sex ratio and recapture rates 

 

Controlling for year and season, a significantly lower proportion of male M. nattereri then male 

M. daubentonii were captured (z = 14.83, p < 0.0001). Within years (Table 2.2), the average sex 

ratio (male:female) of M. nattereri (0.40:1) and M. daubentonii (1.60:1) were significantly 

different from 1:1 (χ2 = 61.74, df = 1, p < 0.001; χ2 = 121.13, df = 1, p < 0.001, respectively). The 

juvenile sex ratios for both species did not differ significantly from 1:1 (M. daubentonii, n = 133 

χ2 = 1.08, df = 1, p = 0.30; M. nattereri, n = 154 χ2 = 0.79, df = 1, p = 0.38). 

 

Species Age Year No. male No. female Total Sex ratio (M:F)

2010 188 130 318 1.45:1

2009 187 108 295 1.73:1

2008 172 126 298 1.37:1

2007 164 80 244 2.05:1

2006 10 7 17 1.43:1

All years 721 451 1172 1.60:1

2010 30 26 56 1.15:1

2009 23 15 38 1.53:1

2008 19 22 41 0.86:1

2007 10 7 17 1.43:1

2006 1 1 2 N/A

All years 83 71 154 1.17:1

2010 70 144 214 0.49:1

2009 33 92 125 0.36:1

2008 34 86 120 0.39:1

2007 58 159 217 0.36:1

2006 1 3 4 N/A

All years 196 484 680 0.40:1

2010 35 20 55 1.75:1

2009 17 15 32 1.13:1

2008 3 3 6 1:1

2007 18 20 38 0.9:1

2006 0 2 2 N/A

All years 73 60 133 1.22:1

Juvenile

Adult

Adult

Juvenile

M. daubentonii

M. nattereri

 

Table 2.2– Summary of the sex ratio by year of M. daubentonii and M. nattereri, adults and juveniles 

 

Including all bats, the number of times an individual was recaptured was significantly affected 

by species and sex. M. nattereri (z = 8.38, df = 1, p < 0.001) and females of both species (z = 

8.73, df = 1, p < 0.001) had significantly higher numbers of recaptures than M. daubentonii and 

males respectively, whilst the interaction between species and sex was non-significant (z = -
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1.53, df = 1, p = 0.13). The recapture probability of juveniles in the years following their birth 

(Table 2.3) showed the same pattern (species z = 2.43, df = 1, p = 0.02; sex z = 2.62, df = 1, p = 

0.01; species*sex z = 1.124, df = 1, p = 0.26). 

 

Proportion recaptured (95% CI) n Proportion recaptured (95% CI) n

Males 0.17 (0.08-0.29) 54 0.23 (0.11-0.39) 39

Females 0.25 (0.13-0.40) 44 0.53 (0.36-0.69) 38

M. daubentonii M. nattereri

 

Table 2.3 – Recapture rates of juveniles in the years following their birth 

 

2.3.2 Species specific differences in observed colony types 

 

During the nursery period M. daubentonii bachelor colonies were observed more often than 

for M. nattereri (χ2 = 13.47, df = 1, p < 0.001, Figure 2.3a) and female colonies were recorded 

significantly less often than for M. nattereri (χ2 = 17.0964, df = 1, p < 0.001). In the post nursery 

period M. daubentonii had a significantly larger proportion of male dominated colonies (χ2 = 

9.76, df = 1, p = 0.002) and a significantly lower proportion of female dominated colonies (χ2 = 

21.07, df = 1, p < 0.001) than M. nattereri (Figure 2.3a). The proportion of mixed sex colonies 

increased for both species in the post-nursery period (Figure 2.3a). Too few mixed sex colonies 

were observed during the pre-nursery period to allow a comparison of sex ratios (n = 5), 

however, M. daubentonii mixed colonies contained a larger proportion of males than the 

equivalent M. nattereri colonies (Figure 2.3b) during the post-nursery period (χ2 = 3.83, df = 1, 

p = 0.05) though not the nursery period (χ2 = 0.167, df = 1, p = 0.68). There was no significant 

difference in the proportion of males or females of either species roosting alone (χ2 = 0.057, df 

= 1, p = 0.81), however lone roosting M. nattereri were more common than lone roosting M. 

daubentonii (χ2 = 23.2091, df = 1, p < 0.0001, Figure 2.3c). 

Male M. nattereri who returned to Wytham Woods in the years following their birth (n = 9) 

were mostly observed in nursery or mixed colonies (n = 7) whilst male M. daubentonii (n = 9) 

were rarely observed in nursery colonies (n = 2) instead roosting in bachelor or mixed colonies 

(n = 7). Females of both species who returned to Wytham Woods in the years following their 

birth (n = 32, 20 M. nattereri, 12 M. daubentonii) were almost all found in female dominated 

roosts and mixed sex roosts (n = 29), only 3 were found in bachelor roosts. These patterns 

therefore follow the distribution patterns observed for the adults of each species. 
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Figure 2.3 – a) The relative abundance of adult male dominated, adult female dominated and adult 

mixed sex colonies compared within three time periods (pre-nursery, nursery and post-nursery periods). 

* indicates where there is a significant difference between the species. Error bars indicate 95% 

confidence intervals. b) The sex ratio of mixed sex groups of adult M. daubentonii and M. nattereri over 

the nursery and post-nursery periods. c) The proportion of solitary colonies across all time periods 

 

2.3.3 Identification of multiple social groups within the wood for both species 

 

Associations in all observed networks were significantly non-random since the standard 

deviation and coefficient of variance of association strengths were higher in observed than 

permuted networks (20,000 iterations; p < 0.001).  

Nine M. nattereri and two M. daubentonii were removed from network analyses as they had 

no associations to other individuals in the network. Furthermore, 13% of M. nattereri 

associations and 5% of M. daubentonii associations were removed as their values were less  
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Figure 2.4 – Social network visualisations of a) M. nattereri bats (modularity = 0.77), b) M. daubentonii 

(modularity = 0.656), c) female M. daubentonii (modularity = 0.68) and d) male M. daubentonii 

(modularity = 0.63). Nodes represent individual bats and associations are represented by the lines that 

join them. Males are indicated by circles and females by downwards triangles. Associations are filtered 

at half the mean non-zero association strength of random networks. Colours indicate the assignment of 

individuals to social groups using the Girvan-Newman algorithm. Colours do not correspond between 

panels. Colours in a) and c) are comparable to Figure 2.6. The position of individuals within these 

networks indicates their position in social space and is not an indication of an individual’s geographical 

location 
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than half the mean non-zero association strength of the corresponding random network (M. 

daubentonii = 0.115; M. nattereri = 0.132). 

Both species showed significant assortment by sex. Female-female associations were 

significantly more frequent, and intersex associations significantly less frequent than expected 

by chance for both species (10,000 permutations, p < 0.001). In addition M. daubentonii male-

male associations were significantly more frequent than would be expected by chance (10,000 

permutations, p < 0.001). 

Our analysis of 214 female and 85 male M. nattereri identified 9 social groups (Figure 2.4a). 

These groups formed 6 unconnected components. Despite evidence of assortment by sex, M. 

nattereri social groups were composed of a mix of males and females suggesting that while 

they constitute a single social group males and females also form single sex groups at times. 

Intergroup associations by either sex were rare, making up only 4% of all associations (n = 

4258). Social groups were on average 25% males when weighted by social group size. 

Our analysis of 145 female and 199 male M. daubentonii suggested males and females form 

discrete social groups, with half of the social groups identified being over 90% male (Figure 

2.4b). This sexual segregation was apparent even when the analysis considered only males 

recaptured in two or three years, so removing ‘transient males’ who may only have been at 

the site briefly (Figure 2.5). Males had a significantly weaker social group affiliation compared 

to M. nattereri, with 43% (n = 199) of M. daubentonii males associating with females from 

more than one social group (Figure 2.4b). Consequently M. daubentonii were analysed 

independently for each sex. Individuals in the female network were assigned to 4 social groups 

(Figure 2.4c) with inter-group associations making up only 2% of all associations. Males were 

assigned to 11 social groups (Figure 2.4d), however unlike M. nattereri and female M. 

daubentonii networks, there was a significant number of inter-group associations between 

males (16%, n = 1205) (Figure 2.4d). This interconnectivity suggests that social group 

membership of M. daubentonii males is less specific than for the other networks examined 

here. As a result of this of mixing, spatial analysis was not undertaken for M. daubentonii 

males. 

Using the networks created for M. nattereri (Figure 2.4a) and M. daubentonii females (Figure 

2.4c) individuals who moved between social groups were identified (n = 19). These individuals 

comprised 9 M. nattereri (8 females and 1 male) and 10 female M. daubentonii. All of these 

individuals were adults, with the exception of a juvenile female M. nattereri. Of those 

individuals recaptured multiple times after switching social group (n = 11) all but 1 returned to 

their original social group, again the exception was the single juvenile. Of those juveniles 
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recaptured in the years after their birth (Table 2.3), only 1 of 47 (8 male, 21 female M. 

nattereri; 6 male, 12 female M. daubentonii), the female M. nattereri mentioned previously, 

was identified as having emigrated to another social group whilst all others returned to their 

natal group. 

 

Figure 2.5 – The social network of M. daubentonii including all females, and males observed in a) 1 or 

more b) 2 or more and c) 3 or more years. Males, blue circles; females red triangles. The observed 

sexual segregation is evident even when only males found in multiple years are considered 

 

Figure 2.6 (opposite) – Distribution of a) M. nattereri both sexes and b) female M. daubentonii social 

groups in Wytham Woods. Roosts used by bats, and home range estimates are coloured according to 

social group (colours are comparable to Figure 2.4, panels a) and c)). Home ranges are estimated using 

100% minimum convex polygons (MCPs). MCPs exclude roosts occupied by a single individual (M. 

nattereri, n = 24; M. daubentonii, n = 44) or separated by over 1km from a roost of the same social 

group (n = 1 for each species). Four adult female M. daubentonii were radio-tracked; two from each of 

two social groups. The daytime roosts (including trees) used by these individuals are indicated by 

asterisks and are coloured according to the social group to which they belonged 
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2.3.4 Spatial distribution of social groups 

 

Social groups showed roost site fidelity, each restricted to a sub-section of the woodland 

(Figure 2.6). The average minimum roost home range estimates were 0.17km2 (n = 4, range 

0.09 - 0.30km2) for M. daubentonii and 0.23km2 (n = 6, range 0.12 - 0.44km2) for M. nattereri. 

The three M. nattereri social groups for which three or fewer roosts were known (Figure 2.6a) 

were excluded from these calculations as accurate roost home range estimates were not 

possible. There was little spatial overlap between the estimated roost home ranges within 

species (M. daubentonii = 5%, M. nattereri = 6%), and no area was shared by more than two 

social groups (Figure 2.6). Between species, however, there was significant overlap; 39% of the 

total area covered by both species was shared. Using a multiple regression, roost home range 

estimates were shown to positively correlate to the number of individuals assigned to a social 

group (F = 9.65, df = 1, p = 0.02) but were not correlated to sampling effort (F = 1.15, df = 1, p = 

0.32) or species (F = 1.22, df = 1, p = 0.31). The spatial distribution of social groups did not 

reflect our sampling regime, and areas surveyed in a single day frequently contained more 

than one social group (representative daily sampling shown in Figure 2.1). 

Four female M. daubentonii, known to have been present at the site for at least two 

consecutive summers, were radio-tracked for a total of 51 tag-days (10-15 days per tag). These 

individuals were located in boxes on 29% (range, 20-55%) of days and in natural tree roosts on 

all other occasions. The tracked bats changed roosts on average every 2 days (range, 1.1-3.5). 

Two bats were radio-tracked from each of two social groups and were located inside the roost 

home range of their group on 49% of occasions (range, 30-71%; Figure 2.6). Of those fixes that 

were outside the roost home range, 56% were within 15 metres of their respective range. On 

no occasion was a radio-tracked individual located in the known roost home range of another 

M. daubentonii social group. 

M. daubentonii bachelor colonies observed during the nursery period were frequently found 

within the estimated roost home ranges of female social groups and of these, 5 bachelor 

colonies were identified in roosts previously used by nursery colonies (Figure 2.7). 
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Figure 2.7 – Distribution of M. daubentonii bachelor colonies observed during the nursery period 

compared to the MCPs of female social groups 

 

2.3.5 Duration of association between individuals 

 

Associations within and between sexes were found to differ in their stability over time both 

within and between species (Figure 2.8). M. nattereri show an initial rapid breakdown of 

associations with a 40-50% chance of individuals reassociating with one another at time lags of 

only a few days (Figure 2.8a). There is then a gradual decline across all classes of association 

until day c.550 suggestive of the breakdown of casual acquaintances. From this point until day 

920 the lagged association is stable, an indication that associations lasting more than 

c.550days are constant companionships. Though the lagged association rates of same-sex 

associations appear higher than those between sexes, this is not statistically significant given 

the standard error of the trends (Figure 2.8a). Lagged association rates for all classes stayed 

above the null association rate at all time intervals indicating the presence of preferred 

association’s both within and between sexes. 
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Figure 2.8 – Lagged association rates within and between sexes of a) M. nattereri and b) M. daubentonii. 

M = Male, F = Female. Standard error is calculated by jackknifing over a 30-day period 

 

Different trends are seen in the temporal structure of M. daubentonii associations (Figure 

2.8b). For all classes of association there is an initial rapid decline, which is more pronounced 

than in M. nattereri, with only a 15-25% chance of observing individuals reassociating with one 

another in the first few days. After this point same-sex associations are constant, indicating 
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that long-term companionships exist. By contrast between-sex associations show a decline in 

lagged association rate following the first few days which plateaus at c.300days (Figure 2.8b). 

After this time there is no difference between the observed level of association and that 

expected from a random network (data not shown) suggesting that there very few between-

sex associations amongst M. daubentonii that last more than a year.  
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2.4 Discussion 
 

This study identified multiple social groups in both M. nattereri and M. daubentonii 

populations within a continuous landscape in which roosts are not limiting (Figure 2.2). The 

social groups formed by M. daubentonii females and M. nattereri of both sexes show few 

inter-group interactions and little overlap between roost home ranges (Figure 2.4a, 2.4c and 

Figure 2.6). 

The social structure identified has implications for the potential spread of directly transmitted 

diseases. The clear separation of M. nattereri of both sexes into social groups that show very 

little interaction over the five years of this study (Figure 2.4a), suggests that contact rates 

between social groups is very low during the summer months. At the same time, contact rates 

between individuals within the same social group are high. This structure is likely to select 

against fast spreading acute infections, since herd immunity will quickly be achieved (Eames 

2007, Fine 1993). The social structure of M. daubentonii differed significantly from that of M. 

nattereri. While female M. daubentonii had few inter-group associations (Figure 2.4c) males 

had a significant number (Figure 2.4d). As a result the overall network has greater 

interconnectivity than the M. nattereri network (Figure 2.4b). This social structure would allow 

a disease to spread more rapidly. Interactions between males and females could lead to 

transmission of diseases from one female social group to another, a process that would be 

slower in the absence of males, given the females’ social structure. It is therefore likely that 

males play an important role in the spread of disease in summer populations of M. 

daubentonii. This new understanding of contact rates in summer populations of M. 

daubentonii should be incorporated into models of disease transmission and may provide 

valuable insights into the ecology of diseases of human health concern such as EBLV-2, a 

lyssavirus, known to be present in M. daubentonii in Britain. It is important that this predicted 

role of male M. daunbentoi is tested empirically as studies of both meerkats (Suricata 

suricatta) and lions (Pantera leo) have not found roving males to be important in disease 

transmission (Craft et al. 2010, Drewe 2010) 

It is important to note the networks presented in this chapter are only an approximation of the 

true contact network. Since the number of observations per individual is low (Table 2.1) and a 

proportion of individuals are likely unobserved (Table 2.2). Infrequent, inter-group 

movements, will almost certainly have been missed (Perkins et al. 2009). These lower 

frequency events are likely to be important for models of disease transmission. An additional 

study tracing the contacts of a small number of individuals using radio-tracking, could be used 
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to test whether the networks presented in the chapter reflect the true contact network of 

individuals.  

Members of a social group were often found to be distributed amongst a number of boxes on 

a given day. Additionally, radio-tracking data from M. daubentonii show that individuals switch 

roosts on average every 2 days. Thus, as suggested by previous studies (Kerth et al. 2011), the 

regular fission and fusion of bat colonies is shown to operate within social groups. That is to 

say that individuals change who they roost with regularly, but rarely roost with individuals 

from different social groups. 

The bats sampled within Wytham Woods had skewed adult, but not juvenile, sex ratios. 

Previous research that reported skewed sex ratios in populations of M. daubentonii 

hypothesised females exclude males from lowland areas of high quality foraging habitat 

(Encarnação et al. 2005; Dietz et al. 2006). However our work reveals a higher proportion of 

adult male M. daubentonii were captured than adult females (1.6:1) in a lowland woodland. 

Furthermore, within Wytham Woods M. daubentonii bachelor colonies are frequently found 

within the predicted roost home range of female social groups (Figure 2.7). Though we do not 

know how the quality of foraging habitat around Wytham Woods compares to previous 

studies, it is clear that in this woodland males are not excluded by nursery colonies of females. 

The adult sex ratio of captured M. nattereri had a female skew (0.4:1) which has been 

observed previously in some UK populations (Smith 2000) but not others (Park et al. 1998). 

The low proportion of M. nattereri males and M. daubentonii females observed in our 

population may be a result of different habitat or roost preferences between the sexes, for 

example M. nattereri males may have a greater preference for smaller natural roosts or there 

may be greater emigration of males from the natal range. 

The lower recapture rates of adult and juvenile males compared to females, that we observed 

in both species (Tables 2.1 and 2.3), could have one of three possible causes: i) males are less 

faithful to specific territories than females (i.e. have higher rates of emigration), (ii) males have 

higher mortality rates than females, (iii) males prefer to roost in trees rather than bird boxes. 

Radio-tracking could be used to test the first and last of these hypotheses. 

M. nattereri social groups include both sexes with few inter-group associations. By contrast 

male M. daubentonii social structure was shown to be largely independent of female social 

groups defined by SNA. This manifests as a high proportion of M. daubentonii bachelor roosts 

during the nursery period compared to M. nattereri, and significantly more inter-group 

associations in male M. daubentonii than M. nattereri (both sexes) or female M. daubentonii. 

The temporal structure of inter-sex associations of M. nattereri are comparable in stability to 
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intra-sex associations, and there was evidence of preferred associations lasting up to 900 days 

(Figure 2.8). In contrast, inter-sex associations of M. daubentonii appeared to last no more 

than c.300days whilst intra-sex associations appeared long-term (over 600days). Taken 

together the difference in social structure, duration of associations and the contrasting skewed 

sex ratios (see above) suggest that the two species may have distinct mating strategies. 

Although both species are thought to mate at swarming sites (Altringham 2003), mating may 

also occur in the autumn at summer roosting sites since in both species adult males occur with 

females (Park et al. 1998; Altringham 2003; Senior et al. 2005; Encarnação et al. 2006). M. 

nattereri account for up to 80% of captures at swarming sites across the UK (Altringham 2003; 

Rivers et al. 2006) and studies of population genetics suggest that for summer colonies of size 

10-30 (similar to those observed in the current study) the majority of mating is likely to occur 

at swarming sites (Rivers et al. 2005). The female-male associations in this study may therefore 

reflect the benefits to both sexes of natal philopatry, such as information transfer, rather than 

mate defence. 

In contrast, empirical studies of M. daubentonii in Yorkshire, UK, show that M. daubentonii 

make up only 6% of bats at swarming sites (Rivers et al. 2006) despite being equally, if not 

more abundant than M. nattereri (Altringham 2003). Genetic analysis suggests the majority of 

successful mating occurs before swarming at summer roost sites (Senior et al. 2005). The 

association of male M. daubentonii with females from multiple social groups and the high 

proportion of males in mixed sex colonies during the post-nursery period (Figure 2.3b, Figure 

2.4b) shown in this study are therefore likely to reflect their mating strategy. Unlike M. 

nattereri, male M. daubentonii are thought to disperse (Senior et al. 2005) which would reduce 

inbreeding as a result of mating at summer sites. However it is important to note that we 

observed a small number of juveniles return to their natal colony in the year following their 

birth. 

The observed variation in swarming behaviour, summer social behaviour and dispersal, of 

these two species suggests differing mating strategies. However, detailed studies into 

population genetics, social structure and dispersal at Wytham Woods and other sites are 

needed to test this hypothesis. 

Minimum roost home range estimates for M. daubentonii (0.09-0.30km2) and M. nattereri 

(0.12-0.44km2) were calculated from the location of roosts used by each social group. These 

data highlight the reliance of bat social groups on a network of roosts in a small area. The 

results were supported by radio-tracking of 4 female M. daubentonii which found bats rarely 

roosted far from the estimated minimum roost home range of their social group (Figure 2.6). 
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The overlap of roost home range within species was minimal, 5-6% compared to 39% between 

species, which suggests active avoidance and perhaps territorial defence between conspecific 

social groups within the wood. The reliance on a restricted territory may make these bats 

more susceptible to small scale habitat changes, such as felling an area of wood for timber, 

than previously suspected. Studies of Chalinolobus tuberculatus, a threatened New Zealand 

bat species, have shown that their social groups have similarly restricted roost home ranges 

(O'Donnell 2000). Within the year following tree felling, individuals in the area had smaller 

roosting home ranges and used fewer roosts than individuals in areas away from felling (Borkin 

et al. 2011). A substantial reduction in available roosting habitat within a social group’s roost 

home range may also increase competition between social groups, though the mechanism by 

which these home ranges are maintained is unclear. It is therefore critical that the needs and 

locations of bat social groups are considered when undertaking alterations to their habitat to 

ensure minimal impact. 

In summary our study of M. daubentonii and M. nattereri reveals striking differences in the 

structure of their populations that would be difficult to visualise without the tools offered by 

SNA. The social structures observed suggest that contact rates within social groups are much 

higher than between social groups, and in the case of M. daubentonii, transmission of disease 

between female groups is likely to be facilitated by males. These findings should be taken into 

account when modelling pathogens in bat populations. Future work should compare the 

networks presented with those generated from radio-tracking studies to assess their accuracy. 

Additionally it is hoped that my findings will stimulate further investigations into the evolution 

of mating strategies and social structure that will have relevance to the conservation of bat 

populations. Future work should consider the habitat requirements of social groups, the 

change in population social structure through the year, the role of individuals in maintaining 

group cohesion, the reproductive success of individuals and the implications of contrasting 

social structures on information transfer.  
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3 Intra- and inter-specific roost preferences in three 

woodland bat species 

 

3.1 Introduction 

 

Despite their diversity, the majority of bat species are social, coming together to roost (Kerth 

2008). The benefits of this behaviour derive both from the roost site, its microclimate and 

proximity to foraging habitat, and from roost cohabitants, through co-operation and social 

thermoregulation. 

Research examining where, and with whom, bats roost furthers our understanding of the 

evolution of their social structure, informs models of disease transmission, and aids their 

conservation by identifying attributes of preferred roosts. 

The three sympatric insectivorous bat species studied here are, Myotis. daubentonii, M. 

nattereri and Plecotus auritus. M. nattereri and P. auritus predate insects on and around 

vegetation (Altringham 2003). Roosts of both species are strongly tied to deciduous woodland 

(Entwistle et al. 1996, 1997; Parsons & Jones 2003; Smith & Racey 2008; Boughey et al. 2011), 

however the distribution of their roosts within this habitat has not been explored. M. 

daubentonii forage predominantly over water (Jones & Rayner 1988; Akasaka et al. 2009; 

Langton et al. 2010; Lucan & Radil 2010), and roost in trees and man-made structures close to 

water (Boonman 2000; Altringham 2003). 

In many insectivorous bat species the sexes roost apart during the nursery period when 

females are lactating. Both M. daubentonii and M. nattereri exhibit this behaviour, however P. 

auritus males and females roost together throughout the nursery period (Altringham 2003). 

The segregation of male and female M. daubentonii, M. nattereri and many other species is 

thought to result from differences in their physiological needs. To maximise milk production 

females are homoeothermic and may prefer warm roosts, while males may prefer lower 

temperatures so that they can enter torpor and save energy (Dietz & Kalko 2006). Lower 

temperatures might be expected in roosts containing small groups or individual bats (Kerth 

2008). However, M. daubentonii is noted for its formation of male only aggregations of up to 

60 individuals during the nursery period (Altringham 1996). Male Vespertilio murinus 

(Particoloured bat), which also form male aggregations, have been suggested to benefit from 

increased rates of reproductive tissue development when forming large colonies (Safi 2008). 

This is thought to be a result of either information sharing, whereby individuals may 
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communicate the location of foraging sites, or social thermoregulation, whereby individuals 

reduce the energetic cost of homeothermy (Safi 2008). Additionally individuals may choose to 

leave aggregations once their reproductive tissues are developed (Safi 2008) or at times when 

roosting alone is more beneficial (e.g. when entering torpor). However, since the benefit of 

communal roosting would only increase in the presence of females it does not explain why the 

sexes roost apart. It has been suggested that sexual segregation amongst M. daubentonii 

during the nursery season is a result of females excluding males from good quality foraging 

and roosting habitat due to their high energy demands during this period (Encarnação et al. 

2005; Dietz et al. 2006). It is unclear why P. auritus does not exhibit sexual segregation, 

however, there is a trend for increased sexual segregation in this species at lower latitudes 

which suggests social thermoregulation as a possible driver in the UK’s cooler climate 

(Entwistle et al. 2000). 

The segregation of populations, by whatever means, has implications for the transmission of 

disease. Populations that consist of groups with little inter-group contact can have reduced 

overall prevalence of disease and select for chronic diseases (Eames 2007). Understanding why 

bat species such as M. daubentonii exhibit sexual segregation is therefore useful in models of 

disease. Recent work suggests segregation amongst M. daubentonii varies with altitude 

(Angell, 2013), however there is not a significant enough altitudinal gradient in Wytham woods 

to explore this further. Instead I will explore other attributes of male and female M. 

daubentonii roost sites during the summer months. 

In chapter 2 I showed that populations of M. daubentonii and M. nattereri formed social 

groups and I explored the implications of this population structure for models of disease 

transmission (2.4). It is possible that the social structure observed could have emerged as a 

result of limited roost availability in the wood. A better understanding of the roost preferences 

of these species at the study site will allow this hypothesis to be tested. 

This chapter examines the roost preferences of M. daubentonii, M. nattereri and P. auritus, 

and looks for differences between the roosts used by M. daubentonii colony types (bachelor, 

nursery and mixed) in Wytham Woods, Oxfordshire. This site has many advantages for such a 

study. GPS data is available for all bird boxes used as roost sites by bats, and as a part of the 

Environmental Change Network (ECN) detailed weather data, habitat data, and LiDAR (Light 

Detection And Ranging) data are also available. LiDAR produces detailed attitudinal 

information which can be used to calculate canopy height and cover, and topological variables 

such as slope and aspect. 
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By studying the roost preferences of M. daubentonii, M. nattereri and P. auritus we aim to test 

whether a) roost preferences of each species are different and can be explained by known 

differences in species ecology, b) preferred roosts are limiting and can explain the social 

structure observed in Chapter 1, c) the presence of bats in a roost increases the temperature 

significantly, d) M. daubentonii nursery colonies occupy roosts closer to water and with a 

warmer microclimate than those used by bachelor colonies and e) bachelor colonies avoid 

roosts with high numbers of batfly puparia, while maternity colonies, dependent on a small 

number of high quality roosts (see ‘c)’), use roosts with greater number of batfly puparia.  
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3.2 Methods 

 

3.2.1 Sampling site 

 

Bats were studied at Wytham Woods, Oxfordshire (Latitude, 51°77’27”; Longitude, -1°33’41”) 

where they roost in many (>67%) of over 1150 woodcrete bird boxes spread throughout the 

wood. For a detailed description of the site see Chapter 1 (1.6.1). 

 

3.2.2 Species’ roost preference 

 

3.2.2.1 Occupancy records 

 

The presence of bats was recorded in roost boxes in the summers of 2006 to 2010 (Appendix, 

table 7.1). Boxes were considered to be used by a species if an individual of that species was 

found in the box at any time during the study. When modelling the roost preferences for each 

species, the occupancy records of the other two species were also included. These variables 

(model variables: ‘Co-occurrence of...’) allow us to assess whether any of the species avoid or 

prefer using boxes that are used by one of the other species studied. The relationship between 

species may be time dependent; for example, a roost recently used by one species may be 

avoided by another, but may become more likely to be used as the time since occupancy 

increases. As bats regularly move roosts and the survey method has a low temporal resolution 

it was not possible to estimate these time intervals and so roosts are categorised in a binary 

manner, having been used by a species or not. Sampling effort (number of times the box was 

checked) was recorded for each box and included in data analysis of roost preference (Figure 

3.1). 

Inevitably, data of this type will underestimate true occupancy as continuous monitoring was 

impossible. To explore the effects of false-negative results we separately analysed the data 

including only boxes checked on more than 5 occasions (n = 661 of 1187). One way of inferring 

roost use without direct observations of bats is through records of faeces. As faeces cannot be 

reliably identified to the species level without genetic analysis we combined all data on faeces 

and bats’ occupancy to compare roosts used by any bat species, and roosts with no evidence 

of occupancy. 
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Figure 3.1 – Distribution of sampling effort across roost boxes. Sampling effort was increased in areas 

known to be frequently used by bats to maximise data collection, particularly for social network 

analysis. The area used in the study of roost microclimate is highlighted 

 

Colonies of M. daubentonii identified in the nursery season were categorised into colony types 

according the composition of adults: those dominated (>66.6% of total) by adult females, 

those dominated (>66.6% of total) by adult males (bachelor colonies) and those with mixed 

adult sexes. The nursery season was defined as the time between the first and last colony of 

lactating females with juveniles. These dates varied from year to year, since the timing of 

births is weather dependent. These colony definitions are the same as those used in Chapter 2 

and 4. 

 

3.2.2.2 Habitat and box types 

 

The habitat types in Wytham Woods can be defined by their history. Habitat blocks were 

therefore defined into 3 broad types: semi-natural ancient woodland, secondary woodland 

and plantation (Figure 3.2). Ancient woodland is characterised by abandoned hazel (Corylus 

spp.) coppice with oak (Quercus robur) standards which have not been managed for 40-100 
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years. Secondary woodland is varied, some is dominated by ash (Fraxinus excelsior) and 

sycamore (Acer pseudoplatanus) whilst other areas are dominated by blackthorn (Prunus 

spinosa) and hawthorn (Crataegus monogyna) shrubs. Areas classified as plantation were 

planted in the 1800s and 1900s and are dominated by Beech (Fagus sylvatica) and exotic 

conifers. Habitat type was included in models as a three level factor (semi-natural ancient 

woodland, secondary woodland and plantation). 

 

 

Figure 3.2 – The distribution of the three major habitat types in Wytham Woods. Classifications are 

made at the scale of the compartments, subdivisions of the wood divided by rides and historic 

management boundaries 

 

There are differences in the woodcrete bird boxes used as roost sites by bats in Wytham 

Woods, depending whether they are intended for use by Cyanistes caeruleus (Blue tits) or 

Parus major (Great tits). Blue tit boxes have 26mm diameter entrance holes, tend to have flat 

roofs, and were put up 6 years before the start of this study. Great tit boxes have 32mm 

diameter entrance holes, tend to have peaked roofs and have been present for more than 50 

years (Figure 3.3). Box type was included in models as a two level factor (Blue tit and Great tit). 
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Figure 3.3 – The design of a) Blue tit and b) Great boxes used as roosting sites by bats 

 

3.2.2.3 LiDAR and derived data 

 

Structural properties of the vegetation surrounding each roost box may influence roost 

selection by bats. For example, canopy structure may influence exposure to weather and solar 

radiation (Davies-Colley et al. 2000; Shine et al. 2002), which may be important drivers of roost 

selection. This was assessed using a LiDAR dataset. 

LiDAR uses light pulses directed at the ground from an aeroplane to gather detailed data on 

the height of vegetation and land surface in a swath below it. The timings and intensity of the 
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first and last signals that return to the instrument are recorded. The first return pulse indicates 

the distance to the closest object, typically the top of the canopy. The last return is of most 

interest in leaf-off winter conditions when it provides information on the height of the ground. 

These data were collected twice in 2005, once in the summer and once in the winter by the 

Unit for Landscape Modelling (ULM), Cambridge University. 

Using this LiDAR data a digital terrain model (DTM) was created by Dr Ross Hill, Centre for 

Ecology & Hydrology, Wallingford. This model maps the land surface of the woods by 

interpolating results from LiDAR ground hits. By subtracting this model from the original digital 

elevation model it was possible to generate a digital canopy height model (DCHM). 

 

 

Figure 3.4 – Ten meter buffers surrounding each box were used to calculate canopy variables. Buffers 

were clipped by the woodland boundary map, marking the extent of the woodland 

 

Canopy attributes, slope and aspect were calculated for the area within 10m radius of each 

box. This scale was chosen as it is large enough to avoid canopy attributes being 

disproportionally influenced by the tree to which the box is attached, and small enough to be 
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indicative of the local canopy structure and not an average of the habitat type. By using a 10m 

radius buffer it was also possible to avoid pseudo-replication as few buffers (n = 181 out of 

1192) overlapped (Figure 3.4). Buffers that went beyond the woodland edge were cropped so 

that only the area within the woodland was considered. Buffers with more than two thirds of 

their area outside the woodland boundary or extending into a small area of the wood that was 

not mapped by LiDAR, were removed from the analysis (n = 12). 

The DTM was used to calculate topological variables for Wytham Woods. Altitude, aspect and 

slope of the terrain were all calculated using ArcGIS (ESRI v. 9.3, 2008) (Figures 3.5-3.7). The 

altitude of each box was taken from the DTM using the GPS location data available for each 

box (courtesy of Teddy Wilkin, Oxford University). The mean slope and aspect for a 10m radius 

buffer around each box was also calculated using data from the DTM (Figures 3.6 and 3.7). 

 

 

 

Figure 3.5 – A map of the altitudinal gradient across Wytham Woods. The wood is highest in the middle 

providing a range of altitudes and aspects 
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Figure 3.6 – A map of aspect throughout Wytham Woods. The aspect of the terrain around each box was 

calculated by averaging the aspect within a 10m radius buffer (see Figure 3.4) 

 

Figure 3.7 – A map of slope throughout Wytham Woods. The slope of the terrain around each box was 

calculated by averaging the slope within a 10m radius buffer (see Figure 3.4) 
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Attributes of the canopy surrounding each box was calculated from the DCHM. The minimum 

cut off height for canopy was taken to be 8m (Figure 3.8). This cut off is from Hill & Broughton 

(2009) who used a LiDAR dataset to study the canopy of Monks Wood, a woodland 

comparable in structure to Wytham Woods.  

Within each buffer 6 canopy variables were calculated from the LiDAR data. The maximum 

canopy height, minimum canopy height, average canopy height, the proportion of the area 

covered by canopy, the standard deviation of canopy height and the proportion of the area 

covered by vegetation over 3 meters in height. The proportion of each buffer containing 

vegetation over 3 meters (the maximum height of boxes in the wood) and canopy were 

included as indicators of the level of shading. These estimates of shading were also calculated 

for a 3m radius buffer. The ability of these values to accurately predict shading was tested 

using photography and observer estimates of vegetative cover for a subset of boxes (n = 34). 

The percentage of sky obscured by vegetation in a 10 metre radius around the box was 

estimated and at the same visit, a camera fixed with a fish-eye lens was used to take 

photographs. Vertical images of the canopy at the height of each box (mean = 2m) and Gap 

light Analyser (v.2) software (http://www.ecostudies.org/gla/) were used to calculate the 

proportion of each image that represented vegetation. Data from observer estimates and 

photographs were compared with estimates derived from the LiDAR data. 

Whilst the LiDAR data used (from 2005) did not have a measure of accuracy associated with it, 

a LiDAR dataset of part of the woodland from 2009 collected using the same methodology did. 

The 2009 dataset was produced by Airborne Research and Survey Facility, NERC and the 

dataset is known to have a mean error of 4.3cm (standard deviation = 4.8cm). The DTM (from 

2005) was compared to the 2009 dataset across 200 randomly selected points in areas of open 

ground, where ground elevation could be reliably identified. The two datasets were 

significantly different (paired t-test: t = 5.553, df = 199, p< 0.001), however they had a mean 

difference of only 4.8cm (standard deviation = 4.8cm). Given the mean error of the 2009 

dataset this difference was not large enough to reject the 2005 dataset. 

The LiDAR variables calculated for the 10 metre buffers were entered into a principal 

components analysis (PCA) to consolidate them into variables that described the largest 

amount of variability in canopy structure. The top two principal components, which captured 

91.7% of the observed variance in the data, were used in models (model variables: LiDAR – PC1 

and LiDAR – PC2). 

 

http://www.ecostudies.org/gla/
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Figure 3.8 – The distribution and height of canopy in Wytham Woods. Canopy was classified as vegetation over 8m 
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3.2.2.4 Distance to landscape features 

 

The distance from roost boxes to landscape features of potential importance to bats were 

calculated in ArcGIS.  

 

Figure 3.9 – Bodies of water close to Wytham Woods, Farmoor reservoir and the Thames River, were 

mapped in Arc GIS. Intersections of the woodland edge with linear features including hedgerows and 

tree lines were also mapped. The distance from each box to the closest water body and woodland/linear 

feature intersection were calculated 

 

There are two prominent water bodies close to Wytham Woods: Farmoor reservoir, which lies 

to the South-west, and the River Thames which runs around the eastern, northern, and 

western sides of the wood (Figure 3.9). The distance from each box to the closest water body 

was recorded (model variable: ‘Distance to water’). The minimum distance to the edge of the 

woodland (model variable: ‘Distance to woodland edge’), including the edges of three large 
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clearings within the wood (Figure 3.9), was calculated using a woodland boundary map drawn 

from satellite images (Google Inc., www.maps.google.com, accessed 01/09/11). 

Many British bat species are thought to use linear features such as hedgerows and treelines as 

commuting routes, and in some cases as foraging habitat (Entwistle et al. 1996; Walsh & Harris 

1996; Lundy & Montgomery 2010). Linear features that connected with the woodland were 

identified using the DCHM in the first instance. For areas not covered by this dataset satellite 

images were used (Google Inc.). Points were added where linear features joined Wytham 

Woods (Figure 3.9) and the distance of roost boxes to the closest linear feature/woodland 

intersection were then calculated (model variable: ‘Distance to linear feature’). 

Woodland rides, cleared corridors to allow vehicular access, are also commonly perceived to 

be beneficial for bats, providing corridors for bats to commute along and foraging habitat 

(Joint Nature Conservation Committee 2001), but there is limited published research (but see 

Downs & Racey 2006). Wytham Woods contains a network of rides that may be used by bats 

for commuting and foraging. These rides have been previously mapped by the ECN (Centre for 

Ecology & Hydrology, Wallingford, UK), and this map was updated using the leaf-off LiDAR data 

set. The distance from each box to the nearest ride was calculated in ArcGIS (model variable: 

‘Distance to ride’). 

 

3.2.3 Roost preferences in M. daubentonii nursery and bachelor roosts 

 

To investigate whether bachelor and nursery roosts of M. daubentonii were selected on the 

basis of microclimate or other roost specific variables we made detailed observations on 34 

bird boxes. 

 

3.2.3.1 Sample design 

 

Boxes were selected from the northern region of the wood so that they could be easily 

checked on each day of observations. The following boxes were selected: 9 nursery roosts, 12 

bachelor roosts (3 pre-nursery season colonies, 9 nursery season colonies) and 13 roosts that 

had no previous records of bats and in most cases (10 of 13) no evidence of occupancy in the 

form of faeces on the floor of the box. These boxes included both those designed for Great tits 

http://www.maps.google.com/
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and Blue tits. The number of boxes included in this study was limited by the number of iButton 

dataloggers available (n = 34). 

 

3.2.3.2 Temperature and humidity recordings 

 

The temperature and humidity of each box was recorded using iButton temperature and 

humidity data loggers (DS1923: Maxin Integrated Products, CA, USA). Data loggers were set to 

record the temperature and humidity at 20 minute intervals at an accuracy of 0.0625°C and 

0.04% relative humidity (%RH). As the presence of bats was likely to affect the microclimate 

data recorded (Bartonicka & Rehak 2007) all 34 boxes were checked for the presence of bats 

each day of deployment. To detect changes in roost microclimate due to the presence of bats 

dataloggers were placed on the inside of the door where bats would not rest against them. 

The average temperature and humidity was calculated for each day, from dawn to sunset, and 

therefore reflected the conditions when bats would be roosting. Temperature and humidity 

were recorded over 16 days between late July and early August 2010. 

 

3.2.3.3 Roost box variables 

 

Certain physical characteristics of roost sites are thought to make them more or less attractive 

to bats. Some studies have demonstrated that occupancy rates increase with roost height 

(Williams & Brittingham 1997; Agnelli et al. 2011), perhaps as these roosts afford protection 

from terrestrial predators. Box height, from the ground to the entrance, was recorded. 

It has been suggested that roost switching in bats may result from active avoidance of roost 

associated parasites such as bat flies and fleas (Reckardt & Kerth 2007). It is also possible that 

avoidance of parasites plays a part in the sexual segregation seen in many species of bat, 

including M. daubentonii. To investigate whether bat colonies utilised roosts with low parasite 

burden or whether there is a difference in the parasite burden of roosts used by bachelor and 

nursery colonies, the number of bat fly puparia attached to the walls of each roost box was 

recorded. Bat flies are an indirectly transmitted parasite that spend their adult life on their 

host and only move off-host to deposit puparia in the roost. The presence of bat fly puparia in 

a roost was not taken to mean that the roost had been occupied by M. daubentonii since M. 

nattereri also carry bat flies. As a result, some of the roosts identified as unoccupied by M. 
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daubentonii contained bat fly puparia. A small sample of four pupae were collected and 

viewed under a microscope. Identification as bat fly pupae was confirmed using a key of pupae 

(Hurka 1964), and by the identification of bat flies within them. 

3.2.3.4 Habitat variables 

 

Canopy cover was recorded for each box as previously described using photography (3.2.2.3), 

and the distance to water was recorded as for the analysis of species roost preferences 

(3.2.2.4). 

Understory, defined as sub-canopy vegetation over 1.5m, may influence roost choice as a 

significant amount of clutter may make flight difficult. Understory was recorded in the field 

and assigned to one of three categories: 0 – no understory, 1 – scattered understory and 2 – 

dense understory.  

 

3.2.4 Statistical analysis 

 

Roost preference for each species was analysed by comparing occupied and unoccupied roost 

boxes using logistic regression with model selection following an information theoretic 

approach (Anderson et al. 2000; Anderson et al. 2001; Anderson & Burnham 2002; Burnham & 

Anderson 2002; Burnham et al. 2011). All models included sampling effort (Figure 3.1) as an 

explanatory variable. It is important that sampling effort is included, since the chance of 

observing bats in a box increases the more times it is checked. When modelling roost 

preference for each species Akaike’s information criterion (AIC) was used to compare models. 

However when comparing M. daubentonii colony types the modified Akaike’s information 

criterion (AICc) was used as sample size was small. This modified criterion accounts for models 

which include a large number of variables compared to the sample size (Burnham et al. 2011). 

Models with a ∆AICc/∆AIC < 7, equivalent to an evidence ratio of 33.1, were selected 

(Burnham et al. 2011). The Akaike weight (wi) was calculated for each model and can be 

viewed as the probability that a model is the best of those considered, given the data. 

Parameter estimates were calculated by averaging across all models in which the parameter 

appeared and weighting the average according to the Akaike weight of each model. Variables 

are also given a value of ‘importance’ (I). This is the sum of the Akaike weights of all the 

selected models in which it appears and therefore represents the probability that the variable 

appears in the best model. 
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All analyses were undertaken in ‘R’, version 2.13.2 (R Development Core Team 2011) and the 

package ‘MuMIn’ (Barton 2011) was used to generate multi-model inferences. Due to the 

computational intensity of comparing multiple models, and the fact that the number of models 

to consider doubles with each additional variable, interaction terms were not included in the 

analyses. Generalised additive models (GAMs) were used for the logistic regression using 

package ‘mgcv’ (Wood 2011). GAMs were used so that aspect could be fitted to a smoothing 

function which limited the variable to a sin wave form with the same value at 0 and 360, 

thereby accounting for its circular nature. As aspect was modelled using a sin wave, the 

models produce two coefficients to explain the relationship between aspect and the 

dependent variable (model variables: ‘Aspect – First order’ and ‘Aspect – Second order’). Pairs 

plots were used to check for co-correlation between explanatory variables (R Development 

Core Team 2011). 

Differences between roosts occupied with bachelor, nursery and mixed colonies of M. 

daubentonii were compared using ANOVAs and chi-squared tests. Estimates of vegetation 

cover over bird boxes using LiDAR and visual estimates made by an observer in the field were 

compared to results from photography using general linear models (GLMs). 

The effect of bats, day, and box on the temperature and humidity within boxes were examined 

using generalised linear mixed effects models (GLMMs) in which the presence of bats was 

included as a fixed effect and day and box as random effects. Differences between the 

microclimate and other properties of M. daubentonii bachelor roosts, and nursery roosts and 

unoccupied roosts were analysed by logistic regression analyses. 

The variation in the number of bat puparia within bachelor, nursery and mixed roosts was 

assessed using a GLM with negative-binomial error structure. This error structure was shown 

to better describe the data than a Poisson distribution (χ2 = 341, p < 0.0001) using the R 

package ‘pcsl’ version 1.04.1 (Jackman 2011).  
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3.3 Results 

 

3.3.1 Assessment of vegetative cover estimates 

 

Comparison of vegetative cover estimates from LiDAR, fish-eye images and observer 

recordings made on 34 boxes revealed that LiDAR did not give an accurate estimate of cover. 

There was no significant correlation between LiDAR estimates of cover for either 3m or 10m 

buffers around boxes and the data from photographs (Table 3.1). However, there was a 

correlation between observer and photographic data, though I consistently underestimated 

the proportion of canopy. As canopy cover could not be reliably estimated from LiDAR this was 

not included in models of roost preference. 

 

 

Buffer size Variable t value p -value

Proportion of cover over 8m 0.168 0.87

Proportion of cover over 3m 0.25 0.80

Proportion of cover over 8m -1.37 0.18

Proportion of cover over 3m -1.45 0.16

Observer estimate 5.94 <0.0001

10 metre

3 metre

 

Table 3.1 – Tests for correlations between estimates of vegetative cover using LiDAR and field 

observations, and estimates from fish-eye photography. Estimates using LiDAR data did not accurately 

predict canopy cover 

 

 

3.3.2 Co-correlation of explanatory variables 

 

Pairs plots revealed that altitude was correlated to distance to water and distance to linear 

features and so it was excluded from the analysis. This correlation exists because Wytham 

Woods is on a hill with its highest point at the centre (Figure 3.5). No other explanatory 

variables exhibited significant co-correlation. 
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3.3.3 Principal components analysis of LiDAR data 

 

LiDAR variables (excluding cover estimates) were entered into a PCA. The first two principal 

components accounted for 91.7% of the observed variance in the data. PC1, explaining 56.4% 

of the variance, was correlated to canopy height. PC2, explaining 35.3% of the variance, was 

representative of the heterogeneity of canopy height, being correlated to the standard 

deviation and minimum recorded canopy heights within the 10m buffer around each box 

(Figure 3.10). As described in the methods (3.2.2.5) these two PCs summarising the LiDAR data 

were used in the GLMs examining roost preferences. 

 

 

Figure 3.10 – Principal components analysis of canopy attributes for 10m buffers around each roost box. 

Grey labels represent the data points for each roost box whilst black arrows show the direction of the 

axes for each variable included in the analysis. Principal component 1 is correlated to canopy height 

whilst principal component 2 is correlated to canopy height heterogeneity. Together these components 

account for 91.7% of the observed variation 
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3.3.4 Roost preference, what is the general trend? 

 

When all roosts containing evidence of occupancy (i.e. observations of bats or bat droppings) 

were compared to roosts for which there was no record of occupancy, four variables were 

found to be important. The probability of roost occupancy increased with proximity to water 

and canopy height heterogeneity, and decreased with proximity to woodland edge (I = 1 in all 

cases, Table 3.2). Sampling effort was also important, supporting the assumption that boxes 

checked more frequently are more likely to be recorded as occupied at some point (I = 1). To 

identify whether these preferences are shared between species, occupancy records were also 

analysed separately for each species. 

 

 

Variables Coefficients (±95% CI) I

(Intercept) -2.591 (±1.039)

Distance to woodland edge (km) 5.727 (±2.31) 1.00

Distance to linear feature (km) 1.147 (±1.143) 0.74

Distance to ride (km) -2.504 (±3.626) 0.47

Distance to water (km) -0.693 (±0.413) 1.00

Box type: Great Tit 0.253 (±0.54) 0.37

Plantation 0.147 (±0.478)

Secondary Woodland 0.176 (±0.445)

LiDAR - PC1 0.124 (±0.118) 0.77

LiDAR - PC2 0.304 (±0.162) 1.00

Aspect - First order -0.005 (±0.049)

Aspect - Second order 0.009 (±0.079)

Slope 0.036 (±0.064) 0.41

Sampling effort 0.638 (±0.094) 1.00

Deviance explained by best model

Number of models included in inference

0.17

0.50

36%

116  

Table 3.2 – Results of multimodel inference of variables influencing the probability of roost occupancy 

by all species. A roost was said to be occupied if bats or faeces were found in it at any time. Variables 

with an importance greater that 0.9 (i.e. a 90% chance that the variable is present in the best model) are 

indicated in bold 
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3.3.5 Species specific roost preferences 

 

3.3.5.1 Roost preference modelling using all roost occupancy records 

 

From 2006 to 2010 we identified 162 M. daubentonii roosts, 158 M. nattereri roosts and 63 P. 

auritus roosts (Figure 3.11-3.13). Though bats of different species were never found to occupy 

the same roost at the same time they did use the same roosts at different times. M. 

daubentonii and M. nattereri used 27 of the same boxes, M. daubentonii and P. auritus used 4 

of the same boxes and M. nattereri and P. auritus used 6 of the same boxes. These rates are no 

different from those expected by chance (χ2 tests; p = 0.49, p = 0.32 and p = 0.74 respectively). 

 

 

 

Figure 3.11 – Distribution of M. daubentonii summer roosts 2006-2010 
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Figure 3.12 – Distribution of M. nattereri summer roosts 2006-2010 

 

Figure 3.13 – Distribution of P. auritus summer roosts 2006-2010 
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Models of M. daubentonii reveal that the species is most common in roosts close to water (I = 

1) but away from the woodland edge (I = 1) (Table 3.3). Additionally there was an observed 

preference for boxes designed for great tits (I = 1) and evidence of higher use of boxes with 

easterly aspects (I = 0.97). Amongst M. nattereri there was no observed effects of distance to 

edge or water but in contrast to M. daubentonii there was an increase in the probability of 

occupancy for roosts designed for blue tits (I = 1). P. auritus showed a preference for roosts far 

from linear features (I = 0.92) and in areas with a westerly aspect (I = 0.91). 

Sampling effort was found to be an important factor for predicting whether a box was 

observed to be occupied by M. daubentonii and M. nattereri (I = 1). 

Models of M. daubentonii captured a greater amount of the observed deviance than models of 

M. nattereri or P. auritus (deviance explained by the best model: M. daubentonii = 24%, M. 

nattereri = 8%, P. auritus = 10%). The low amount of deviance explained by models of M. 

nattereri and P. auritus suggests the roost specific parameters that were measured are poor 

predictors of the species’ distribution. 
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Variables Coefficients (±95% CI) I Coefficients (±95% CI) I Coefficients (±95% CI) I

(Intercept) -3.769 (±1.419) -2.405 (±0.801) -4.346 (±1.81)

Distance to woodland edge (km) 4.145 (±2.645) 1.00 0.790 (±2.009) 0.30 1.217 (±2.956) 0.30

Distance to linear feature (km) -1.461 (±1.842) 0.59 0.577 (±1.329) 0.31 2.356 (±1.986) 0.92

Distance to ride (km) 2.357 (±3.133) 0.54 0.546 (±3.283) 0.23 -4.214 (±7.385) 0.40

Distance to water (km) -1.483 (±0.593) 1.00 0.087 (±0.428) 0.24 -0.611 (±0.682) 0.58

Co-occurence of P. auritus -1.103 (±1.096) 0.84 -0.495 (±0.891) 0.39 NA NA

Co-occurence of M. nattereri 0.005 (±0.517) 0.23 NA NA -0.619 (±0.909) 0.50

Co-occurence of M. daubentonii NA NA -0.125 (±0.504) 0.25 -1.096 (±1.107) 0.85

Box type: Great Tit 1.098 (±0.616) 1.00 -0.972 (±0.414) 1.00 0.158 (±0.798) 0.25

Plantation -0.242 (±0.840) 0.169 (±0.584) 1.159 (±0.9)

Secondary Woodland -0.232 (±0.580) -0.099 (±0.507) 0.917 (±0.864)

LiDAR - PC 1 0.034 (±0.148) 0.26 0.127 (±0.124) 0.79 0.109 (±0.219) 0.37

LiDAR - PC 2 0.168 (±0.161) 0.77 0.112 (±0.143) 0.55 0.137 (±0.208) 0.44

Aspect - First order 0.438 (±0.333) 0 (±0.006) -0.460 (±0.433)

Aspect - Second order -0.046 (±0.439) 0 (±0.01) 0.4 (±0.527)

Slope (degrees) -0.06 (±0.087) 0.46 -0.004 (±0.063) 0.21 -0.022 (±0.094) 0.25

Sampling effort 0.3 (±0.079) 1.00 0.17 (±0.062) 1.00 0.12 (±0.118) 0.76

Deviance explained by best model

Number of models included in inference 713 1035

M. daubentonii M. nattereri P. auritus

0.13 0.12 0.87

0.97 0.50 0.91

24% 8% 10%

145  

Table 3.3 – Results of multimodel inference of variables influencing the probability of roost occupancy by M. daubentonii, M. nattereri and P. auritus. Variables with 

an importance greater that 0.9 (i.e. a 90% chance that the variable is present in the best model) are indicated in bold 
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Variables Coefficients (±95% CI) I Coefficients (±95% CI) I Coefficients (±95% CI) I

(Intercept) -2.661 (±1.690) -0.745 (±1.094) -3.216 (±1.649)

Distance to woodland edge (km) 4.655 (±3.336) 1.00 0.709 (±2.456) 0.25 2.066 (±4.161) 0.35

Distance to linear feature (km) -2.186 (±2.39) 0.69 0.835 (±1.652) 0.35 3.064 (±2.465) 0.89

Distance to ride (km) 2.098 (±3.285) 0.45 -0.232 (±3.527) 0.21 -5.614 (±8.023) 0.51

Distance to water (km) -1.659 (±0.742) 1.00 0.042 (±0.545) 0.21 -0.584 (±0.986) 0.39

Co-occurence of P. auritus -0.919 (±1.111) 0.64 -0.401 (±0.919) 0.31 NA NA

Co-occurence of M. nattereri -0.036 (±0.538) 0.23 NA NA -0.456 (±0.916) 0.35

Co-occurence of M. daubentonii NA NA -0.05 (±0.512) 0.20 -0.998 (±1.107) 0.75

Box type: Great Tit 0.847 (±0.667) 0.98 -1.159 (±0.489) 1.00 0.196 (±0.969) 0.24

Plantation -0.451 (±1.076) 0.422 (±0.768) 0.907 (±1.315)

Secondary Woodland -0.448 (±0.692) -0.093 (±0.593) 0.685 (±1.11)

LiDAR - PC1 0.045 (±0.177) 0.28 0.121 (±0.154) 0.56 0.194 (±0.273) 0.50

LiDAR - PC2 0.065 (±0.179) 0.30 0.062 (±0.166) 0.27 0.06 (±0.255) 0.23

Aspect - First order 0.839 (±0.504) 0 (±0.059) -0.234 (±0.489)

Aspect - Second order -0.319 (±0.487) -0.007 (±0.076) 0.227 (±0.491)

Slope -0.042 (±0.094) 0.32 -0.029 (±0.071) 0.29 -0.009 (±0.11) 0.22

Sampling effort 0.227 (±0.111) 1.00 0.053 (±0.103) 0.36 -0.002 (±0.181) 0.23

Deviance explained by best model

Number of models included in inference

8%

M. daubentonii M. nattereri

1890

0.25

0.50 0.63

P. auritus

0.23

187 1387

0.23

1.00

15% 4%

 

Table 3.4 – Results of multimodel inference of variables influencing the probability of roost occupancy by M. daubentonii, M. nattereri and P. auritus, when only 

boxes checked on more than five occasions are considered. Variables with an importance greater that 0.9 (i.e. a 90% chance that the variable is present in the best 

model) are indicated in bold 
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3.3.5.2 Roost preference modelling using roosts checked on more than five occasions 

 

False negatives, whereby bats are not recorded to occupy a box but in fact do, are known to 

exist in this dataset as of all boxes checked 35% have records of bats of any species but 67% 

have records of bat droppings. To reduce the number of false negatives, roost occupancy data 

were reanalysed including only boxes checked on more than 5 occasions (n = 661 of 1187). 

This analysis produced results similar to that with all boxes included (Table 3.4). Increased 

probability of occupancy by M. daubentonii was associated with Great tit boxes (I = 0.98), 

boxes close to water (I = 1), away from woodland edge (I = 1), increased sampling effort (I = 1) 

and, in this case, in areas with south-easterly aspect (I = 1). M. nattereri still showed a 

preference for Blue tit boxes (I = 1) however sampling effort was no longer important (I = 

0.36). P. auritus models had no parameters with an importance over 0.9. These models 

explained less of the observed deviance compared to models run with all available data 

(deviance explained: M. daubentonii = 15%, M. nattereri = 4%, P. auritus = 8%) and again 

models of M. nattereri and P. auritus predicted occupancy poorly. 

 

 

Variable df F-value p -value

Distance to ride (km) 2 0.50 0.61

Distance to woodland edge (km) 2 0.44 0.65

Distance to linear feature (km) 2 0.56 0.57

Distance to water (km) 2 0.40 0.67

LiDAR - PC1 2 0.70 0.50

LiDAR - PC2 2 1.13 0.32

Slope (degrees) 2 0.28 0.76

df Chi-squared p -value

Ancient woodland 2 0.24 0.89

Plantation 2 0.87 0.65

Secondary woodland 2 0.02 0.99

Box Type (Blue tit or Great tit) 2 3.26 0.20

Aspect (degrees) 0.3 0.20 0.45  

 

Table 3.5 – ANOVA and Chi-squared tests of variables between M. daubentonii bachelor (n = 34), 

nursery (n = 48) and mixed roosts (n = 20) during the nursery period. There were no significant 

differences between roost types 
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3.3.6 Variation in roost preference of M. daubentonii bachelor, nursery and mixed 

colonies using occupancy records 

 

M. daubentonii roosts used by bachelor (n = 34), nursery (n = 48) and mixed (n = 20) colonies 

within the nursery season were compared. Roosts known to be occupied by more than one 

colony type (n = 6 of 96) were not removed from the analysis as doing so could artificially 

increase the differences between groups. There were no conclusive differences between roost 

types for any of the variables studied (Table 3.5). 

 

3.3.7 Microclimate and field observations of known M. daubentonii bachelor and 

nursery roosts 

 

 

Figure 3.14 – Ambient average daily temperature against roost box temperatures. The solid black line 

represents the line of equality. The temperature of boxes is closely linked to the ambient temperature 
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3.3.7.1 The effects of presence of bats on roost temperature and humidity 

 

Temperature in the boxes was closely related to ambient temperature (Figure 3.14), however, 

humidity in boxes was consistently higher than ambient (Figure 3.15). 

 

 

Figure 3.15 – Ambient average daily humidity against roost box humidity. The solid black line represents 

the line of equality. The humidity recorded in boxes was greater than ambient conditions but increased 

with increase ambient humidity 

 

Boxes maintained their relative differences in humidity and temperature over time (Figures 

3.16 and 3.17). The mean temperature within roosts was significantly correlated with the 

amount of shade recorded over each box using fisheye images. Boxes with greater amounts of 

vegetative cover had significantly lower temperatures (df = 1, t = -2.7, p = 0.01) explaining 19% 

of the observed deviance in average box temperature (Figure 3.18). Thus nest boxes offer bats 

a choice of microclimates in which to roost. 

The effect of bats on the temperature and humidity within roosts was examined using a mixed 

effects model. Box and day were included as random effects and presence of bats, observed 
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on only 5 occasions in this study, was added as a fixed effect. Model comparisons were made 

between models with and without the bat presence variable. The models including bat 

presence were found to be significantly better at describing the observed temperature (χ2 = 18, 

df = 1, p < 0.001) and humidity (χ2 = 25, df = 1, p <0.001) within roosts (Figures 3.16 and 3.17).  

 

Figure 3.16 – Temperature recordings from 34 roost boxes from late July to early August. Each box is 

shown by a line of different colour. Records for when bats were present are shown by black circles 

 

Figure 3.17 – Humidity recordings from 34 roost boxes from late July to early August. Each box is shown 

by a line of different colour. Records for when bats were present are shown by black circles. The high 

point on the yellow line was the largest bat colony observed in the microclimate study (estimated at 15-

20 bats). From left to right the other bat colonies had approximately 4, 8-10, 3 and 4-5 bats 
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Model results suggest temperature was an average of 0.31°C higher (95% CI = -0.17-0.46°C) in 

occupied boxes and humidity on average 6.1%RH higher (95% CI = 3.8-8.6%RH). By comparing 

the full model with models with either box or day removed it was found that these random 

effects were also highly significant for explaining variation in roost temperature (Box: χ2 = 947, 

df = 1, p <0.001; Day: χ2 = 2282, df = 1, p < 0.001) and humidity (Box: χ2 = 701, df = 1, p < 0.001; 

Day: χ2 = 504, df = 1, p < 0.001). 

 

 

Figure 3.18 – Average roost temperature was shown to decrease with increasing canopy cover as 

recorded using fish-eye photographs. The regression line is shown (t = -2.7, p = 0.01) 

 

3.3.7.2 Comparison of the properties of nursery, bachelor and random roosts 

 

Using the temperature and humidity data collected using iButtons, and data collected in the 

field, the differences between nursery and bachelor roosts were assessed. The variables 

included were the mean temperature and humidity of each box, the canopy cover as 

calculated from fish-eye photographs, the category of understory, the height of the box 

entrance, the distance from the box to the closest body of water and the number of bat fly 

puparia in the box. There were no clear differences between the microclimates of roosts used 
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by bachelor and nursery colonies, both temperature (I = 0.18) and humidity (I = 0.19) having 

low importance (Table 3.6). There was no strong support for any of the other variables (Table 

3.6). 

 

Variables Coefficients (±95% CI) I

(Intercept) -18.432 (±59.51)

Average Humidity (%RH) -0.059 (±0.21) 0.19

Average Temperature (°C) -0.312 (±5.075) 0.18

Canopy cover (%) 30.754 (±38.97) 0.70

Distance to water (km) 0.41 (±4.647) 0.18

Entrance height (cm) 0.033 (±0.049) 0.44

Bat fly puparia 0.013 (±0.053) 0.18

Understory 1.087 (±1.775) 0.38

Deviance explained by best model 21%  

Table 3.6 – Results of multimodel inference of logistic regression analyses examining variables 

correlated with nursery roosts (n = 9) compared to bachelor roosts (n = 12). Understory is divided into 

three categories, 0 – no understory, 1 – scattered understory and 2 – dense understory, and treated as a 

continuous variable. None of the variables had I > 0.9 

 

When using the same explanitory variables to compare roosts known to have been occupied 

(i.e. bachelor and nursery roosts combined, n = 21) with roosts with no occupancy record (n = 

13) the inclusion of bat fly puparia as an explanatory variable leads to over fitting of the data. 

The number of bat fly in a roost was a significant predictor of occupancy by M. daubentonii (z = 

2.780, p = 0.005) and explained 30% of the observed deviance alone (Figure 3.19). To prevent 

over fitting and examine other variables bat fly puparia were removed from the models. None 

of the remaining explanatory variables considered had a high importance (Table 3.7). These 

results did not change if the 3 roosts classified as ‘no recorded occupancy’, but which had 

faeces in them, were removed from the analysis. 
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Variables Coefficients (±95% CI) I

(Intercept) -61.962 (±115.684)

Average Humidity (%RH) 0.316 (±0.463) 0.66

Average Temperature (°C) 2.756 (±3.89) 0.51

Canopy cover (%) 23.46 (±27.953) 0.83

Distance to water (m) -0.0031 (±0.004) 0.47

Entrance height (cm) 0.03 (±0.039) 0.55

Understory 0.215 (±2.179) 0.28

Deviance explained by best model

Number of models included in inference

35%

54  

Table 3.7 – Results of multimodel inference comparing roosts occupied by M. daubentonii (i.e. bachelor 

and nursery roosts, n = 21) with roosts with no recorded occupancy (n = 13). Understory is divided into 

three categories, 0 – no understory, 1 – scattered understory and 2 – dense understory, and treated as a 

continuous variable. None of the variables had I > 0.9 

 

 

 

Figure 3.19 – Boxplot of counts of bat fly puparia from occupied (n = 21) and unoccupied roosts (n = 13). 

The smallest observation, lower quartile, median (bold horizontal bar), upper quartile, and largest 

observation are shown. Unoccupied roosts have significantly fewer bat fly puparia than recorded in 

bachelor or nursery roosts 

  



 
141 

 

3.4 Discussion 

 

3.4.1 Roost preferences of M. daubentonii, M. nattereri and P. auritus 

 

There are differences in the roosting preferences of M. daubentonii, M. nattereri and P. auritus 

within Wytham Woods. Some of these differences can be related to the lifestyle of the 

different species. 

When all occupancy records were considered there were significant differences between 

boxes occupied by bats and those that were not occupied (Table 3.2). However, species-

specific models suggest that much of this explanatory power is accounted for by observations 

of M. daubentonii. 

M. daubentonii showed a preference for roost boxes close to water, the primary foraging 

habitat for this species (Altringham 2003). More surprisingly the probability of box occupancy 

increased away from the woodland edge. Edge effects have been well documented and 

include changes in temperature, humidity, plant species composition and growth forms as you 

approach the edge of a woodland (Murcia 1995). Further studies on roost selection within 

woodland over small scales are needed to interpret or refute the edge effect we observe for 

M. daubentonii. Roosts used by this species were found more frequently in areas with an 

easterly aspect. A number of studies have demonstrated a preference for particular aspects 

amongst a range of bat species (Lausen & Barclay 2002; Neubaum et al. 2006; Watrous et al. 

2006; Chambers et al. 2011) though there is no consensus amongst them. Roosts on easterly 

slopes are likely to warm faster in the morning than those at other aspects (Lausen & Barclay 

2002) and may be the characteristic for which they are selected in this study. These variables 

were also found to be important when only roosts sampled on more than five occasions were 

analysed. 

The results of model comparisons suggest that M. nattereri occupancy was not strongly 

associated with any of the variables examined with the exception of box type and sampling 

effort. However, support for sampling effort was dropped when only boxes checked more than 

five times were analysed. Models of M. nattereri explained little of the deviance observed. This 

lack of explanatory power may be a result of the foraging behaviour of M. nattereri. This 

species is a woodland specialist, capturing insect prey close to and on vegetation. It is likely 

therefore that the majority of Wytham Woods provides good quality foraging habitat for this 
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species. As a result there may be little difference in the quality of roosts as perceived by M. 

nattereri leading to a fairly homogeneous distribution of this species. 

M. daubentonii and M. nattereri had a different preference for box type. M. daubentonii 

showed a preference for Great tit boxes, whilst M. nattereri preferred Blue tit boxes. There are 

a number of possible explanations for this effect. The majority of Great tit boxes had peaked 

roofs, 32mm entrance holes and have been present for 50-60 years, in contrast Blue tit boxes 

had flat roofs, 26mm entrances and were erected 6 years prior to the start of our study. The 

observed preferences could therefore result from differences in the thermal properties or 

entrance size of the two roost types or a preference for novel or long established roosts. Each 

of these suggestions could be tested by manipulation of boxes in the field. 

Like M. nattereri, models of P. auritus were poor at explaining the observed roost use. While 

aspect and distance to linear features were suggested as important when all records were 

included, after excluding roosts checked on five or fewer occasions neither were found to be 

important. As another woodland generalist it may be the case that, like M. nattereri, Wytham 

Woods offers a homogeneous landscape in terms of foraging habitat. However it could also be 

the case that the roost preference of P. auritus and M. nattereri are explained by variables not 

considered in this analysis, for example the distribution of insect prey species within the 

woods. 

I have shown that each of the species studied uses a large number of boxes within the wood. 

Furthermore, analysis of roost preference does not suggest that suitable roosts are limiting. 

This gives strong support to the social network analysis presented in chapter 2, since this 

discounts the possibility that the observed social structure was the result non-social 

aggregations in a limited number of suitable roosts. Consequently, the heterogeneity in 

contact rates (inter- vs. intra-group associations) can be said to be a result of social processes. 

While I have demonstrated that this is the case in Wytham woods, an environment where 

roosting sites are plentiful, it is unclear to what degree roost site limitation in other landscapes 

(e.g. urban areas) shape the social structure of bat populations. 

Using the sampling method described, roosts in which bats had not been observed were 

considered unused by bats. However a larger proportion of boxes (67%) contained bat faeces 

than had been recorded with bats (35%) indicating that nearly twice as many boxes were 

occupied by bats than were recorded. Unfortunately faecal morphology cannot be reliably 

used to identify bat species, preventing the use of these data to infer species-specific 

occupancy. To address this issue a subsample of boxes, checked on more than five occasions 



 
143 

 

each, were reanalysed. While this approach reduces the chance of false negatives (i.e. wrongly 

classifying a box as not used by bats) it results in a non-uniform distribution of boxes through 

the wood (Figure 3.1) and may lead to other biases in the data. Future work should aim to 

increase the number of checks per box to a level where false negatives are negligible. This 

could be measured by assessing the number of boxes recorded with droppings but without 

occupancy. 

 

3.4.2 Observed variation in roost use by M. daubentonii colony types 

 

Sexual segregation of M. daubentonii in the summer months has been the subject of a number 

of studies (Dietz et al. 2006; Safi 2008; Encarnação 2011). Possible reasons behind the 

observed separation include competitive exclusion, differences in microclimate needs and 

thermoregulation, and parasite avoidance. 

 

3.4.2.1 Competitive exclusion 

 

When comparing M. daubentonii roosts known to be occupied by bachelor, nursery and mixed 

colonies, during the nursery period there was no observable differences in their proximity to 

landscape features or their surrounding habitat. This contrasts with other studies of M. 

daubentonii which suggest that during the nursery period nursery colonies dominate foraging 

and roosting habitat forcing males to roost further away from water (Encarnação et al. 2005). 

At Wytham Woods foraging and roosting habitat may not be limiting, allowing nursery and 

bachelor colonies to exist in the same area without a prohibitive degree of competition. 

 

3.4.2.2 Microclimate and thermoregulation 

 

To test the hypothesis that bachelor and nursery colonies select roosts based on their 

microclimate we compared the temperature and humidity of these roosts but found no clear 

differences. This was despite the fact that roosts maintained their relative differences in 

microclimate over time, providing a range of temperatures and humidity’s (Figures 3.16 and 

3.17). Having said that, the bird boxes in Wytham Woods are all very similar in design and 
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construction. They may therefore represent only a small amount of the variation in roosts 

available to the population under study. Adult female M. daubentonii in Wytham Woods are 

known to occupy natural tree roosts on approximately two thirds of occasions (Chapter 2). As 

such it may require a more extensive study, including a range of natural tree roosts, to identify 

differences in the roosts used by bachelor and nursery colonies. 

While we found little evidence of differing microclimates in bachelor and nursery roosts, it is 

known that bats are able to change the temperature of their roost through expelled body heat 

(Willis & Brigham 2007). We detected a small rise in temperature in roosts that were occupied 

by bats, supporting these observations. As temperature loggers were at least 10cm away from 

roosting bats the rise in temperature around them was likely higher than that recorded. It is 

possible therefore that difference in torpor requirements go some way to explain the observed 

sexual segregation. As these bats are able to alter the microclimate of their roost the different 

demands of social thermoregulation between the sexes would predict assortment by sex. Male 

M. daubentonii are known to enter torpor during the nursery period whilst females maintain a 

constant body temperature to maximise milk production (Dietz & Kalko 2006). However, if this 

was the only cause of segregation one would expect males to roost individually to reach the 

deepest possible torpor, since metabolic rate of torpid bats decreased with ambient 

temperature (Turbill 2009). If another benefit such as information sharing (Safi 2008) accounts 

for bachelor colony formation we would expect these groups to occupy colder roosts if they 

are entering deeper torpor, however we detected no difference in the temperature of roosts 

used by nursery and bachelor colonies. Alternatively if M. daubentonii males are not entering 

topor we would expect them to roost with females, to benefit from social thermoregulation, 

again, something we did not observe. These results suggest that roost microclimate and torpor 

requirements may not be driving the sexual segregation observed. 

 

3.4.2.3 Parasite avoidance 

 

We found no difference in the number of bat fly puparia in bachelor and nursery roosts, 

though there were significantly fewer in boxes thought not to have been occupied by M. 

daubentonii (Figure 3.19). While in Chapter 4 it is suggested that members of M. daubentonii 

bachelor colonies avoid infestation with directly transmitted ectoparasitic mites by isolating 

themselves from nursery colonies this does not appear to be the case for bat flies. Assuming 

M. daubentonii are able to detect bat fly puparia as Myotis bechsteinii (Bechstein’s bat) have 
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been shown to (Reckardt & Kerth 2007), the availability of apparently uninfested roosts 

suggests that occupied roosts have some benefit that outweighs the cost of bat fly parasitism, 

despite our inability to clearly identify it. 

I have failed to clearly identify why male and females M. daubentonii are segregated during 

the summer at Wytham woods when considering only microclimate and landscape variables. 

However, I will explore the possibility of segregation as a parasite avoidance strategy by males 

in chapter 4. The recent discovery of altitudinal variation in sexual segregation of M. 

daubentonii is interesting (Angell, 2013) and further work in that study system may reveal 

better, why the population is segregated in some areas and not others. This variation in 

segregation over an altitudinal gradient will likely also have an effect on disease transmission 

at different altitudes. 

 

3.4.3 Conclusions 

 

This study shows that the roost preference of bats within woodland is species-specific and 

makes the case that some of the observed differences can be explained by species’ foraging 

behaviour. However, there is currently a lack of detailed descriptions of the foraging behaviour 

of these species such as their relative ability to navigate through a cluttered environment. 

Future studies which can describe in detail the foraging behaviour of bats within woodland 

may further explain the variation we observe in roost preference. These studies could combine 

radiotracking and light tagging (i.e. attaching a small light source to bats so their movement 

can be seen) to identify species’ foraging preferences, considering properties such as tree 

species, vegetation density, canopy volume, etc. The distribution of bats within the wood does 

not suggest that roosts are limiting and so lends support to the analysis presented in chapter 2, 

showing that M. daubentonii and M. nattereri have strong social structure that is not the result 

of limited roost availability. 

It was found that the presence of bats significantly increased the temperature within roosts, 

however there was no difference between M. daubentonii bachelor and nursery roosts, both 

in terms of their proximity to water and their microclimate. This suggests that the segregation 

of sexes observed in the nursery period cannot be ascribed to either competitive exclusion of 

males from roosts close to water or microclimate preference, at this site. Instead the 

segregation of M. daubentonii sexes may represent a disease avoidance strategy by a species 

that carries a higher disease burden than the other species in this study (this hypothesis will be 
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explored in Chapter 4). While this may be the case for directly transmitted diseases we found 

no evidence that bachelor colonies avoided roosts with high numbers of bat fly puparia.  
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4 Effects of host and ectoparasite ecology on parasite 

distribution and host body condition.  

 

4.1 Introduction 

 

Closely related bat species exhibit differences in ectoparasite infestation rates. Such 

differences may be due to relative host abundance, the quality of each species as a nutritional 

resource, species specific immune responses, host sociality and - by extension - contact rates 

(Christe et al. 2003). 

For both M. daubentonii and M. nattereri at Wytham Woods we have an understanding of 

where individuals are positioned within their social networks (Chapter 2). It might be expected 

that individuals with more connections would have a higher probability of being infested by 

directly transmitted parasites since the networks in Chapter 2 are based on bats occupying the 

same roost. This would follow observations by Bell et al. (1999) that individuals with high 

values of degree in networks of cocaine injectors are more likely to become infected with HIV. 

Additionally, individuals who associate with more than one social group might be expected to 

have an increased probability of infection as they have indirect contact with more individuals 

than bats which remain within a single social group. In this Chapter we examine to what extent 

an individual’s position within a social network drives parasite load and whether these metrics 

may be useful for predicting transmission rates in bats populations. 

The parasite burden of an individual is also likely to be predicted by its current social 

environment, the number and type of individuals it is in contact with. Consequently colony 

type may be a suitable predictor of parasite load. Indeed, previous studies of temperate bat 

species have found that individuals in nursery colonies typically have the highest loads of bats 

sampled throughout the year (Lourenco & Palmeirim 2007; Reckardt & Kerth 2009). This may 

be a result of reduced immune function in reproductive females and juveniles (Christe &Vogel, 

2000) or higher contact rates in nursery colonies, which are typically larger than other colony 

types (Reckardt & Kerth 2009). However, for species previouly studied large bachelor roosts 

have not been recorded or do not exisit. In this study we record parasite load in a number of 

different colony types throughout the summer months to assess the impact of both colony 

type and colony size. This will highlight the importance of variation in contact rates between 

different demographic groups (e.g. males and females) for disease models. 
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Studies of the impact of ectoparasites on bats have produced conflicting results. With either 

negative (Giorgi et al. 2001; Lourenco & Palmeirim 2007; Lucan 2006), positive (Christe et al. 

2003; Lucan 2006; Reckardt & Kerth 2009) or no (Zahn & Rupp 2004) correlation to host 

condition. In many of these studies body condition index (BCI; weight/forearm) is used as a 

measure of an individual’s health (cf. Giorgi et al. 2001). Unfortunately this measure is 

relatively poorly understood and variations in BCI could be linked to a plethora of explanatory 

variables including weather, age, sex, reproductive activity and individual body type. While all 

previous studies of the impacts of ectoparasites on BCI account for age, sex and reproduction 

in some manner, this study also accounts for the effect of weather. It is surprising that weather 

is rarely considered in relation to BCI as it may have profound effects on condition particularly 

in small homeotherms with relatively high energy needs, such as bats. 

We studied three sympatric woodland bat species (M. daubentonii, M. nattereri and Plecotus 

auritus) in order to a) assess similarities and differences in parasite distribution between 

species in relation to differences in species specific ecology, b) analyse the impacts of an 

individual’s position in a social network on its parasite load c) investigate the effect of colony 

type (i.e. the sex and reproductive status of cohabitants) and colony size on parasite load and 

d) investigate the effect of parasitism on BCI, whilst controlling for the effects of weather, age, 

sex and reproductive status.  
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4.2 Methods 

 

4.2.1 Sampling site 

 

Bats were studied at Wytham Woods, Oxfordshire (Latitude, 51°77’27”; Longitude, -1°33’41”) 

where they roost in many (>67%) of over 1150 woodcrete bird boxes spread throughout the 

wood. For a detailed description of the site see Chapter 1. 

 

4.2.2 Recording individual attributes 

 

When bats were captured their ring number was recorded and a range of data were collected. 

These included species, sex, age and reproductive status. 

Age was divided into two categories, adult and juvenile. Juveniles, defined as young of the 

year, were identified by the lack of ossification in the finger joints between the metacarpals 

and phalanges and the oval, rather than round, appearance of this joint. This is a reliable 

identification method for juveniles up until approximately 2 months after birth (Racey 1974; 

Mitchell-Jones & McLeish 2004). Female reproductive status was divided into 4 categories; 

pregnant, lactating, post-lactating and non-breeding. Pregnant bats were identified from their 

weight and gentle palpation of the abdomen. Lactating bats have enlarged nipples and an 

absence of hair both on the nipple and in a c.3mm circle around the nipple. Post-lactating 

females’ nipples are enlarged, dark in colour and the hairs surrounding the nipple may have 

begun to grow back but are short. Non-breeding females have no swelling in the nipple and no 

loss of hair. In previous studies male reproductive status has been categorised by documenting 

the development of the epididymides, the tissue in which sperm is stored (e.g. Encarnação et 

al. 2004). However, this is a difficult feature to examine and categorise in the field and requires 

an experienced bat worker. As numerous inexperienced bat workers assisted with this study 

this measure was deemed too unreliable to be included in the analysis. Pregnant females (n = 

178 of 848 female observations) were not included in the analysis of variables influencing BCI 

as BCI assumes weight is correlated to body fat, whilst in pregnant females weight is also 

dependent on the developmental stage of the foetus which was not determined in this study. 
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4.2.3 Body condition index (BCI) 

 

BCI was calculated by dividing weight by forearm length (the ‘ratio index’), measured to the 

nearest 0.1g and 0.1mm. Weight was measured using a 20g spring balance (Pesola, 

Switzerland) and forearm length was measured with vernier dial callipers (Moore and Wright, 

UK). While the use of the ‘residual index’ (the residuals of a regression on body weight on body 

size) has been suggested as a measure of body condition (Jakob et al. 1996) this has not been 

validated against body fat for bats. The ratio index has been found to accurately predict the 

body fat of big brown bats (Eptesicus fuscus), whilst being more practical than other 

methodologies including total body electric conductivity (TOBEC) (Pearce et al. 2008). It has 

also produced identical results to the ‘residual index’ method in studies of parasitism 

(Lourenco & Palmeirim 2007). The ratio index measure of condition has been used in many 

other studies of bats, allowing our study to be compared to previous work (Speakman & Racey 

1986; Russo 2002; Zahn & Rupp 2004; Senior et al. 2005; Lucan 2006; Lourenco & Palmeirim 

2007). To allow easier interpretation of model output BCI was multiplied by 100 before 

analysis, but was back transformed prior to drawing graphs of the observed effects. 

 

4.2.4 Social network attributes 

 

Where data were available (M. daubentonii and M. nattereri only), information from the social 

network analysis (Chapter 2), was included in models of ectoparasite abundance and BCI. This 

included degree (the number of bats an individual associates with), betweeness (the 

importance of an individual for connecting others in the network), and the social group to 

which a given individual belonged. 

Both parasite counts and social network parameters were available for 457 captures of 197 

individual M. nattereri (60 males and 137 females from 6 social groups). As M. daubentonii 

males did not form clearly defined social groups (Chapter 2) they were not included in the 

analysis of the effect of social group on parasite load, restricting this analysis to 214 captures 

of 107 females (4 social groups). However, as betweeness and degree were calculated from 

the social network containing both male and female M. daubentonii, 453 captures of 247 

individuals (140 males and 107 females) were available for this analysis. Since a small number 

of individuals have a very high value of betweeness this value was log transformed before 

inclusion in models. 
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4.2.5 Ectoparasites 

 

M. daubentonii, M. nattereri and P. auritus are all parasitised by mites (Table 4.1-4.3). The 

most conspicuous are members of the Spinturnicidae family (order Mesostigmata), a family 

found exclusively on bats, which feed predominantly on the wing and tail membranes (Evans 

1968). They are characterised by their large size and stout legs with many long setae/hairs 

(Baker 2006 and Figure 4.1). These blood-feeding mites spend their entire lifecycle on the host 

and are transmitted from host to host via direct contact in roosts. 

In Baker and Craven’s (2003) checklist of mites found on bats in the UK, both M. daubentonii 

and M. nattereri are parasitised by a single species of Spinturnicid mite, Spinturnix myoti, 

whilst P. auritus is host to both S. myoti and S. plecotinus. The taxonomy the Spinturnicidae is 

still debated, and in some studies the S. myoti species complex has been separated into 

species in accordance to their host (Uchikawa et al. 1994). This classification has some support 

from genetic analysis (Bruyndonckx et al. 2009). As a consensus taxonomy for this complex has 

yet to emerge here we use S. myoti sensu lato (s.l.) (Rudnick 1960). 

All three bat species are also host to a number of other mite species, predominantly belonging 

to the family Macronyssidae which like Spinturnicids are within the order Mesostigmata. Very 

little is known about the lifecycle of these mites in the UK, though other members of the family 

are known to lay eggs off the host (Baker 2006), unlike Spinturnicids. The emerging larvae 

moult into a protonymph before searching for a host (Baker 2006). 

M. daubentonii is also parasitised by bat flies, primarily Nycteribia kolenatii (Hurka 1964; 

Gardner & Molyneux 1988). These wingless diptera feed on blood and are thought to transmit 

Polychromophilus murinus, a malaria-like pathogen, and Bartonella between bats (Gardner & 

Molyneux 1988; Billeter et al. 2012). Bat flies give birth to terminal (3rd-instar) larvae in the 

roost of their host, which immediately form puparia. The adult can emerge after 

approximately 3-4 weeks, though they can remain inside the pupa for much longer. Emerging 

adults locate a host and subsequently only leave the host to deposit larvae (Dick & Patterson 

2006). Bat flies are highly mobile in the fur and are very difficult to collect, therefore detailed 

identification of batflies in the present study was not undertaken. It is thought that M. 

nattereri is rarely parasitised by bat flies and is instead parasitised by bat fleas (Zahn & Rupp 

2004). These fleas spend the first half of their life-cycle in the guano below roosts, feeding on 

detritus before they develop into adults and search for a host (Lewis & Lewis 1994). Both bat 

flies and fleas are found in the fur and not on the wing membranes. 
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Order Species Synonyms Location of records

Alabidocarpus intercalatus None East Norfolk

Notoedres myoticola None East Norfolk

Nycteridocoptes poppei None East Norfolk and South Ayrshire

Macronyssus diversipilis Liponyssus granulosus East Norfolk, West Sussex, West Suffolk and Surrey

Macronyssus ellipticus None South Wiltshire, Suffolk and West Norfolk

Euseius finlandicus None West Sussex

Spinturnix myoti Spinturnix vespertilionis South Hampshire, Surrey and North-East Yorkshire

Astigmata

Mesostigmata

 

Table 4.1 – The mites of M. daubentonii. Adapted from Baker and Craven (2003) 

 

Order Species Synonyms Location of records

Macronyssus diversipilis Liponyssus granulosus
Oxfordshire, East Suffolk, West Norfolk, South 

Wiltshire, West Sussex, Hertfordshire and Fermanagh

Macronyssus ellipticus None South Wiltshire, Surrey and Suffolk 

Ornithonyssus pipistrelli None Dorset 

Steatonyssus 

periblepharus

Liponyssus chiropteralis, 

Steatonyssus murinus, 

Ceratonyssus musculi

Oxfordshire

Spinturnix myoti Spinturnix vespertilionis West Sussex, Surrey, Oxfordshire and Merionethshire
Prostigmata Neotrombicula autumnalis Trombicula autumnalis North Devon

Mesostigmata

 

Table 4.2 – The mites of M. nattereri. Adapted from Baker and Craven (2003) 
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Order Species Synonyms Location of records

Acarus gracilis  (?) [roost] Tyroglyphus sp. North Hampshire

Carpoglyphus munroi  (?) [roost] None Hampshire

Glycyphagus domesticus  (?) [roost] None North Hampshire 

Nycteriglyphus sp.  (?) [roost] None North Hampshire

Androlaelaps casalis  (?) [roost] Hypoaspis casalis North Hampshire

Macronyssus ellipticus None West Sussex

Macronyssus sp. A None West Kent

Ornithonyssus pipistrelli None
Dorset, Oxfordshire, West Gloucestershire, 

Kilkenny and Glamorgan

Steatonyssus murinus  (?) [roost] None North Hampshire 

Steatonyssus periblepharus
Liponyssus chiropteralis, Steatonyssus 

murinus, Ceratonyssus musculi
Cornwall and West Gloucestershire

Spinturnix myoti Spinturnix vespertilionis No sites given

Spinturnix plecotinus None
Surrey, South-west Yorkshire, Durham, 

Merionethshire and Ireland

Oribatida Aphelacarus acarinus  (?) [roost] None North Hampshire

Acaropsellina docta  (?) [roost] Acaropsis docta North Hampshire 

Cheletonella sp.  (?) [roost] None North Hampshire

Cheyletus woodroffei  (?) [roost] Cheyletus sp. North Hampshire

Demodex chiropteralis None British Isles (?)

Demodex soricinus None British Isles (?)

Neomyobia plecotia
Myobia chiropteralis, Foliomyobia 

chiropteralis
No sites given 

Pteracarus pipistrellius (?)
Myobia pipistrellia, Neomyobia 

pispistrellia, Pteracarus pipistrellia
England

Leptotrombidium avonense None South Wiltshire

Astigmata

Mesostigmata

Prostigmata

 

Table 4.3 – The mites of P. auritus. (?) – indicates that the host species is uncertain. [roost] indicates the mite was collected from the roost and not the host. Adapted 

from Baker and Craven (2003). 
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4.2.6 Identification of Spinturnicid mites 

 

For each bat species a small number of Spinturnicid mites (Figure 4.1) were removed for 

formal identification. Immediately after collection these mites were stored in 70% ethanol or 

frozen on dry ice. Those stored in ethanol were subsequently stored at 4°C whist those frozen 

in the field were stored at -80°C. For identification, individual mites were placed onto a drop of 

50% lactic acid solution on a microscope slide, covered with a covering slip, and placed on a 

hot plate at 70°C for 50 minutes. Once cleared, specimens were identified under a microscope 

using keys for the Spinturnicidae family (Rudnick 1960; Stanyukovich 1997). David Dodds kindly 

provided training in mite identification. 

 

 

 

 

Figure 4.1 – Image of a Spinturnicid mite (Spinturnix myoti). This family of mites can be easily identified 

with the naked eye by their size, colour and position of the legs. Photo credit: Tom August 

  

1mm 
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4.2.7 Parasite abundance estimates 

 

Roost boxes were checked regularly from late-May to early-October in 2009 and 2010, and 

bats were examined for the presence of ectoparasites. 

The total number of mites on both sides of each wing were counted, and the number of these 

that were Spinturnicid mites was noted. This procedure was most easily done by holding the 

wing up to a direct light source. It is possible, with the naked-eye, to easily identify mites of the 

family Spinturnicidae, being larger than all other bat mites with a characteristic orange colour 

and crab-like appearance (Baker 2006 and Figure 4.1). The dorsal fur was examined for bat 

flies and fleas by blowing gently through the fur, to part the hairs, for approximately 10-15 

seconds. Parasite prevalence was defined as the proportion of individuals hosting parasites 

while parasite load was defined as the number of parasites infesting an individual. 

 

4.2.8 Weather data collection and transformation 

 

Weather data (obtained from the Environmental Change Network (ECN), Centre for Ecology & 

Hydrology, Wallingford with special thanks to Michèle Taylor) was collected from a weather 

station in Wytham Woods (Latitude, 51°77’06”; Longitude -1°33’24”, altitude 165m). Data was 

collected following a previously described protocol (Sykes & Lane 1996) using the equipment 

listed in the appendix (Table 7.2). Weather data were recorded every hour throughout the 

year. In this study we used data recorded between 1st May and 31st October in 2009 and 2010. 

Some data were transformed into variables more appropriate to the biology of bats. Hours of 

day and night were calculated from records of solar radiation (W/m2). Hours in which solar 

radiation equalled 0W/m2 were taken to be hours of night and were used to calculate the 

average temperature, wind speed and total rainfall for the night prior to each bat’s capture. 

Using this approach hours of night approximate those between sunset and sunrise but are 

broadened if heavy cloud cover leads to darker conditions, which is known to cause early 

emergence of bats (Shiel & Fairley 1999). 
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4.2.9 Colony data 

 

Colony size and type was recorded for inclusion in the analyses. Colonies were divided into 

three types according the composition of adults: those dominated (>66.6% of total) by adult 

females, those dominated (>66.6% of total) by adult males (bachelor colonies) and those with 

mixed adult sexes. These were further divided into three time periods or seasons; the nursery 

period, and the pre- and post-nursery periods. The nursery period was defined as the time 

between the first and last colony of lactating females with juveniles. These dates varied from 

year to year, since the timing of births is weather dependent. These colony definitions are the 

same as those used in Chapter 2 and 3. Bats found roosting on their own were recorded as 

solitary. Where fewer than five data points where available for a given colony type it was not 

included in the analysis (those that were not included are indicated by ‘NA’ (not applicable) in 

summary tables). 

 

4.2.10 Statistical analysis 

 

Data were analysed using generalized linear mixed effect models (GLMMs) with individual 

specified as a random effect to control for repeated captures. Models of parasite abundance 

included the fixed effects: Age, sex, forearm length, BCI, colony type, colony size, year, and the 

abundance of parasites other than those being tested. Models of BCI included the fixed 

effects: Age, sex, year, day of the year, average temperature and wind speed from the 

previous night, total rainfall from the previous night, and parasite abundances. For each of 

these models an additional analysis was undertaken including the social network variables – 

betweeness, degree and social group (see 4.2.4) – on the subset of individuals for which this 

data was available. Interaction terms were not included in these models as these would have 

been computationally impractical using model averaging (described below) since the number 

of models considered increases exponentially with each additional variable. 

The distribution of ectoparasites was tested by comparing the log-likelihood of null models 

using Poisson and negative binomial distributions using the pcsl package, version 1.04.1 in R 

(Jackman 2011). 

Models were selected, and effects estimated, using an information theoretics approach 

(Anderson et al. 2000; Anderson et al. 2001; Anderson & Burnham 2002; Burnham & Anderson 

2002; Burnham et al. 2011). Models were compared using the small sample size corrected 
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version of Akaike’s information criterion (AICc) which scores models on how well they fit 

observations. AICc accounts for models which include a large number of variables compared to 

the sample size, by penalising models containing many variables (Burnham et al. 2011). 

Models with a ∆AICc < 7, equivalent to an evidence ratio of 33.1, were selected (Burnham et 

al. 2011). The Akaike weight (wi) was calculated for each model and can be viewed as the 

probability that a model is the best of those considered given the data. Parameter estimates 

were calculated by averaging across all models in which the parameter appeared and 

weighting the average according to the Akaike weight of each model. Variables are also given a 

value of ‘importance’ (I). This is the sum of the Akaike weights of all the selected models in 

which it appears and therefore represents the probability that the variable appears in the best 

model. All analyses were undertaken in ‘R’, version 2.13.2 (R Development Core Team 2011), 

and the package ‘MuMIn’ version 1.5.2 (Barton 2011) was used for model averaging. Models of 

the parasite count data were fitted with a Poisson error structure since a method for 

implementing negative binomial error structure into GLMMs that can be used in model 

averaging has yet to be developed. Plots of the residuals were used to ensure that the data 

conformed to the assumption of the models, and to check for over dispersion. Models of bat 

fly distribution amongst M. daubentonii showed evidence of a large amount of over dispersion 

and so were analysed as a binomial outcome with a log-link function, where individuals were 

taken to be infested or uninfested. Multiple comparisons of significant factors, where 

undertaken, use the Tukey method implemented in multcomp version 1.2-12 (Hothorn et al. 

2008).  
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4.3 Results 

 

4.3.1 Identification of Spinturnicid mites 

 

Morphological examination of representative mites showed each bat species examined was 

parasitized by a single species of Spinturnicid mite (Table 4.4). P. auritus was parasitised by 

Spinturnix plecotinus and M. daubentonii and M. nattereri by Spinturnix myoti s.l. 

Macronyssidae mites were not collected for identification and were all classified as non-

Spinturnicid mites. 

 

Host species Number of bats Number of mites Mite species identified

M. daubentonii 22 31 Spinturnix myoti (s.l.)

M. nattereri 18 27 Spinturnix myoti (s.l.)

P. auritus 16 39 Spinturnix plecotinus

 

Table 4.4 – Results of Spinturnicid mite identification by microscopy revealing each host species was 

parasitised by a single species of mite 

 

4.3.2 Species specific differences in ectoparasite prevalence and load 

 

During 2009 and 2010, 1043 individual bats were captured a total of 1591 times (Table 4.5). 

The variability in forearm length and weight amongst adults within the population of each 

species is shown in Figure 4.2. 

 

Species Male Female Male Female 2009 2010 Total

M. daubentonii 392 244 44 26 387 319 706

M. nattereri 135 362 47 32 155 421 576

P. auritus 81 204 14 10 64 245 309

Total 608 810 105 68 606 985 1591

Captures (including recaptures)

Adult Juvenile Year

 

Table 4.5 – The distribution of capture events in Wytham Woods by species, sex and year. 
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Figure 4.2  – The distribution of adult weight and forearm length for the three bat species studied 

 

The ectoparasite communities differed significantly between the three species (Table 4.6). M. 

daubentonii had a significantly higher prevalence and abundance of Spinturnicid mite, non-

Spinturnicid mites and bat flies than both M. nattereri and P. auritus (multiple pairwise 

comparisons, p < 0.02 in all cases). Bat flies were not observed on P. auritus in this study and 

rarely on M. nattereri (n = 7). Bat fleas were observed on M. nattereri on 32 occasions, on M. 

daubentonii on just 3 occasions and were not seen on P. auritus. 
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Parasite Species Prevalence

Mean non-zero 

parasite load Maximum

M. daubentonii 0.86 6.60 46

M. nattereri 0.61 3.10 19

P. auritus 0.68 3.17 17

M. daubentonii 0.55 6.21 47

M. nattereri 0.46 4.48 33

P. auritus 0.21 2.45 21

M. daubentonii 0.18 1.32 7

M. nattereri 0.01 1.00 1

P. auritus 0.00 - -

M. daubentonii 0.004 1.00 1

M. nattereri 0.06 1.28 3

P. auritus 0.00 - -

Batfly

Fleas

Spinturnicid

mites

Non-

Spinturnicid

mites

 

Table 4.6 – Prevalence and parasite load of ectoparasites observed infesting all M. daubentonii (n = 

706), M. nattereri (n = 576) and P. auritus (n = 309). Prevalence is defined as the proportion of 

individuals carrying a given parasite. Mean non-zero parasite load is calculated from all individuals on 

which the parasite was present 

 

 

 

 

Figure 4.3 – Frequency distribution of bat fly and bat fleas infesting M. daubentonii and M. nattereri 

respectively 
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Models showed the distribution of all ectoparasites were explained best by a negative 

binomial distribution when compared to a Poisson distribution (p < 0.001 in all cases, Figure 

4.3 and 4.4). This skew in parasite load was greater for non-Spinturnicid mites than 

Spinturnicid mites. 

 

Figure 4.4 – The distribution of Spinturnicid and non-Spinturnicid mites on M. daubentonii, M. nattereri 

and P. auritus  



166 
 

 

 

 

 

 

 

M. daubentonii M. nattereri P. auritus

636 497 285

70 79 24

387 155 64

319 421 245

436 182 95

270 394 214

Bachelor colony 44 9 2

Mixed sex colony 0 7 25

Female colony 51 119 96

Bachelor colony 143 14 0

Mixed sex colony 53 33 11

Female colony 153 179 69

Bachelor colony 96 3 9

Mixed sex colony 146 80 68

Female colony 1 106 2

19 22 6

Pre-nursery season

Nursery season

Post-nursery season

Solitary roosting individuals

Adult

Juvenile

Year - 2009

Year - 2010

Male

Female

Sample size by species

Parameter

 

 

Table 4.7 – A summary of the sample size for parameters included in analyses of variables driving 

parasite abundance. Figures indicate the number of data points (observations of individuals) for each 

level of categorical variables.   
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Coefficients (±95% CI) I Coefficients (±95% CI) I Coefficients (±95% CI) I

1.121 (±1.832) -2.87 (±3.042) 1.931 (±3.692)

0.427 (±0.175) 1.00 0.502 (±0.289) 1.00 0.05 (±0.597) 0.25

0.001 (±0.163) 0.25 -0.343 (±0.28) 0.91 -0.202 (±0.344) 0.39

0.033 (±0.049) 0.46 0.002 (±0.093) 0.24 0.056 (±0.125) 0.33

Body Condition Index (BCI) -1.455 (±2.364) 0.43 3.475 (±5.56) 0.44 -9.825 (±6.631) 1.00

Bat Fly 0.067 (±0.079) 0.59 NA NA NA NA

0.009 (±0.007) 0.91 0.011 (±0.02) 0.37 -0.032 (±0.084) 0.31

Fleas NA NA 0.056 (±0.242) 0.26 NA NA

0.001 (±0.01) 0.25 0.005 (±0.01) 0.33 0.008 (±0.026) 0.28

Bachelor colony -0.733 (±0.259) 2.729 (±2.492) NA

Mixed sex colony NA 3.024 (±2.4) -1.007 (±0.464)

Female colony 0.686 (±0.243) 1.665 (±2.27) -0.551 (±0.352)

Bachelor colony 0 0 NA

Mixed sex colony 0.264 (±0.199) 3.114 (±2.265) 1.215 (±0.488)

Female colony 0.765 (±0.165) 3.308 (±2.259) -0.12 (±0.391)

Bachelor colony -0.963 (±0.228) NA 0.475 (±0.606)

Mixed sex colony -0.555 (±0.177) 2.822 (±2.26) 0

Female colony NA 2.887 (±2.259) NA

-0.756 (±0.438) 1.375 (±2.407) -0.963 (±1.126)

-0.568 (±0.105) 1.00 -0.038 (±0.203) 0.26 0.14 (±0.342) 0.31

Number of models incuded in inference

Nursery season

Post-nursery 

season

Solitary roosting individuals

Year: 2010

Sex: Male

Forearm length (mm)

Non-Spinturnicid mites

Colony size

Pre-nursery season

Deviance explained by best model

M. daubentonii M. nattereri P. auritus

46 75 57

1.00

35%

Variables

(Intercept)

17%

1.00 1.00

22%

Age: Juvenile

 

Table 4.8 – Results of model averaging, showing associations between Spinturnicid abundance and potential explanatory variables. Variables with an importance (I) 

greater that 0.9 (i.e. a 90% chance that the variable is present in the best model) are indicated in bold. NA (not applicable) indicates where a variable is not included 

in the analysis as data is lacking. 0 denotes the colony type factor level used as the contrast 
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4.3.3 Analyses of Spinturnicid mite loads 

 

Models of Spinturnicid mite load explained a reasonably large amount of deviance observed 

(best model: M. daubentonii 35%, M. nattereri 22%, P. auritus 17%). The sample size for each 

of the variables used is given in Table 4.7. Spinturnicid loads were higher among juveniles for 

both M. nattereri and M. daubentonii (I = 1, Table 4.8), and female M. nattereri (I = 0.91). 

Colony type had an importance of 1 for all species. For M. daubentonii, female colonies in the 

pre-nursery and nursery periods appeared to have the highest levels of Spinturnicid mites 

(Table 4.8, Figure 4.5). Estimates for M. nattereri had larger confidence intervals indicating 

increased uncertainty about the effect of each colony type, though during the nursery period 

bachelor roosts appear to have lower levels of infestation than mixed or female colonies (Table 

4.8, Figure 4.6). P. auritus had higher levels of infestation in mixed colonies than female 

colonies in the nursery period and relatively low levels of infestation in the pre-nursery period 

(Table 4.8, Figure 4.7). 

 

 

Figure 4.5 - The abundance of Spinturnicid mites on M. daubentonii found in different colony types; B – 

bachelor colonies, M – mixed colonies and F – female colonies. Horizontal black bars indicate the 

median value and boxes indicate the interquartile range (that which contains 50% of the data). Whiskers 

indicate the range of the data or 1.5 times the inter quartile range whichever is smaller. Open circles 

show outliers and labels give the sample size. The asterisk marks the colony type level used as the 

contrast in models (see Table 4.8) 
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Figure 4.6 - The abundance of Spinturnicid mites on M. nattereri found in different colony types; B – 

bachelor colonies, M – mixed colonies and F – female colonies. Boxes are presented as in Figure 4.5. 

Labels indicate the sample size. The asterisk marks the colony type level used as the contrast in models 

(see Table 4.8) 

 

Figure 4.7 – The abundance of Spinturnicid mites on P. auritus found in different colony types; B – 

bachelor colonies, M – mixed colonies and F – female colonies. Boxes are presented as in Figure 4.5. 

Labels indicate the sample size. The asterisk marks the colony type level used as the contrast in models 

(see Table 4.8) 
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Forearm, included in the analyses to account for the size of the host, revealed that larger 

individuals did not have a different number of Spinturnicid mites than smaller individuals 

(Table 4.8). 

Of all parasites studied only non-Spinturnicid mites infesting M. daubentonii were found to be 

correlated to Spinturnicid load. However, the effect size was small; an increase in non-

Spinturnicid abundance from 0 to 47 (the minimum and maximum recorded on this species) 

predicted an increase of only 0.42 Spinturnicid mites. 

BCI was important (I = 1) in models of P. auritus, however, this should be interpreted with 

caution. Pregnant females were included in this analysis as they are important in the 

parameter colony type where they account for the majority of individuals inhabiting female 

pre-nursery colonies. If pregnant females had a significantly reduced Spinturnicid load their 

high average BCI (due to their increased weight) could be the cause of the observed negative 

correlation observed between BCI and Spinturnicid load. To assess this effect these models 

were re-run with pregnant females excluded from the analysis. In these models BCI was not 

found to be important (I = 0.36) suggesting reduced Spinturnicid loads among pregnant 

females was driving the observed correlation with BCI. 

Year was important in models of M. daubentonii, with individuals on average having 0.6 fewer 

Spinturnicid mites in 2010 (Table 4.8). 

When social network data was included in the analysis both analyses of M. daubentonii and M. 

nattereri found social group to have an importance of 1 (maximum difference in mean 

Spinturnicid load between different social groups: M. nattereri = 1, M. daubentonii = 1.1). It 

was hypothesised that social groups that formed larger colonies may carry higher disease 

burdens. Female M. daubentonii social groups did not form colonies that differed significantly 

in size (Median: 8-12; ANOVA: df = 3, F-value = 1.164, p = 0.331), however social groups of M. 

nattereri did (Median: 3-14.5; ANOVA: df = 5, F-value = 3.422, p = 0.009). Median colony size 

was compared with the predicted effect of each social group on Spinturnicid load using a linear 

regression. No significant correlation was detected (t-value = -1.9, p = 0.13) suggesting that the 

difference in Spinturnicid load observed between social groups was not a result of their colony 

size. There was no detectable effect of either betweeness or degree on M. nattereri 

Spinturnicid load (I = 0.22 and 0.3 respectively) or degree on M. daubentonii Spinturnicid load 

(I = 0.33). Betweeness was found to be important for M. daubentonii (I = 0.95) however the 

estimate (0.07, 95% CI 0.02-0.12) predicts a difference of only 0.62 Spinturnicid mites between 

the highest and lowest values of betweeness. 



171 
 

As reproductive status was only considered for female adults this was analysed separately 

using a mixed effects model including individual as a random effect to account for repeat 

captures with reproductive status as the only explanatory variable. For all three species, 

models including reproductive status were significantly better than null models (p < 0.0001 in 

all cases). The pattern observed was similar across species, with lactating females generally 

having the highest mean abundance of Spinturnicid mites (significant for M. daubentonii and 

M. nattereri, p < 0.001) and non-breeding females having a lower mean abundance than either 

lactating or post-lactating females (Figures 4.8-4.10). 

 

 

Figure 4.8 – The abundance of Spinturnicid mites observed infesting adult female M. daubentonii, 

grouped by the reproductive status of the host. Pairwise comparisons: Non-breeder<<Post-

lactating<Pregnant<<Lactating where ‘<<’ indicates a significant difference and ‘<’ indicates a non 

significant difference. Boxes are presented as in Figure 4.5 
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Figure 4.9 – The abundance of Spinturnicid mites observed infesting adult female M. nattereri, grouped 

by the reproductive status of the host. Pairwise comparisons: Pregnant<Non-breeder<<Post-

lactating<<Lactating, notation as in Figure 4.8. Boxes are presented as in Figure 4.5 

 

Figure 4.10 – The abundance of Spinturnicid mites observed infesting adult female P. auritus, grouped 

by the reproductive status of the host. Pairwise comparisons: Pregnant<<Non-breeder<Post-

lactating<Lactating (Non-breeder<<Lactating), notation as in Figure 4.8. Boxes are presented as in Figure 

4.5  
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4.3.4 Analyses of non-Spinturnicid mite loads 

 

Models of non-Spinturnicid mite load (Table 4.9), like Spinturnicid models, explained a 

reasonably large amount of the deviance observed (best model: M. daubentonii 16%, M. 

nattereri 32%, P. auritus 22%). Juvenile P. auritus and male M. nattereri had reduced 

abundance of non-Spinturnicid mites (I = 0.98 and 1 respectively). Forearm length had a 

negative effect in non-Spinturnicid abundance for both P. auritus and M. daubentonii (I = 0.95 

and I = 0.99 respectively). Juveniles were removed from models to account for the effect their 

smaller size may have had on this result. Whilst forearm was not found to remain important 

for M. daubentonii (I = 0.42) with juveniles removed, it was important for P. auritus (I = -0.96). 

These results suggest that the largest P. auritus individuals will have on average 1.18 fewer 

non-Spinturnicid mites than the smallest individuals. 

Averaged models of both M. daubentonii and M. nattereri had a high importance of 

Spinturnicid mites (I = 1 and I = 0.97 respectively). Both were positively correlated and had 

similar effect size (Table 4.9). The predicted average increase in non-Spinturnicid mites was 

2.02 for M. daubentonii and 0.88 for M. nattereri across the range of Spinturnicid loads 

observed for these species in the field. A negative relationship was identified for bat fly 

infesting M. daubentonii (I = 1), predicting an average decrease of 1.75 non-Spinturnicid mites 

between the minimum and maximum number of bat fly observed. 

For M. daubentonii, colony size had a negative effect on non-Spinturnicid abundance (I = 1) 

predicting individuals in the largest roosts observed would have, on average, 2.1 fewer non-

Spinturnicid mites than bats roosting alone (Table 4.9). 

Colony type had a high importance for all species (I = 1 in all cases) but the error of these 

estimates was greater than in models of Spinturnicid mites, indicating increased uncertainty in 

the estimates for each colony type (Table 4.9). To accurately assess the variation between 

roost types a larger sample size is required. 

BCI was reported to have a negative correlation with non-Spinturnicid abundance for M. 

daubentonii and M. nattereri (I = 1 and I = 0.97 respectively, Table 4.9). When pregnant 

females were removed from the analysis BCI remained important (I = 1) for M. daubentonii. 

The effect size predicts a difference in non-Spinturnicid abundance of 2.79 between the 

highest and lowest BCI recorded, non-Spinturnicid mites being more abundant on individuals 

with lower condition. This observation is explored further in models of BCI (4.3.7). When 

pregnant females were excluded from M. nattereri models, BCI was no longer important (I = 
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Coefficients (±95% CI) I Coefficients (±95% CI) I Coefficients (±95% CI) I

10.155 (±4.393) 7.635 (±6.114) 14.66 (±15.703)

-0.216 (±0.335) 0.43 0.143 (±0.4) 0.32 -2.849 (±3.178) 0.98

0.017 (±0.358) 0.26 -0.585 (±0.382) 1.00 -0.764 (±0.974) 0.57

-0.157 (±0.106) 0.99 -0.143 (±0.124) 0.84 -0.448 (±0.363) 0.95

Body Condition Index (BCI) -14.91 (±4.048) 1.00 -8.441 (±6.526) 0.91 0.713 (±18.063) 0.25

Bat Fly -0.247 (±0.164) 1.00 NA NA NA NA

0.044 (±0.012) 1.00 0.047 (±0.034) 0.97 0.034 (±0.139) 0.26

Fleas NA NA -0.22 (±0.351) 0.43 NA NA

-0.081 (±0.017) 1.00 0.004 (±0.013) 0.29 0.033 (±0.076) 0.33

Bachelor colony -1.602 (±0.501) -1.433 (±1.274) NA

Mixed sex colony NA -0.955 (±1.296) -2.486 (±1.703)

Female colony 1.599 (±0.428) -2.415 (±0.865) -1.767 (±0.954)

Bachelor colony 0 0 NA

Mixed sex colony -0.965 (±0.5) -1.012 (±0.914) -17.043 (±4049.433)

Female colony 0.636 (±0.336) -0.433 (±0.832) -0.541 (±1.094)

Bachelor colony -0.269 (±0.348) NA -17.373 (±2788.45)

Mixed sex colony 0.235 (±0.308) 0.25 (±0.803) 0

Female colony NA -0.86 (±0.839) NA

-0.183 (±0.677) 0.868 (±0.917) 0.534 (±1.977)

0.072 (±0.198) 0.31 -1.184 (±0.217) 1.00 0.694 (±0.982) 0.53

Number of models incuded in inference

32% 22%

9 27 44

M. nattereri P. auritusM. daubentonii

(Intercept)

Age: Juvenile

Variables

Sex: Male

Forearm length (mm)

Deviance explained by best model

Pre-nursery season

1.00

Year: 2010

16%

Colony size

Spinturnicid mites

1.00 1.00
Nursery season

Post-nursery season

Solitary roosting individuals

 

Table 4.9 – Results of model averaging, showing associations between non-Spinturnicid abundance and potential explanatory variables. Variables with an importance 

greater that 0.9 (i.e. a 90% chance that the variable is present in the best model) are indicated in bold. NA indicates where a variable is not included in the analysis as 

data is lacking. 0 denotes the colony type factor level used as the contrast 
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0.32) and so the correlation between BCI and non-Spinturnicid is likely to be driven by the low 

abundance of mites on pregnant females. 

Year was important in models of M. nattereri, with individuals predicted to have on average 

1.2 fewer non-Spinturnicid mites in 2010 (Table 4.9). 

There was no detectable effect of either betweeness or degree on non-Spinturnicid mite load 

for M. daubentonii (I = 0.25 and I = 0.26 respectively) or M. nattereri (I = 0.26 and I = 0.79 

respectively). M. daubentonii also showed little support for an effect of social group (I = 0.71), 

however social group was found to be important in models of M. nattereri (I = 1, maximum 

difference in mean non-Spinturnicid load between different social groups = 1.96). Using the 

same approach as described for Spinturnicid mites (4.3.2) there was no correlation between 

median colony size of each social group and their predicted effect on non-Spinturnicid mite 

abundance. 

Reproductive status of females was analysed as for Spinturnicid mites (4.3.2). For all three 

species, models including reproductive status were significantly better than null models (p < 

0.001 in all cases). The pattern observed was similar across species, though pairwise 

comparisons showed that only lactating M. nattereri had a significantly higher non-Spinturnicid 

load (Figures 4.11-4.13). 

 

Figure 4.11 – The abundance of non-Spinturnicid mites observed infesting adult female M. daubentonii, 

grouped by the reproductive status of the host. Pairwise comparisons: Post-lactating<Non-

breeder<<Pregnant<Lactating, notation as in Figure 4.8. Boxes are presented as in Figure 4.5 
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Figure 4.12 – The abundance of non-Spinturnicid mites observed infesting adult female M. nattereri, 

grouped by the reproductive status of the host. Pairwise comparisons: Pregnant<<Non-breeder<<Post-

lactating<<Lactating, notation as in Figure 4.8. Boxes are presented as in Figure 4.5 

 

Figure 4.13 – The abundance of non-Spinturnicid mites observed infesting adult female P. auritus, 

grouped by the reproductive status of the host. Pairwise comparisons: Pregnant<<Post-lactating (Non-

breeder and Lactating individuals were not significantly different from any other groups), notation as in 

Figure 4.8. Boxes are presented as in Figure 4.5 
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4.3.5 Analyses of bat fly loads 

 

Models of bat fly abundance on M. daubentonii suggest that year is an important factor, with 

more infested bats observed in 2010, however, no other variables appeared important and the 

best model explained only 6% of the deviance observed (Table 4.10). When social variables 

were considered, none were found to be of high importance (Social group, I = 0; Betweeness, I 

= 0.62; Degree, I = 0.30). 

 

Coefficients (±95% CI) I

-3.529 (±4.971)

-0.156 (±0.904) 0.26

-0.521 (±0.54) 0.71

0.025 (±0.199) 0.25

Body Condition Index (BCI) 10.62 (±10.781) 0.72

Non-Spinturnicid mites -0.011 (±0.039) 0.28

0.012 (±0.042) 0.29

Fleas NA NA

-0.028 (±0.038) 0.51

Bachelor colony -0.901 (±1.39)

Mixed sex colony NA

Female colony -1.815 (±1.296)

Bachelor colony 0

Mixed sex colony 0.16 (±0.844)

Female colony -0.136 (±0.764)

Bachelor colony -0.897 (±0.842)

Mixed sex colony -0.269 (±0.679)

Female colony NA

-0.887 (±1.502)

0.902 (±0.47) 1.00

Number of models incuded in inference

M. daubentonii

Variables

(Intercept)

Age: Juvenile

Sex: Male

Forearm length

Year: 2010

Deviance explained by best model 6%

Spinturnicid mites

Colony size

Pre-nursery season

0.72
Nursery season

Post-nursery 

season

Solitory roosting individuals

133  

 

Table 4.10 – Results of model averaging, showing associations between bat fly prevalence and potential 

explanatory variables. Variables with an importance greater that 0.9 (i.e. a 90% chance that the variable 

is present in the best model) are indicated in bold. Due to the frequency distribution of bat fly data they 

were analysed using models with a binomial error structure 
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4.3.6 Parasite avoidance by non-breeding females 

 

The proportion of non-breeding adult female M. daubentonii in nursery colonies (62%, n = 51) 

was significantly less than the proportion of reproductive females (82% , n = 113; χ2 = 10.97, df 

= 1, p < 0.001). Since M. daubentonii in nursery colonies have the highest loads of mites (Table 

4.8 and 4.9) this relatively low occupancy rate of nursery colonies by non-breeding females 

may explain the lower parasite loads observed on non-breeding when compared to breeding 

females (Figure 4.8 and 4.11). This difference in the distribution of non-breeding females 

compared to reproductive females was not observed for M. nattereri (χ2 = 0, df = 1, p = 1) or P. 

auritus (χ2 = 0, df = 1, p = 1) where the distribution of breeding and non-breeding females were 

almost identical. However, parasite loads still appear lower on non-breeders suggesting that 

breeders are either preferentially selected by mites or are less able to fend off infestation 

either via immune responses or grooming. This may be the case if during pregnancy and 

lactation resources are diverted away from the immune system and grooming activity and 

instead invested in offspring. 

 

4.3.7 Analyses of variables predicting body condition index (BCI) 

 

The deviance explained by models of BCI was low (5.0%-10.6%, Table 4.11) demonstrating that 

a large amount of the variability in BCI remains unexplained, and that these models are fairly 

poor predictors of BCI. 

With pregnant females removed the range of BCI observed in each species was as follows: M. 

daubentonii 0.16-0.33, M. nattereri 0.14-0.24 and P. auritus 0.16-0.26. Age and sex had high 

importance (I = 1) across all three species (Table 4.11). Juveniles and males had lower BCI than 

adults or females respectively. Day of the year was present in all models of M. daubentonii BCI 

(I = 1), with a broad peak in BCI spanning from early July to the end of August. 

Wind speed during the night prior to capture was of high importance to models of M. nattereri 

(I = 0.96) and P. auritus (I = 1). For both species higher wind speed saw a decrease in BCI (Table 

4.11) with the effect greatest for P. auritus (Figure 4.14). Additionally average nightly 

temperature was found to have a positive correlation to P. auritus condition (I = 1, Figure 

4.15). 
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Coefficients (±95% CI) Importance Coefficients (±95% CI) Importance Coefficients (±95% CI) Importance

(Intercept) 12.533 (±7.823) 18.681 (±4.75) 17.328 (±5.143)

Age: Juvenile -2.888 (±0.605) 1 -2.263 (±0.386) 1 -1.299 (±0.731) 1

Sex:Male -1.438 (±0.391) 1 -1.176 (±0.304) 1 -1.239 (±0.437) 1

Year: 2010 -0.096 (±0.362) 0.28 -0.273 (±0.298) 0.67 -0.153 (±0.553) 0.27

Day of the year: First order 0.115 (±0.073) 1 0.038 (±0.046) 0.73 0.027 (±0.069) 0.46

Day of the year: Second order -0.0003 (±0.0002) 1 -0.0001 (±0.0001) 0.71 -0.0001 (±0.0002) 0.43

Average Temperature -0.009 (±0.088) 0.26 -0.023 (±0.095) 0.43 0.229 (±0.105) 1

Average Windspeed -0.187 (±0.284) 0.45 -0.309 (±0.199) 0.96 -0.769 (±0.347) 1

Average Rainfall -0.301 (±0.649) 0.35 0.227 (±0.197) 0.39 0.191 (±0.222) 0.58

Fleas NA NA 0.016 (±0.36) 0.23 NA NA

BatFly 0.218 (±0.276) 0.54 NA NA NA NA

Spinturnicid mites -0.019 (±0.031) 0.42 0.02 (±0.046) 0.32 -0.032 (±0.067) 0.34

Non-Spinturnicid mites -0.036 (±0.027) 0.95 -0.018 (±0.032) 0.37 0.19 (±0.139) 0.95

Deviance explained by best model

Number of models icluded in inference

M. daubentonii M. nattereri P. auritus

83 144 43

5.0% 10.6% 8.7%

 

Table 4.11 – Results of model averaging, showing associations between body condition index (BCI) and potential explanatory variables. BCI was multiplied by 100 

before running these models so that output is easier to read. Variables with an importance greater that 0.9 (i.e. a 90% chance that the variable is present in the best 

model) are indicated in bold. Day of the year was modelled as a polynomial and the first and second order terms that describe the relationship are presented 
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Non-Spinturnicid mites had high importance for BCI models of both M. daubentonii (I = 0.95) 

and P. auritus (I = 0.95). The effect was negative for M. daubentonii and positive for P. auritus. 

(Table 4.11, Figure 4.16). The abundance of bat flies and fleas were not correlated to host 

condition. 

 

 

Figure 4.14 – The predicted effect of the previous night’s wind speed on body condition index (BCI). 

Trend lines indicate the predicted effect of wind speed when all other variables are held at their mean. 

Points indicate the predicted values of BCI from the best model when used with the raw data, this gives 

an indication of the level of variability in the data 

 

0.15 

0.17 

0.19 

0.21 

0.23 

0.25 

0.27 

0.29 

0 0.5 1 1.5 2 2.5 3 3.5 4 

B
o

d
y 

co
n

d
it

io
n

 in
d

ex
 (

w
ei

gh
t/

fo
re

ar
m

) 

Wind speed (m/s) 

M. nattereri 

P. auritus 



181 
 

 

Figure 4.15 - The predicted relationship between mean temperature of the previous night and body 

condition index (BCI) for P. auritus. Trend lines indicate the predicted relationship when all other 

variables are held at their mean. Points indicate the predicted values of BCI from the best model when 

used with the raw data, this gives an indication of the level of variability in the data 

 

 

Figure 4.16 – The predicted relationship between non-Spinturnicid mite load and body condition index 

(BCI). Trend lines indicate the predicted relationship when all other variables are held at their mean. 

Points indicate the predicted values of BCI using the best model and raw data, this gives an indication of 

the level of variability in the data 
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For a subset of 483 captures the time when biometric data was recorded was collected. For 

this subset the dataset was reanalysed with time since dawn included as an additional variable. 

Year was not included in these analyses as time was only recorded in 2010. Time since dawn 

(minutes) had a negative effect on BCI for M. daubentonii (I = 1, estimate = -0.007 ± 0.003) but 

was not found to have a strong effect on M. nattereri (I = 0.20, estimate = -0.0002 ± 0.003) or 

P. auritus (I = 0.74, estimate = -0.003 ± 0.003). The negative effect observed for M. daubentonii 

predicts a decline in BCI of 0.03 between the earliest (4.8hours after sunrise) and latest 

(13.4hours after sunrise) individuals sampled in this study. 

For those individuals included in our analysis of social networks (Chapter 2) the data were 

again reanalysed with social group, degree and betweeness included as variables. None of 

these variables were found to be important for predicting BCI (I < 0.63). 

Reproductive status was analysed as for Spinturnicid mites (4.3.2) with pregnant females 

removed. Models including reproductive status were significantly better than the null models 

(p < 0.001 in all cases). Pairwise comparisons found that for all species non-breeding females 

had significantly lower BCI than both lactating females and post-lactating females (p < 0.0001 

in all cases), while lactating females and post-lactating females were not significantly different.   
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4.4 Discussion 

 

Our study reveals substantial variability in the parasite load and BCI of M. daubentonii, M. 

nattereri and P. auritus. Some of the observed variation is explained by factors common to all 

three species whilst other explanatory variables are species-specific. 

 

4.4.1 Patterns of ectoparasite abundance  

 

All species showed a non-random distribution of ectoparasites amongst individuals in the 

population (Figures 4.3 and 4.4). This is a well know epidemiological phenomenon and has 

important consequences for the spread of disease within a population (Perkins et al. 2003). 

This non-random distribution means that a small proportion of the population will be 

responsible for most of the parasite transmission (Beldomenico & Begon 2010). 

M. daubentonii had both a higher prevalence and load of mites and bat flies compared to 

sympatric bat species. The reason for this is unclear at present. The immune response of bats 

to mites has not been studied but innate differences may explain the differences in 

prevalences observed. Alternatively, differences in the biology of species-specific parasites, 

such as cryptic species of Spinturnicid mites infesting M. daubentonii and M. nattereri 

(Bruyndonckx et al. 2009), might also explain differences in ectoparasite load and prevalence. 

A third alternative is that the social structure of M. daubentonii favours transmission of mites 

and bat flies. 

Amongst both M. nattereri and M. daubentonii, juveniles, lactating females and individuals in 

nursery colonies tended to have higher loads of Spinturnicid infestation. Studies of 

Miniopterus schreibersii have shown that ectoparasites reproduce in time with their hosts to 

take advantage of the arrival of juveniles (Lourenco & Palmeirim 2008). Juvenile P. auritus 

have been shown to take one month to attain adult levels of grooming ability. During this time 

lactating females groom juveniles, reducing the time spent grooming themselves by 50% 

compared to non-breeding females (McLean & Speakman 1997). The observed reduction in 

adult grooming, the inability of juveniles to groom effectively, and the increase in available 

hosts results in conditions favourable to ectoparasites. The pattern of infestation observed in 

the present study therefore likely reflects the effects of mites’ reproduction and optimal 

foraging in response to host reproduction and grooming. Interestingly, the same trends for 

increased abundance on juveniles and in nursery colonies were not observed for P. auritus, 
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though significantly more Spinturnicids were found to infest lactating females than pregnant 

or non-breeding individuals. This may be a consequence of differences in the immunology 

and/or population structure of P. auritus, or the ecology of its parasites. 

The effect of colony type on mite load observed for M. daubentonii and M. nattereri may 

reflect an evolutionary strategy for the avoidance of mites by males. For both species bachelor 

colonies in the nursery period show lower levels of infestation with Spinturnicid mites than 

female colonies (Figures 4.5 and 4.6). In the case of M. daubentonii, males within Wytham 

Woods routinely form bachelor colonies (Chapter 2) which roost in boxes that do not differ in 

microclimate or proximity to landscape features compared to roosts used by female colonies 

(Chapter 3). The segregation of males is therefore not simply an aversion to colony formation, 

as we find them in large aggregations, nor is it a result of different microclimate requirements 

as we observed no difference between the climate of roosts used by bachelor and nursery 

colonies. The increased load of mites in nursery roosts observed here could therefore be an 

important driver for the segregation of males during this period, especially amongst M. 

daubentonii whose ectoparasite load is higher than other species. This assumes, however, that 

mites cause decreased fitness. In this study there was no negative association with BCI and 

Spinturnicid mites, however, these mites could have had effects on other fitness components 

that we did not measure. Regardless of the cause of the observed sexual segregation it is 

apparent that females must gain some benefit from nursery colony formation, such as shared 

body heat for maintenance of homeothermy (Dietz & Kalko 2006) or cooperative care of 

offspring, which outweighs any costs of increased parasitism. 

The lower number of Spinturnicid mites on non-breeding adult female M. daubentonii and the 

higher proportion of these females roosting away from nursery roosts suggests that they may 

be adapting their roosting behaviour to lower their exposure to mites. However, as non-

breeding females enter torpor (Dietz & Kalko 2006), they may choose to avoid the 

homoeothermic inhabitants of nursery roosts, therefore reducing parasite load as a 

consequence of their roosting behaviour rather than its cause. Separating the effects of 

thermoregulation and active avoidance of ectoparasites will require manipulative field 

experiments. 

The patterns of ectoparasite abundance observed for P. auritus are difficult to explain. Colony 

type was an important factor in predicting mite loads, however there was considerable 

uncertainty in parameter estimates. P. auritus males and females roost together throughout 

the year unlike both other species (Entwistle et al. 2000; Altringham 2003). Unfortunately a 

lack of data did not allow us to analyse their population structure in detail. Such an analysis 



185 
 

may help explain the distribution of mites observed or suggest a better method for classifying 

colony types in this species. 

Forearm length was included in models to control for wing area as it was assumed that bats 

with a larger wing area would have a larger number of mites. With juveniles removed, to avoid 

bias due to age, the opposite trend was observed for non-Spinturnicid mites infesting P. 

auritus. Further investigation is needed to interpret this result and should consider possible 

relationships between forearm length and immune function and grooming rates. 

After accounting for the confounding effects of pregnant females, BCI was found to be 

negatively correlated with non-Spinturnicid mite abundance among M. daubentonii. This may 

be an indication that these mites preferentially infect individuals in poor condition who may be 

less able to mount an effective immune response or expend energy on grooming. 

Alternatively, mites may cause their host to lose condition. 

Amongst M. daubentonii and M. nattereri both negative and positive correlations were 

observed between ectoparasites. This may be due to niche similarity/dissimilarity rather than 

interactions. For example, Spinturnicid and non-Spinturnicid mites, which in some cases were 

positively correlated, may have similar host preferences due to similarities in feeding 

behaviour. In contrast, the difference in life cycle and behaviour of bat flies and non-

Spinturnicid mites could explain their negative correlation on M. daubentonii. 

M. daubentonii bat fly prevalence, in contrast to observed patterns of mite infestation, was 

not correlated to colony type, reproductive status or age. Instead year was the most important 

factor and the best model explained only 6% of the observed deviance. As bat flies develop 

from larva to adult in the roost they have little choice as to whom they infest, being 

constrained to future occupants of the roost. Bat flies are thought to take between 1 to 2 

months (and up to 1 year) to emerge from their puparia (Marshall 1981; Reckardt & Kerth 

2006). This off-host life stage may go some way to explain why we do not see similar 

associations to those of mites. For example, puparia produced by adult bat flies feeding within 

nursery colonies will not necessarily remain associated with nursing bats as they frequently 

change roosts. It should also be noted that bat flies were difficult to observe and are certainly 

under recorded in the present study. As such some significant relationships may have been 

missed.  
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4.4.2 Social network variables as predictors of ectoparasite load 

 

Previous studies using social networks to predict the load of ectoparasites on hosts have found 

a positive correlation between the amount of territory overlap between individuals and tick 

infestation in tuatara lizards (Godfrey et al. 2010). Additionally studies of humans have found 

that individuals with high values of degree in networks of cocaine injectors are more likely to 

become infected with HIV (Bell et al. 1999). The present study did not find any correlation 

between the number of associates (degree) an individual had and its parasite load, this is 

perhaps unsurprising. In bat colonies contact between individuals is intimate and prolonged, 

providing ideal conditions for the transmission of ectoparasites. Add to this the observed 

preference of Spinturnicids for reproductive females and juveniles in some species (Christe et 

al. 2007), and it is apparent that infestation risk is not so much linked to how many individuals 

a bat comes into contact with but rather who they come into contact with. This may also 

explain the observed positive, though small, effect of betweeness on M. daubentonii infested 

with Spinturnicid mites. Individuals with high betweeness are those that are important for 

connecting other individuals in the network. This would include, for example, individuals which 

move between two social groups with otherwise limited connectivity. Such individuals have an 

increased number of indirect contacts without necessarily having an increased degree. These 

findings should be interpreted with caution as values of betweeness and degree can be 

inaccurate in datasets with limited recaptures such as in the present study (Croft et al. 2008). 

Therefore, more work is needed before a conclusive link can be made between an individual’s 

position in a social network and its parasite load in this study system. 

Social group was found to be a significant predictor for both M. daubentonii and M. nattereri 

Spinturnicid mite abundance, and M. nattereri non-Spinturnicid mite abundance. This was not 

found to be attributable to variation in the typical colony sizes that these social groups formed. 

Instead, factors such as the social structure within social groups and stochastic events may 

explain the observed differences between social groups. 

Colony size had a negative effect on Spinturnicid mite load amongst M. daubentonii. As M. 

daubentonii have the highest mean load of mites amongst the species examined, this may 

reflect competition, direct or indirect, amongst mites leading to dispersal away from infested 

hosts. Alternatively this may be a host mediated effect, such as increased allogrooming in 

larger colonies. The absence of this trend amongst M. nattereri and P. auritus suggests that 

amongst these species, which experience lower levels of infestation, competition between 

mites may be lower or host mediated effects may be reduced or absent. 
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4.4.3 Patterns of Body Condition Index 

 

Both sex and age had significant impacts on the BCI of individuals across all three species. The 

lower condition observed in juveniles is likely to be due to the prioritisation of growth, 

especially in the wings, instead of the generation of fat reserves. Higher BCI among females 

could be due to the presence of mammary glands which swell up to feed offspring in the 

summer or more general sexual dimorphism in these species. The peak in BCI in July to 

September observed for M. daubentonii may similarly be driven by this variation in females. 

The effect of weather on BCI is almost unexplored in the scientific literature. We found that 

weather during the night prior to capture had a significant effect on the BCI of bats. Average 

wind speed had a negative effect on BCI, the strength of this effect being correlated to the 

morphology of the species (Chapter 1, Table 4.11). P. auritus, with the broadest wings 

(Norberg & Rayner 1987), was most affected by increased wind speed. This species is a slow-

flying gleaner and frequently hovers to catch prey. M. nattereri is also a slow-flying gleaning 

species however its wings are not as broad as those of P. auritus and the negative effect of 

wind speed on BCI was less. M. daubentonii wings have a similar aspect ratio (breadth:length) 

to M. nattereri but their total area is reduced (Norberg & Rayner 1987), an adaptation to fast 

low flight over water. M. daubentonii have been observed foraging over water in wind speeds 

up to 7m/s (pers. obs.). Wind speed did not have a detectable effect on the BCI of this species. 

The robustness of this hypothesised relationship between wind speed, wing morphology, and 

BCI could easily be tested by studying other bat species. 

Prey behaviour may explain the positive effect of temperature on P. auritus condition. Moths 

form a large part of the diet of this species and are known to be more active on nights with an 

elevated temperature (Anthony et al. 1981; McGeachie 1989). Again, further research into the 

behavioural responses of P. auritus’s prey species to nightly temperature could be used to test 

this hypothesis. 

A negative impact of Spinturnicid mites on BCI of bats has been demonstrated in previous 

studies (Giorgi et al. 2001; Lourenco & Palmeirim 2004; Zahn & Rupp 2004; Lucan 2006). 

However, we observed no such effect, even amongst M. daubentonii which carries higher 

loads of Spinturnicid mites than species where negative impacts have been reported. Non-

Spinturnicid mites had contrasting correlations with host BCI. M. daubentonii had reduced BCI 

with high levels of infestation whilst the opposite was true for P. auritus (Figure 4.15). The 

causal link is unclear, and may relate to the behaviour of the mites themselves. For example, 

non-Spinturnicid mites infesting M. daubentonii may be selecting to parasitise bats with poor 
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condition as they may have reduced immune competence, whereas P. auritus mites may 

preferentially infest individuals with high BCI as they provide a higher quality foraging 

resource. These hypotheses could be tested with choice experiments in the laboratory and 

longitudinal studies of the impacts of mites on the BCI of their host. 

Since British bats do not feed during hours of sunlight it was predicted that bats would lose 

condition over the course of the day. We found this prediction was supported by data from M. 

daubentonii. Lamentably this data was not recorded for all individuals throughout the study. 

Future studies should record the time of day when measurements are taken and account for 

this in models of BCI. 

 

4.4.4 Implications for models of disease transmission 

 

Results in this chapter highlight the importance of roost type and not social network 

parameters for explaining the distribution of parasites in populations of bats. Juveniles and 

lactating females in nursery roosts had the highest levels of infestation with Spinturnicid mites 

amongst both M. daubentonii and M. nattereri. Contact rates are high in these colonies but 

additionally both juveniles and females are thought to be more susceptible at this time due to 

reduced grooming activity (McLean & Speakman 1997) and reduced immunocompetence 

(Christe &Vogel, 2000). During the same time period males in bachelor roosts avoided high 

parasite loads dispite still roosting in groups. Since larger colonies were not found to have 

larger average parasite loads we show that colony type rather than size is most important for 

predicting parasite load. Addtitionally social network parameters were poor predictors of 

parasite burden, perhaps because they consider contacts over the entire duration of the study, 

or were not based on enough observations to generate accurate parameters. Since colony type 

sex, reproductive status and age were found to be key variables these must be included in 

models of disease in bats. Additionally increased susceptibility of reproductive females and 

juveniles should be considered during the nursery period as well as seasonal variation in the 

contact rates between males and females (lower in nursery period than post-nursery period, 

Chapter 2, Figure 2.3a). Models delevoped in the future could be tested against the empirical 

data used in this chapter to test their ability to produce realistic results. 

These analyses have considered factors that predict the abundance of ectoparasites, however, 

future modelling efforts are likely to focus on pathogens such as viruses, with a human health 

implication. It is therefore important to note that Spinturnicid mites are known to reproduce in 

time with their host (Lourenco & Palmeirim 2008) which is likely to explain a large amount of 
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the variation in mite abundance in this study. However, colony types, age, sex, reproductive 

status and seasonal changes in contact rates may also be important in transmission rates of 

pathogens and so we recommend these be included in such models. 

 

4.4.5 Conclusions 

 

Both host and parasite ecology are suggested to be important factors for describing the 

distribution of parasites within and between bat species. Additionally it is apparent that 

behavioural adaptations such as sexual segregation in M. daubentonii allow a portion of the 

population to reduce its parasite load. Whether parasite avoidance is the cause or 

consequence of this segregation is not clear. 

Our results suggest that an individual’s social group may influence parasite loads, however, 

more data on network structure, including higher temporal resolution, is needed to test the 

importance of individuals’ position within a social network. 

Age, sex, reproductive status and colony type were found to be important parameters for 

predicting parasite load. These must therefore be included in models of pathogens in bat 

populations. This suggests state-space models accounting for seasonal changes in contact rate 

and roosting behaviour would be an appropriate starting point. 

We found evidence of both positive and negative correlations between parasite load and BCI. 

There were also similarities between species in the effect of age, sex and reproductive status, 

with lactating females and juveniles generally found to have the highest mite load.  In contrast, 

weather was found to have species-specific effects dependant on species’ wing morphology 

and foraging strategy. 
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5 Surveillance for pathogens of potential human health 

concern in British bats 

 

5.1 Introduction 
 

Zoonotic infections originating in wildlife are a significant threat to human health (Daszak et al. 

2000). Close contact between bats and humans or domestic animals is a principal cause of 

disease emergence, and such contact has become more frequent (Breed et al. 2006; Wong et 

al. 2007) due to increased hunting, habitat loss and agricultural intensification (Daszak et al. 

2001; Epstein et al. 2006; Leroy et al. 2009). Add to this the proliferation of modern transport 

which readily moves zoonoses around the globe, and the chance of zoonotic disease 

emergence and subsequent spread is perhaps greater than it has ever been. 

In addition to their recognised link with rabies transmission, bats have been identified as the 

reservoir host of several pathogens that have caused disease outbreaks in humans (Wong et 

al. 2007). In some cases the causative agent was not known to infect bats until after the 

outbreak in humans had occurred (Halpin et al. 1998; Johara et al. 2001; Poon et al. 2005). This 

highlights the current lack of knowledge of the potentially harmful pathogens hosted by bats. 

As a result, a number of recent studies have sought to discover the distribution of known 

zoonoses present in bats (Dominguez et al. 2007; Hayman et al. 2008; Tong et al. 2009; 

Negredo et al. 2011), while others have identified novel pathogens that may be zoonoses of 

the future (Chu et al. 2008). 

Disease surveillance amongst British bats is currently limited. Almost all work has focused on 

European Bat Lyssaviruses (Fooks et al. 2004; Brookes et al. 2005; Fooks et al. 2006; Harris et 

al. 2006; Smith et al. 2006; Banyard et al. 2009; Smith et al. 2011) which caused the death of a 

bat worker in Scotland in 2002 (Fooks et al. 2003). This work identified a low prevalence of 

seropositive Myotis daubentonii (0.7-5.1%, 95% CI) within the UK (Smith et al. 2006). Other 

work has identified Babesia sp., Bartonella sp., Borrelia burgdorferi sensu lato and 

trypanosomes in blood samples (Gardner & Molyneux 1987; Concannon et al. 2005; Reeves et 

al. 2007; Evans et al. 2009; Hamilton et al. 2012). Focusing surveillance on diseases of greatest 

concern, notably viruses (see 1.5.2), is needed in the UK to identify diseases of human health 

concern in wild bat populations. Additionally these surveillance studies should also attempt to 

quantify the disease dynamics within the populations and identify possible pathways of 

disease emergence to humans or other animals that could act as intermediate hosts.  
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In Britain, contact between bats and humans that might lead to disease transmission is rare, 

although some individuals such as researchers, bat rehabilitators and ecological consultants 

have regular contact with bats. Despite the generally low encounter rate between bats and 

humans in the UK, bats commonly roost in buildings occupied by humans and domestic 

animals (Joint Nature Conservation Committee 2007). This is due to urbanisation and the 

domination of the landscape by agriculture, which have reduced the availability of natural 

roosts (Altringham 2003; Simon et al. 2004; Zahn et al. 2010). 

Recent work has highlighted the presence of a number of pathogens in bats or their guano in 

mainland Europe. These include: Coronaviruses (Gloza-Rausch et al. 2008; Reusken et al. 2010; 

Drexler et al. 2011), Astroviruses (Drexler et al. 2011) and the fungus Cryptococcus neoformans 

(Montagna et al. 2003). These, together with Candida spp. were the focus of the disease 

surveillance undertaken for this thesis. 

Both Coronaviruses and Astroviruses are single stranded positive sense RNA viruses. They have 

high mutation rates (Woolhouse et al. 2001) and the ability to recombine their genetic 

material (Pantin-Jackwood et al. 2006; Graham & Baric 2010), allowing them to exchange 

portions of their genome with closely related viruses as is common amongst influenza viruses. 

This allows them to adapt relatively quickly to novel hosts. 

Following the SARS (Severe Acute Respiratory Syndrome) outbreak, caused by the 

Betacoronavirus, Severe acute respiratory syndrome-related coronavirus (SARS-CoV), 

surveillance efforts detected coronavirus species in bats from every continent they inhabit 

(GenBank taxonomy data, January 2011). However, the virus has not previously been identified 

in Britain. Different species of coronaviruses cause gastrointestinal, respiratory and nervous 

system diseases in a wide variety of host species and are capable of cross-species transmission 

(Graham & Baric 2010). Coronaviruses known to infect humans include members of the Alpha- 

and Beta- but not Gammacoronavirus genera (Woo et al. 2009). 

In humans, Astroviruses commonly cause gastroenteritis in young children, the elderly and the 

immunocompromised (Kurtz & Lee 1978). Astroviruses have been identified in many domestic 

species including cows, pigs, sheep, dogs, cats, mice, chickens and turkeys. The diversity of 

astroviruses in wild animals has not been explored to the same extent, however, Chu et al 

(2008) found a high prevalence and diversity of members of the Mammastrovirus genus in bats 

from China. A recent study also reported a high prevalence of Mammastroviruses in a colony 

of Myotis myotis (Greater mouse-eared bat) in Germany (Drexler et al. 2011). 
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Bat guano is host to a pathogenic basidiomycete fungus, C. neoformans (Kajihiro 1965; Lazera 

et al. 1993). Spores of this fungus can be inhaled when droppings are disturbed leading to the 

disease cryptococcosis. This disease can become life threatening if the infection spreads, 

though severe cases are usually limited to those with weakened immune systems such as HIV 

patients (Levitz 1991). This pathogen has been identified in bat faecal samples from caves in 

Italy (Montagna et al. 2003). 

Other important opportunistic fungal pathogens of humans include various members of the 

Candida genus. Most of these yeast are saprophytes, but many also live harmlessly in 

association with the enteric tract of many animals including mammals, birds and reptiles. 

However, like Cryptococcus, some Candidia species can cause severe illness in immunologically 

compromised individuals. Candida spp. have been reported from bats previously (Grose & 

Marinkelle 1968; Oyeka 1994; Botelho et al. 2012) and some of the strains that were isolated 

may have potential to cause human disease, having been shown to cause mortality in mice 

(Botelho et al. 2012). 

A common parasite of the bats in Wytham Woods is the Spinturnicid mite. This mite is directly 

transmitted, easy to identify in the field and prevalent on M. daubentonii and M. nattereri 

(Chapter 4). Spinturnicid mites cannot survive off their host for long periods of time and are 

transmitted between bats by physical contact. Therefore they may be a good model for 

studying pathogens transmitted in a similar manner. If Spinturnicid mite load can be shown to 

correlate with pathogen prevalence, future studies may be able to use this as a proxy for the 

probability of infection by directly transmitted pathogens. 

In this chapter we analyse samples for pathogens of potential human health concern. These 

include Coronaviruses, Astroviruses, C. neoformans and Candida spp. Pathogens that were 

detected were compared by sequencing and phylogenetic analysis with those identified 

outside Britain. In addition we assessed the distribution of coronaviruses amongst individuals 

to assess how the ecology and social structure of bat populations may drive the observed 

pattern of infection.   
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5.2 Methods 

 

5.2.1 Sample collection for Candida, and viral analyses  

 

Samples were obtained from roosting bats at Wytham Woods (415ha) in Oxfordshire, and 

Savernake Forest (1100ha) in Wiltshire, between July and September 2009 and further 

samples were collected at Wytham Woods in 2010 between May and October. At these 

summer sites samples were collected from M. daubentonii, M. nattereri, P. auritus, Barbastella 

barbastellus (Barbastelle bat) and Pipistrellus pipistrellus (Common Pipistrelle). Samples were 

also collected in Devon and Wiltshire from active Rhinolophus hipposideros (Lesser Horseshoe 

bat) in August and September 2009 and hibernating Rhinolophus ferrumequinum (Greater 

Horseshoe bat) in December 2006. Bats were placed into cotton bags prior to being fitted with 

a permanent arm ring, bearing a unique identification number, and having their breeding 

status, sex and biometric data recorded. If bats defecated in the holding bags a single faecal 

pellet was collected into a sterile 1.5ml microcentrifuge tube and either preserved in 250µL 

RNAlaterTM (Applied Biosystems, Warrington, UK) or snap-frozen on dry ice. If bats did not 

defecate no sample was taken, however, bats defecated on the majority of occasions. Samples 

were stored at -80oC until analysed. To prevent faecal cross contamination holding bags were 

sterilised between use by autoclaving followed by soaking in 6% sodium hypochlorite 

(domestic bleach) and washing. Bags were used once in the field and then kept separately 

from unused bags until sterilised. Procedures were approved by the Biosciences Ethics 

Committee, University of Exeter, and carried out under the appropriate Natural England 

licence. 

 

5.2.2 Detection of Coronaviruses and Astroviruses 

 

Faecal pellets stored in RNAlaterTM were homogenised in situ whereas samples snap frozen on 

dry ice were homogenised in 300µL phosphate buffered saline pH 7.2 (PBS) prior to analysis. 

Positive controls for Coronavirus PCRs were made by spiking selected faecal homogenates with 

0.2 plaque forming units (PFU) of Human coronavirus NL63 stock (HuCoV-NL63) grown and 

titrated in LLC-MK2 cells. HuCoV-NL63 and cell line LLC-MK2 were generously donated by Dr 

Christian Drosten and Dr Petra Herzog (Institute of Virology, University of Bonn). PBS or 

RNAlaterTM, as appropriate, served as negative controls. For both Astrovirus and Coronavirus 

analyses RNA was extracted from 100µL of faecal homogenate using a viral RNA Mini Kit 
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(QIAGEN, Crawley, UK). The eluted RNA (8µL of 60µL) was random primed reverse transcribed 

following the manufacturer’s instructions (SuperScript IITM, Invitrogen, Paisley, UK). 

Coronaviruses were detected with a semi-nested PCR using ImmoMixTM (Bioline, London, UK) 

to amplify a conserved ~440bp CoV specific region of the RNA-dependent RNA polymerase 

(RdRP) gene (de Souza Luna et al. 2007). The first round reaction used primers at a 

concentration of 1µM. Reactions (25µl) were made up of primer PC2S2 (equimolar mixture of 

TTATGGGTTGGGATTATC and TGATGGGATGGGACTATC), primer PC2As1 (equimolar mixture of 

TCATCACTCAGAATCATCA, TCATCAGAAAGAATCATCA, and TCGTCGGACAAGATCATCA), 12.5µl of 

ImmoMix, 2µl of cDNA from the reverse transcription step and water to make up the 25µl 

reaction. The amplification procedure started with a 7min at 95°C; then 10 cycles of 20 

seconds at 94°C, 30 seconds starting at 62°C with a decrease of 1°C per cycle, and 40 seconds 

at 72°C; then 30 cycles of 20 seconds at 95°C, 30 seconds at 52°C, and 40 seconds at 72°C (de 

Souza Luna et al. 2007). The second round reactions (25µl) consisted of 1µl round 1 product, 

80nM of primer PCS (equimolar mixture of CTTATGGGTTGGGATT ATCCTAAGTGTGA and 

CTTATGGGTTGGGATTATCCCAAATGTGA), 400 nM primer PCNAs 

(CACACAACACCTTCATCAGATAGAATCATCA), 12.5µl ImmoMix and water to make up the 25µl 

reaction. The amplification procedure started with 3 min at 94°C and continued with 35 cycles 

of 20 seconds at 94°C, 30 seconds at 60°C, and 30 seconds at 72°C (minor modification of de 

Souza Luna et al. 2007). 

A suitable Astrovirus detection methodology was identified in the literature (Chu et al. 2008). 

This protocol targets a conserved 422bp region of the RNA-dependent RNA polymerase gene 

and was performed as previously described (Chu et al. 2008). First round reactions (50µl ) were 

made up of a 2µM concentration (each) of forward (GARTTYGATTGGRCKCGKTAYGA and 

GARTTYGATTGGRCKAGGTAYGA) and reverse (GGYTTKACCCACATNCCRAA) primers, and 2µl of 

cDNA. The amplification procedure started with a 7min at 94°C, and continued with 30 cycles 

of 30 seconds at 94°C , 30 seconds at 50°C and 30 seconds at 68°C. The second round was 

carried out as the first which different forward primers (CGKTAYGATGGKACKATHCC and 

AGGTAYGATGGKACKATHCC), and 40 amplification cycles. Astrovirus positive samples, 

detected during the testing of the Astrovirus protocol and confirmed by sequencing, were used 

as positive controls in PCRs. 
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Figure 5.1 – Representative gel electrophoresis RT-PCR results for a) Coronavirus and b) Astrovirus. 2% 

agarose gels were stained with ethidium bromide and visualised under UV light using a Bio-Rad Gel 

Doc
TM 

XR+ (Bio-Rad, Hemel Hempstead, UK). Hyper ladder IV (BioLine, London, UK) was used in both 

assays to evaluate product size. The bands present in this hyperladder increase in 100 base pair (bp) 

intervals, the 100bp, 300bp and 500bp bands are indicated. ‘+’ indicates positive controls and ‘–‘ 

indicates negative controls. The Coronavirus sequence amplified was c.440bp in length (de Souza Luna 

et al. 2007) and the Astrovirus sequence was 422bp in length (Chu et al. 2008) 

 

RT-PCR products were visualised on 2% agarose gels stained with ethidium bromide and 

photographed under UV. Band size was estimated by comparison to Hyper ladder IV (BioLine, 

London, UK). Images were recorded on a Bio-Rad Gel DocTM XR+ (Bio-Rad, Hemel Hempstead, 

UK). Representative gels are shown in Figure 5.1. 

Representative PCR-positive samples of both Coronaviruses and Astroviruses were gel purified 

(QIAquick kit, QIAGEN), cloned (pGEM-T vector, Promega, Madison, USA) and sequenced using 

vector-specific T7 and SP6 primers (BigDye® Terminator vs3.1 Cycle Sequencing Kit and ABI 

3730 DNA analyser, Applied Biosystems, Carlsbad, USA). Forward and reverse reads were 

aligned, quality checked and edited using Lasergene 6 software (DNASTAR Inc., Madison, USA). 

Sequences were trimmed to remove the primers, and aligned with sequences from GenBank 

using ClustalW in BioEdit 7 (Hall 1999). Phylogenetic analysis was undertaken with MEGA5 

(www.megasoftware.net) on a 366bp conserved region of the Coronavirues RdRP, and a 253bp 

conserved region of the Astrovirus RdRP. These were the longest regions for which matching 

sequence data was available for the isolates from public databases. MEGA5 was used to 

statistically compare different models of DNA evolution used to create phylogentic trees from 
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Coronavirus and Astrovirus data. The best model was chosen using the information criterion 

AIC. In addition, trees were validated against published trees of these groups. 

 

5.2.3 Sampling and detection methodology for Cryptococcus 

 

Samples of faeces from hibernacula and the floor of Wytham Woods’ roost boxes were 

collected in 2009 and 2010. Samples were collected from 24 summer roosts in Wytham Woods 

and 21 locations within 5 cave systems known to be used as hibernacula by a range of bat 

species. Samples were collected in sterile glass vials and stored at room temperature for a 

maximum of 4 months until analysed. The delay in analysis was as a result of logistical 

constrains. Since these are habitable conditions for this fungus the delay in culturing was not 

thought to be significant. 

Samples were swabbed and plated onto Staib agar, a media for identification of C. 

neoformans, and the same media as used in a study of C. neoformans in bat guano in Italy 

(Montagna et al. 2003). Plates were incubated at 37C for 26 days and examined regularly. On 

each occasion plates were examined for the presence of growth similar to that of C. 

neoformans (cream to brown and opaque) (Nardelli et al. 2005). The Staib media and a control 

strain of Cryptococcus sp. were donated by Dr Micheal Petrou (Imperial College, London). The 

control strain grew as expected. 

 

5.2.4 Investigation of putative Candida samples 

 

Samples that were snap frozen in the field were homogenised in 300µL phosphate buffered 

saline pH 7.2 (PBS), 100µl of which was inoculated onto Sabouraud dextrose agar (Oxoid, 

Basingstoke, UK) a selective media for fungi. Plates were incubated at both 27°C and 37°C and 

checked daily for 2 weeks. Putative Candida colonies were identified by their appearance, 

round opaque white or cream in colour, and were picked and replated to ensure a pure colony 

(i.e. a clone) was obtained. Subsequent identification was undertaken by Dr Mark Ramsdale 

(University of Exeter). Pure colonies were grown on CHROMagar (Becton, Dickinson and 

Company, Oxford, UK) and Yeast extract peptone dextrose to aid their identification. Colonies 

of Candidia albicans, C. tropicalis and C. krusei grown on CHROMagar can be differentiated by 

their colour while growth on Yeast extract peptone dextrose allowed investigation of the 

morphology of colony growth. Microscopy was used to rule out the presence of bacteria 
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where necessary. A germ tube test was conducted on all samples to test for the presence of C. 

albicans or the closely related C. dubliniensis. Clonal colonies were homogenised in foetal 

bovine serum (Sigma, St. Louis, Montana, USA) at a ratio of 1:9. This homogenate was 

incubated at 37°C for 3 hours and monitored for germ tube formation at 15 minute intervals. 

The ITS1 and ITS4 regions of a number of samples (11 of 21 isolates) were sequenced using a 

previously described method (White et al. 1990) and compared with sequences from the 

Genbank database. 

 

Species Sex Age Reproductive status
Nursery

period

Post-nursery

period

Lactating 20 NA

Post lactating NA 18

Non breeding 10 5

Juvenile 13 4

Adult 20 18

Juvenile 19 13

Lactating 17 NA

Post lactating NA 20

Non breeding 15 7

Juvenile 12 2

Adult 19 11

Juvenile 20 7

M. nattereri

Female
Adult

Male

M. daubentonii

Female
Adult

Male

 

Table 5.1 – Samples sizes for each combination of factors used in the analysis of Coronavirus prevalence. 

 

5.2.5 Analysis of infection risk factors 

 

There were sufficient data available for the distribution of Coronaviruses in M. daubentonii (n 

= 115) and M. nattereri (n = 125) to be analysed for infection risk factors. We used generalised 

linear models (GLMs) with a binomial error structure to assess for factors associated with 

increased probability of infection, namely sex, age, season, BCI and year. While there were 

insufficient samples from the pre-nursery season for analysis, samples from the nursery and 

post nursery seasons where analysed. There were insufficient samples to permit analysis of the 

10 different colony types (see Chapter 4). Backwards stepwise regression was used to select 

the best model with BCI, year, and a four-way interaction between sex, age, season and 

species (model formula: Coronavirus presence/absence~ BCI + Year + Species * Sex * Age * 

Season), until a minimum adequate model was achieved. This analysis identified species-

specific effects and so the analysis was repeated for M. nattereri and M. daubentonii 
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independently. The sample size for each combination of factors is given in Table 5.1 and a full 

summary is given in the appendix (Table 7.3). 

For all but 21 individuals (2 M. daubentonii, 19 M. nattereri) data for Spinturnicid mite load 

was also available. Models were therefore built using all of the original variables and also 

Spinturnicid load (Coronavirus presence/absence ~ BCI + Year + Spinturnicid load + Species * 

Sex * Age * Season). The Spinturnicid variable was fitted using a smoothing function in a 

generalised additive model (GAM) using package R-gam version 1.06.2 (Hastie 2011), and its 

significance was examined. This was used to test for a non-linear relationship. When this was 

found to be non-significant the Spinturnicid variable was included as a linear variable and a 

backwards stepwise regression was carried out as before. Differences in the virus prevalence 

between females with different reproductive statuses (i.e. pregnant, lactating, post-lactating 

and non-breeding) were tested separately since this analysis includes only adult females and 

reproductive status is correlated with season. This test was carried out using a Fisher’s exact 

test. 

Where data were available (n = 94 M. daubentonii; n = 84 M. nattereri), information from the 

social network analysis (SNA), described in Chapter 2, was used. This includes degree (number 

of individuals an individual associates with), betweeness (importance of an individual for 

connecting others in the network), and the social groups to which individuals belong. Again, 

backwards stepwise regressions using GLMs with binomial error structure were used to select 

the best model starting with a model containing social group, betweeness and degree 

(Coronavirus prevalence ~ Social group + Degree + Betweeness). There was no biological 

reason to include interactions in these models. 
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5.3 Results 

 

5.3.1  Coronaviruses 

 

Coronavirus was detected for the first time in bats in Britain. The reverse transcription-PCR 

(RT-PCR) methodology detected coronavirus RdRP RNA in 2 (underlined) of the 7 bat species 

examined (B. barbastellus, M. daubentonii, M. nattereri, P. auritus, P. pipistrellus, R. 

ferrumequinum and R. hipposideros; Table 5.2). This finding was accepted for publication in 

2012 (August et al. 2012). In subsequent work faecal samples from a total of 290 individual 

bats were processed. Thirty five percent of M. daubentonii (n = 115) and 46% of M. nattereri (n 

= 125) samples were positive by RT-PCR. Identical results were obtained from two 

independent RT-PCRs of faecal samples and all positive and negative controls gave the 

expected results. 

 

Species Location
No. sampled

(no. positive)

Prevalence

(95% CI)

No. sampled

(no. positive)

Prevalence*

(95% CI)

M. nattereri Wytham1 109 (49) 45% (36-53) 16 (7) 44% (23-67)

Savernake2 16 (9) 56% (32-81) 16 (12) 75% (51-90)

M. daubentonii Wytham1 115 (55) 35% (28-43) 30 (29) 97% (83-100)

P. auritus Wytham1 26 (0) 26 (12) 46% (29-65)

R. ferrumequinum South-West England 15 (0) 15 (1) 7% (0-30)

R. hipposideros South-West England 6 (0) 6 (3) 50% (19-81)

P. pipistrellus Savernake2 2 (0) 2 (1) 50% (3-97)

B. barbastellus Savernake2 1 (0) 1 (0)

Total 290 (113) 39% (36-45) 112 (65) 58% (49-67)

Coronavirus Astrovirus

 

Table 5.2 – Prevalence of Coronaviruses and Astroviruses in seven British bat species by RT-PCR analysis 

of faecal samples.
 1

 Wytham Woods (51°77’27”N, -1°33’41”E). 
2
 Savernake forest (51°39’96”N, -

1°67’75”E). *Sequence data showed that the Astrovirus RT-PCR protocol amplified some non-target 

sequences, therefore these prevalence values are over estimates 

 

The Coronavirus RdRP sequences (from 18 individual bats) fall into a phylogenetic subclade 

with 99% bootstrap support that lies within the main Alphacoronavirus clade defined by the 

International Committee on Taxonomy of Viruses (ICTV) (Figure 5.2). The members of the
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Figure 5.2 – Neighbour joining phylogeny of representative coronavirus RdRP sequences (366bp) 

including the new strains (bold type) found in British bats. Boot strap values (1000 replicates) are 

indicated as percentages where the value was greater than 70%. The simplest model of DNA evolution 

was selected using MEGA5, therefore the tree was built on the number of base differences between 

sequences. Coronaviruses known to infect humans are indicated by a closed circle (). The common 

name of hosts is given for Coronaviruses not derived from bats. Viruses that have been assigned to the 

Alpha-, Beta- and Gammacoronavirus genera by the International Committee on Taxonomy of Viruses 

are bracketed. Scale bar indicates base differences per sequence 
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subclade are all derived from European vespertilionid bats. Maximum likelihood (not shown) 

and neighbour-joining algorithms produced equivalent trees. 

The sequences from British M. daubentonii are closely related to sequences obtained from M. 

daubentonii sampled in Germany (Figure 5.2). The sequences from M. nattereri represent the 

first record of a Coronavirus from this bat species and form a distinct, well supported clade 

(100% bootstrap value). The M. nattereri clade divides into two further groups which 

correspond to the two sites (47km apart) at which the species was sampled in this study. 

Further sampling and analyses of additional Alphacoronavirus loci will be needed to interpret 

this observation. 

Parameters Estimate Standard error z-value P-value

(Intercept) -0.772 0.426 -1.812 0.070

M. nattereri 0.788 0.516 1.526 0.127

Male -0.112 0.607 -0.185 0.853

Juvenile 1.833 0.757 2.421 0.015

Post nursery season 1.318 0.587 2.246 0.025

Year -0.835 0.347 -2.404 0.016

M. nattereri :Male -1.219 0.774 -1.574 0.116

M. nattereri :Juvenile -1.176 1.004 -1.171 0.242

Male:Juvenile -1.733 0.937 -1.850 0.064

M. nattereri: Post nursery season -1.375 0.703 -1.955 0.051

Juvenile:Post nursery season -0.361 0.972 -0.372 0.710

Male:Post nursery season 1.623 0.707 2.295 0.022

M. nattereri :Male:Juvenile 4.653 1.475 3.154 0.002

M. nattereri :Juvenile:Post nursery season -3.548 1.592 -2.228 0.026

 

Table 5.3 - Results of a backwards stepwise logistic regression of factors explaining variation in the 

probability of infection by Coronaviruses. This model, which explains 15% of the observed deviance, 

demonstrates that species specific effects exist and so the data was subsequently analysed 

independently for each species (Table 5.4). Parameters with p < 0.05 are indicated in bold type 

 

A backwards stepwise logistic regression model was used first to test for species-specific 

effects of sex, age, season, year and BCI on Coronavirus prevalence. Samples collected from M. 

nattereri in Savernake were included in this analysis as it was assumed that trends in 

prevalence across sex, age and season would be similar across sites. This model showed there 

were significant species-specific interaction terms (Table 5.3) and so subsequent models 

considered species independently for a clearer interpretation of results. For M. daubentonii 

(Table 5.4a) the model showed that males had a significantly increased chance of infection in 

the post nursery period (z = 2.219, p = 0.027) and juvenile bats had a higher prevalence than 
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adults (z = 2.318, p = 0.021) (Figure 5.3). M. nattereri (Table 5.4b) juvenile males had a higher 

prevalence than adult males (z = 2.040, p = 0.041) and the prevalence was higher in 2009 (z = -

3.524, p < 0.001) (Figure 5.4). 

a) Parameters Estimate Standard error z-value p -value

(Intercept) -0.744 0.409 -1.816 0.069

Male -0.346 0.647 -0.535 0.593

Juvenile 1.564 0.675 2.318 0.021

Post nursery season 0.637 0.556 1.147 0.252

Male:Juvenile -1.585 0.950 -1.668 0.095

Male:Post nursery season 1.964 0.885 2.219 0.027

b) Parameters Estimate Standard error z-value p -value

(Intercept) 3.537 2.476 1.428 0.153

Male -0.489 0.585 -0.836 0.403

Juvenile 0.284 0.784 0.362 0.718

Post nursery season 0.491 0.529 0.928 0.353

Body Condition Index (BCI) -16.928 11.871 -1.426 0.154

Year (2010) -1.772 0.503 -3.524 <0.001

Male:Juvenile 2.371 1.162 2.040 0.041

Juvenile:Post nursery season -2.210 1.265 -1.752 0.080

M. daubentonii

M. nattereri

 

Table 5.4 – Results of a backwards stepwise logistic regression of factors explaining variation in the 

probability of infection by Coronaviruses. a) The M. daubentonii model explains 16% of the observed 

deviance while b) the M. nattereri model explains 21% of the observed deviance. Parameters with a p-

value less than 0.05 are indicated in bold type. 

 

Using the subset of individuals for whom Spinturnicid mite data were available the prevalence 

of Coronavirus was modelled as before but with the addition of Spinturnicid burden as an 

explanatory variable. This was first modelled using a GAM, fitting Spinturnicid mite burden 

with a smoothing function, as the relationship may have been non-linear. Using this method 

Spinturnicid burden was not found to be significant (M. daubentonii: df = 3, 2 = 1.47, p = 0.69, 

M. nattereri: df = 3, 2 = 2.55, p = 0.47), nor was it found to be significant when assuming a 

linear response in a backwards stepwise regression as previously described. These results  
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Figure 5.3 – Variation in Coronavirus prevalence amongst M. daubentonii for those factors found to be 

significant in models. Juveniles had a higher prevalence than adults and males had a significantly 

elevated prevalence in the post-nursery period compared with the nursery period (Table 5.4a). The 

prevalence was calculated from the raw data and error bars show the 95% confidence intervals. Labels 

indicate the sample size. 

 

Figure 5.4 – Variation in Coronavirus prevalence amongst M. nattereri for those factors found to be 

significant in models. Juvenile males had a higher prevalence than adults and the recorded prevalence 

was higher in 2009 than 2010 (Table 5.4b). The prevalence was calculated from the raw data and error 

bars show the 95% confidence intervals. Labels indicate the sample size.  
 

demonstrate that there is no correlation between Spinturnicid mite abundance and 

Coronavirus prevalence once sex, age, year and season have been accounted for. Similarly for 

those individuals with data on BCI (body condition index) this variable was not found to be 
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significant in explaining which individuals were infected with coronavirus significant (M. 

daubentonii: z-value = 0.56, p = 0.58, M. nattereri: z-value= -1.426, p = 0.15) 

There was no significant difference between the prevalence of infection observed in adult 

lactating, post-lactating and non-breeding females, either for M. daubentonii (Fishers exact 

test, p = 0.74) or M. nattereri (p = 1). 

For a subset of individuals, data from the social network analysis was also available (n = 94 M. 

daubentonii; n = 84 M. nattereri). However, none of the variables were found to be 

significantly associated with Coronavirus prevalence (M. daubentonii: Social group z = 1.033, p 

= 0.302; Betweeness z = -0.161, p = 0.872; Degree z= -0.634 p = 0.526. M. nattereri: Social 

group z = -1.192, p = 0.233; Betweeness z = 1.196, p = 0.232; Degree z = -0.452, p = 0.651). 

A small sample (n = 10 adults, 3 M. daubentonii females and 7 M. nattereri (1 male, 6 females)) 

of faecal samples collected in 2010 from individuals positive for Coronavirus in 2009 were 

tested. Of these samples one, from a M. nattereri, was positive. This indicates that infections 

with coronavirus are not long lived, or reduce in detectability over time. The prevalence 

observed is lower than expected given the average prevalence of 39% across both species, but 

was not statistically significant given the small sample size (Fisher’s exact test, p = 0.34). It may 

be that bats can acquire immunity to Coronavirus but this requires a greater understanding of 

bats’ immunology and the Coronavirus strains circulating within the population. 

 

5.3.2 Astroviruses 

 

The presence of Astroviruses was investigated in 112 samples previously tested for 

Coronaviruses. Of these samples 65 were PCR positive (58%) from 6 (underlined) of 7 species 

tested (B. barbastellus, M. daubentonii, M. nattereri, P. auritus, P. pipistrellus, R. 

ferrumequinum and R. hipposideros; Table 5.2). 

A sub-sample of PCR positive isolates from 15 individual bats were cloned, sequenced and 

phylogenetically compared with previously described Astroviruses and shown to be members 

of the genus Mammastrovirus (Figure 5.5). Of 29 clones successfully sequenced, 5 were not 

Astroviruses, these included bacteria and a bacteriophage. This amplification of non-specific 

targets by the generic Astrovirus primers is perhaps unsurprising given their high level of base 

redundancy (Chu et al. 2008). As a result the PCR positive samples cannot all be assumed to be 

positive for Mammastroviruses. The specificity of the test was approximately 83% (95% CI: 65-

92%), therefore statistical analysis of Mammastrovirus prevalence was not undertaken.  
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Figure 5.5 – Unrooted, maximum likelihood phylogeny of Astrovirus RdRP sequences (253bp) including 

novel strains (indicated by bold lettering) found in British bats. Using model comparison the best model 

of DNA evolution was selected by MEGA5, this was a general time reversible model (GTR), with non-

uniformity of evolutionary rates between sites (gamma) and a fraction of sites invariable over time (I). 

Coloured circles indicate the species from which the virus was detected for samples collected in this 

study (see colour key above), black circles indicate human Astroviruses. Names in blue represent bat 

Astroviruses. Two major clades of bat viruses are highlighted. Clade 1 includes a previously identified 

Rhinolophid clade (Zhu et al. 2009). Where more than one identical sequence was obtained from a 

single individual only one was included in the phylogeny. Boot strap values (1000 replicates) are 

indicated as percentages where the value was greater than 70%. Scale bar indicates base differences per 

nucleotide site 
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The sequencing results show that some bat species host more than one distinct 

Mammastrovirus strain (Figure 5.5). Furthermore both M. nattereri and M. daubentonii hosted 

more than one distinct virus at the same sampling point in time and space (i.e. Wytham Woods 

or Savernake Forest), however, no individual was recorded as hosting more than one virus 

strain. Four distinct Mammastrovirus strains were associated with M. nattereri. Three of these 

strains were found in Wytham Woods and two in Savernake Forest with one strain common to 

both woodlands. One of the Wytham Woods strains was not nested amongst sequences from 

bats but had bootstrap support (94%) for membership of a subclade that includes sequences 

from rats sampled in Hong Kong (Figure 5.5). Two distinct strains were associated with M. 

daubentonii, one of the strains (in bat clade 2, Figure 5.5) was distinct (95% bootstrap support) 

but closely related to a Mammastrovirus strain from M. nattereri sampled in Wytham and 

Savernake. Two distinct strains were identified for P. auritus, while R. ferrumequinum and R. 

hipposideros each hosted single distinct strains. Of the 15 individuals that were found to be 

infected with Mammastrovirus by sequence analysis, 5 were simultaneously infected with 

Coronavirus. 

 

5.3.3 Cryptococcus neoformans 

 

All environmental samples plated onto Cryptococcus selective media were negative for the 

presence of C. neoformans while the positive control strain showed the expected growth 

(Table 5.5). 

 

5.3.4 Candida species 

 

Faecal samples from 51 individuals representing five species (B. barbastellus (n = 1), M. 

daubentonii (n = 9), M. nattereri (n = 27), P. auritus (n = 12), P. pipistrellus (n = 2)) were plated 

onto Sabouraud dextrose agar to culture fungi. Thirteen of these individuals generated a total 

of 21 fungal isolates whose morphology suggested they might be Candida species. Analysis of 

these isolates by germ-tube test, culture on CHROMagar and YPD, did not provide any 

evidence of Candida species. DNA Sequences were obtained for 11 of the isolates and 

compared to similar sequences on Genbank using BLAST (Table 5.6). None of the sequences 

corresponded to Candida sp. instead relating to probable plant and insect associated fungi. 
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Date sampled Sampling site** Area‡ Subsample† Result

29/01/2010 Bath Golf Course Small seven sisters 1 Negative

29/01/2010 Bath Golf Course Small seven sisters 2 Negative

29/01/2010 Bath Golf Course Small seven sisters 3 Negative

29/01/2010 Bath Golf Course Small seven sisters 4 Negative

29/01/2010 Bath Golf Course Small seven sisters 5 Negative

29/01/2010 Bath Golf Course Single Way 1 Negative

29/01/2010 Bath Golf Course University Quarry 1 Negative

29/01/2010 Bath Golf Course University Quarry 2 Negative

26/01/2010 Winsley Lower Rift 1 Negative

26/01/2010 Winsley Upper Rift 1 Negative

26/01/2010 Winsley Upper Rift 2 Negative

26/01/2010 Winsley Upper Rift 3 Negative

26/01/2010 Morton - Bradford-on-Avon N/A NA Negative

30/01/2010 Brown's Folly N/A 1 Negative

30/01/2010 Brown's Folly N/A 2 Negative

30/01/2010 Brown's Folly N/A 3 Negative

30/01/2010 Brown's Folly N/A 4 Negative

30/01/2010 Brown's Folly N/A 5 Negative

27/01/2009 Gripwood Section B 1 Negative

27/01/2009 Gripwood N/A 1 Negative

27/01/2009 Gripwood N/A 2 Negative

17/09/2009 Wytham Woods W95 NA Negative

17/09/2009 Wytham Woods W98 NA Negative

17/09/2009 Wytham Woods W61 NA Negative

17/09/2009 Wytham Woods W93 NA Negative

17/09/2009 Wytham Woods W103 NA Negative

17/09/2009 Wytham Woods CP11 NA Negative

17/09/2009 Wytham Woods CP108 NA Negative

17/09/2009 Wytham Woods CP7 NA Negative

17/09/2009 Wytham Woods CP107 NA Negative

17/09/2009 Wytham Woods CP2 NA Negative

17/09/2009 Wytham Woods CP104 NA Negative

23/09/2009 Wytham Woods CP3 NA Negative

23/09/2009 Wytham Woods CP118 NA Negative

23/09/2009 Wytham Woods CP135 NA Negative

23/09/2009 Wytham Woods CP100 NA Negative

23/09/2009 Wytham Woods CP149 NA Negative

23/09/2009 Wytham Woods CP152 NA Negative

23/09/2009 Wytham Woods CP108* NA Negative

23/09/2009 Wytham Woods CP134 NA Negative

23/09/2009 Wytham Woods CP158 NA Negative

23/09/2009 Wytham Woods CP7* NA Negative

23/09/2009 Wytham Woods CP110 NA Negative

23/09/2009 Wytham Woods CP30 NA Negative

23/09/2009 Wytham Woods CP147 NA Negative

23/09/2009 Wytham Woods CP35 NA Negative

23/09/2009 Wytham Woods CP36 NA Negative  

Table 5.5 – Summary of the samples screened for the presence of C. neoformans. *Boxes CP108 and CP7 

were each sampled twice on different dates. **Sampling site indicates the cave system or summer site 

sampled. ‡Area gives the name of the region of the cave system or the reference for the Wytham 

Woods roost box from which the sample was collected. †Subsamples were taken from different 

positions within an area of a cave system. NA = applicable.  
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Host Species Closest match on Genbank (% similarity) Length of match (bp) Family Origin of closest match

B. barbastellus Zygotorulaspora florentina  (99.6%) 476 Saccharomycetaceae N/A

M. nattereri Kazachstania servazzii (99.4%) 493 Saccharomycetaceae N/A

M. nattereri uncultured ascomycete  (98.8%) 323 Unknown House dust

P. auritus Saccharomycetes sp. HZ184 (100%) 609 Saccharomycetaceae New Zealand Oak tree

P. auritus Uncultured Metschnikowiaceae (99.6%) 271 Unknown Caterpillar excrement

P. auritus Uncultured Metschnikowiaceae (97.4%) 311 Unknown Caterpillar gut

P. auritus Saccharomyces sp. HZ184 (99.8%) 483 Unknown New Zealand Oak tree

P. auritus Saccharomyces sp. HZ178 (99.9%) 777 Unknown New Zealand Oak tree

P. auritus Saccharomyces sp. HZ191 (99.8%) 462 Unknown New Zealand Oak tree

P. auritus Lachancea thermotolerans (99.8%) 572 Saccharomycetaceae Olive paste

P. pipistrellus Saccharomyces sp. HZ184 (100%) 576 Saccharomycetaceae New Zealand Oak tree  

Table 5.6 – Results of sequencing fungal isolates. None were found to be Candida species instead representing probable plant and insect associated fungi. 
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5.4 Discussion 
 

We undertook surveillance for Coronaviruses, Astroviruses, C. neoformans and Candida spp. 

associated with bats in Britain. We identified novel Alphacoronaviruses and 

Mammastroviruses in previously unknown host species but did not detect C. neoformans or 

Candida spp. 

 

5.4.1 Coronaviruses 

 

The British bat Alphacoronavirus strains we identified are distantly related to the zoonotic 

pathogen SARS-CoV (Figure 5.2). However, given Coronaviruses recognised ability to switch 

hosts (Graham & Baric 2010) and evidence suggesting that Alphacoronaviruses from bats have 

spilled over to humans in the past (Pfefferle et al. 2009), bats should be regarded as a possible 

but unlikely source of zoonotic Coronaviruses in Britain. The use of human dwelling places, 

cattle sheds and barns as nursery roosting sites by M. nattereri (Joint Nature Conservation 

Committee 2007) make it particularly interesting in this regard. The prevalence of 

Alphacoronaviruses we identified in M. nattereri and M. daubentonii were similar to 

prevalences observed in other species in Europe and Asia (Tang et al. 2006; Gloza-Rausch et al. 

2008; Rihtaric et al. 2010). This suggests the virus is endemic in many species of bats 

throughout their range, and either causes prolonged infection or serially infects the same host. 

Multi-locus sequence typing of virus isolates combined with longitudinally sampled bats will be 

needed to address this issue. 

In models of coronavirus prevalence, M. daubentonii juveniles were found to have higher 

prevalence of infection than adults across both seasons. This suggests that juveniles did not 

receive any effective maternal immunity during the nursery season. The lower prevalence in 

adults would be expected if there is some level of acquired immunity resulting in reduced 

susceptibility to infection in adults and could be tested with serological surveys for Coronavirus 

antibodies. Additionally there was a significant interaction between season and sex. Male 

prevalence, low in the nursery period was significantly increased in the post nursery season. 

This may be explained by our hypothesis that males mix with a number of female social groups 

in the post nursery period when mating may be occurring (Chapter 2). This mixing would 

expose the males to many individuals and therefore significantly increase their chance of 

exposure to the virus (Chapter 2). However, males may also experience increased energetic 
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demands in the mating period that could have immunosuppressive effects. The effect of 

nutritional status and hormones on bat immune systems has not yet been studied in detail, 

however this understanding will be important for predicting disease dynamics in the future. 

It was hypothesised that, as directly transmitted diseases, the prevalence of Spinturnicid mites 

and Coronaviruses may depend on similar factors such as individuals’ contact rates and 

immunity. However, Spinturnicid mite load was not found to correlate with Coronavirus 

infection. One possible explanation is that the mode of transmission is different. Mites are able 

to make an active choice as to whom they parasitise within a colony. Spinturnicid mites 

infesting M. daubentonii, when given a choice, are known to preferentially infest adult females 

(Christe et al. 2007). In contrast, viral transmission is a passive process and relies solely on 

contact between individuals. 

The pattern of Coronavirus infection amongst M. nattereri is different from that observed for 

M. daubentonii. Juvenile male M. nattereri had an increased prevalence compared to juvenile 

females. This may be the result of behavioural differences between the juvenile sexes but will 

require more detailed observations to assess. For example, radio-tracking could be used to 

compare and contrast the movement of juvenile males and females. Additionally, when 

accounting for other variables, prevalence was found to be higher in 2009 than 2010. This may 

indicate that there is significant inter-year variability in prevalence, however, with only two 

years in this study more data is required to investigate this result. 

As for M. daubentonii, Spinturnicid mite burden was not found to be related to Coronavirus 

infection for M. nattereri. The reasons for this poor correlation are likely to be the same as 

those outlined for M. daubentonii above. Despite finding no correlation, interactions between 

co-infecting pathogens due to changes in immune function or competition for resources can 

explain large amounts of variation in host susceptibility (Telfer 2010). Such interactions are 

likely to be present in this study system and could be a rich area for further research. 

Unlike previous studies we did not observe an overarching effect of season (Gloza-Rausch et 

al. 2008; Drexler et al. 2011) in either species. Our data shows that the virus is present within 

the bat population as a whole through-out the summer. However, a larger longitudinal study is 

suggested to examine the temporal variation in prevalence in more detail. Neither was there a 

correlation between coronavirus infection and BCI suggesting that infection with the virus does 

not cause severe disease in the host. 

We did not observe a significant effect of any of the social network variables on the prevalence 

of Coronaviruses. Degree has been found to be a good predictor of infection in other networks 
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as it is indicative of the number of contacts an individual has (Bell et al. 1999). In a highly social 

population, such as bats at Wytham Woods, betweeness was also thought to be an important 

measure. Individuals with high betweeness are those that move between socially isolated 

groups and would therefore have indirect contact with many more individuals. One possible 

reason for the non-significance of these variables is their inaccuracy. Values of degree and 

betweeness can be inaccurate if the number of observations for each individual is low (Croft et 

al. 2008) as was the case for the current study. As a result, the non-significant correlation with 

Coronavirus prevalence may be a result of an inability to accurately capture social network 

information rather than the absence of a relationship. Future work should examine how social 

environment of individuals, in terms of the colonies that they choose to occupy (i.e. colony size 

and colony type), effects their probability of infection. 

These results highlight the importance of age, sex and season for predicting the prevalence of 

coronavirus in bat populations, and the inability of network parameters to do the same. This 

echoes the findings in Chapter 4 (4.4.4) where I argue that models of parasites in bat 

populations must take into account variation observed in the parasite load of different age and 

sex classes, as well as the seasonal changes in contact rates between males and females. This 

latter point is apparent in the present analyses where adult M. daubentonii have an increased 

prevalence in the post-nursery period compared to the nursery period, possibly due to 

increased contact between males and females. The sample size in this study is smaller than 

that in Chapter 4 and so fewer variables could be examined, however, the results support the 

suggestion that age, sex and seasonal changes in contact rates are likely to be key parameters 

in models of pathogens in wild bat populations. 

 

5.4.2 Astroviruses 

 

The prevalence of Mammastroviruses amongst bats was high (58%, 95% CI: 49-67%, n = 112), 

although an accurate estimate was not possible as the primers used were found to amplify 

non-target DNA in 17% of cases. Astroviruses are known to occur at high prevalence in Asian 

bats; a recent study found an average prevalence of 44.8% (n = 500) and up to 93% (n = 172) in 

some species (Zhu et al. 2009). 

In contrast to Coronaviruses which often show host species specific clades (Figure 5.2), 

phylogenetic analysis showed that Mammastroviruses found in bats in Britain are diverse, 

even within the same host species (Figure 5.5). While I did not identify more than one strain 

infecting an individual bat I did find multiple strains infecting bats sampled at the same time 
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and location, including three individual M. nattereri sampled on the same day in one roost box. 

Infection of a local population with more than one strain has also been observed in bats from 

Asia (Zhu et al. 2009). Frequent co-occurrence of multiple strains within colonies will increase 

the likelihood of co-infection of an individual with more than one strain potentially permitting 

recombination between strains. Recombination events lead to new stains of virus to which the 

host may have less immunity than either of the parent strains. The majority of sequences from 

M. nattereri, M. daubentonii and P. auritus grouped with, or in sister groups to, clades 

identified as containing viruses from a variety of bat species (Zhu et al. 2009). Sequence data 

from Rhinolophid bats (R. ferrumequinum and R. hipposideros) did not support a close 

relationship with a previously identified clade for the rhinolophids (Zhu et al. 2009) (Figure 

5.5). This may be an indication that European rhinolophid Astroviruses do not group with those 

from Asia, however more sequence data from bats in Europe is required to resolve this. 

One RdRP sequence from M. nattereri was found to be closely related to rat Astroviruses from 

Hong Kong (Figure 5.5). Rodents are occasionally observed in bird boxes in Wytham Woods 

and yellow necked mice (Apodemus flavicollis), wood mice (Apodemus sylvaticus) and hazel 

dormice (Muscardinus avellanarius), have also been recorded in other bat box schemes in the 

South-west of England (Gareth Harris and Steven Laurence, personal communication). It is not 

possible to say from the current data whether the strain identified was transmissible between 

bats, or whether the bat was infected by rodent droppings in the box. Further sequencing of 

samples from this group of bats and rodents within Wytham Woods could give a better picture 

of how common and widespread this strain is. The presence of a strain closely related to rat 

viruses in bat faeces highlights the possibility of cross species transmission of Astroviruses. This 

would not be without precedent as it is thought that a recombination event may have 

occurred between human and Californian sea lion Astroviruses leading to zoonotic spillover 

(Rivera et al. 2010). 

The diversity of astroviruses identified from relatively few bats within a small area of England 

exemplifies the diversity of this virus family amongst bats and supports the hypothesis 

presented by Zhu et al (2009) that bats may be the ancestral host to many mammalian 

Astroviruses. However, as this virus group has been the subject of limited study in wildlife, 

more sequence data from a wide range of mammals is needed to test this hypothesis. 
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5.4.3 Crypotococcus neoformans and Candida species 

 

Though our study did not find evidence of C. neoformans or Candida spp., this does not rule 

out their presence amongst British bats. Our search for C. neoformans investigated both 

summer and winter roost sites. Summer roost sites in Wytham Woods are cleared of all bird 

nests and faeces in the spring of each year by the EGI ornithological research teams and as 

such the summer may not provide sufficient time for C. neoformans to establish. Samples 

collected from winter roosts in caves were from scattered droppings rather than large piles of 

guano that typically collect under large, long-established roosts. We did not have access to 

such deposits but where they exist in both summer and winter roosts testing for C. 

neoformans may be more successful. While Candida spp. were not found, a number of other 

fungi were identified. There is no evidence to suggest that these were pathogenic but instead 

are probably associated with plants and insects. Indeed the majority of the fungi sequenced 

are from the family Saccharomycetaceae, a family that, as its name suggests, is often 

associated with carbohydrate rich environments such as fruits and flowers. It is therefore likely 

that these fungi are ingested along with insect prey. 

 

5.4.4 Risk to human health and prevention of transmission 

 

Zoonotic disease spillover events are stochastic and therefore difficult to predict. However, as 

discussed in Chapter 1, when past events are reviewed there are factors that appear to 

increase the risk of zoonotic spillover. These include the pathogen being an RNA virus 

(Cleaveland et al. 2001) and high contact rates between wildlife and humans or domestic 

animals (Chau et al. 2002; Breed et al. 2006; Bradley & Altizer 2007) caused by hunting, 

agricultural intensification and urbanisation (Daszak et al. 2001). 

We have shown that RNA viruses with zoonotic potential are present in bat populations in 

Britain. If a bat virus infected a human or domestic animal there is a small chance that, as with 

SARS, an outbreak in humans could ensue. The risk of such a spillover event occurring can be 

reduced by limiting contact between bats and humans or domestic animals. 

Bats commonly use barns as roosts sites in Britain (Joint Nature Conservation Committee 

2007), however, these reports typically consider barns that are no longer used to shelter 

domestic animals. A survey of experienced UK bat surveyors revealed that bats in the UK also 

roost and feed in stables and barns with domestic animals present (David Dodds, Keith Cohen, 

Fiona Mathews and Daniel Hargreaves, personal communication). Surveyors reported M. 
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nattereri, P. auritus, P. pygmaeus, R. hipposideros and R. ferrumequinum roosting or feeding in 

stables and cattle sheds with domestic animals present. In mainland Europe Myotis 

emarginatus (Geoffroy’s Bat) is known to spend approximately 30% of its foraging time in 

cattle sheds feeding on flies that thrive on the high density of cattle manure (Zahn et al. 2010). 

Additionally a study in Hesse, Germany found M. nattereri frequently roosted in or close to 

cattle sheds (Simon et al. 2004). Using results from temperature loggers the authors suggest 

bats may be attracted to roost in cattle sheds as a result of the warmth provided by the 

cohabiting cattle. The use of barns as roost sites by bats may therefore be attributable to 

agricultural intensification (Simon et al. 2004; Zahn et al. 2010), but may also be a result of the 

loss of natural roosting habitat (Altringham 2003). 

Contact between bats, their urine and faeces and domestic animals in this setting could be 

reduced by excluding bats from the inside of sheds, barns and stables. However, given the co-

occurrence of bats and domestic animals in these structures that is likely to have occurred over 

hundreds of years, it could be argued that were these bat viruses to spillover to domestic 

animals and humans it would already have occurred. The gain from excluding bats from these 

structures in terms of reduced risk of disease emergence is small and the potential impacts on 

bat conservation are high and as such this course of action is not recommended. While the 

exclusion of existing roosts is not worthwhile it should certainly be advised that new roosts, 

such as bat boxes (erected to house bats displaced by construction or demolition works), not 

be placed where bats or their droppings would be in prolonged contact with domestic animals. 
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6 General discussion 

 

6.1 Introduction 
 

Human activities leading to the loss of natural habitat have caused population declines 

amongst bats (Altringham 2003) and put them in close contact with humans (Plowright et al. 

2011). The emergence of Ebola, Nipah, Hendra and SARS can in part also be attributed to 

human activities including habitat destruction (Chua et al. 2002; Plowright et al. 2011) and 

hunting (Leroy et al. 2009). Such zoonotic diseases are now capable of spreading rapidly across 

the globe as demonstrated by SARS in 2002 and more recently by pandemic H1N1 (2009) 

(‘Swine flu’) which became a global pandemic within months of being first identified in humans 

in Mexico. 

The cost of emerging infectious diseases originating for wildlife, such as SARS and HIV, both in 

terms of human lives and economic cost, are great (Dixon et al. 2002). However, predicting 

where and when these diseases will emerge is difficult. Bats have been identified as a common 

source of emerging infectious diseases and as such, the past 15 years has seen an increase in 

research into wild bat populations. These studies have sought to identify known and unknown 

pathogens that may be of human health concern (Johara et al. 2001, Leroy et al. 2005, Tang et 

al. 2006), and have attempted to predict the drivers of disease emergence (Plowright et al. 

2011, Dimitrov et al. 2008). 

It is thought that increased prevalence of a pathogen in wild bat populations has lead to the 

emergence of diseases in the past (Plowright et al. 2008; Wacharapluesadee et al. 2010) and 

so predictive models of pathogen prevalence in wild bat populations may prove a useful tool 

for predicting the emergence of diseases of the future. 

Predicting prevalence is dependent on understanding the drivers of susceptibility and 

transmission in the population. These parameters are dependent on individuals’ attributes 

(e.g. age, sex, etc.), contact network, the dynamics of these parameters over time (e.g. day, 

season or life-time), and the heterogeneity amongst individuals within the population (see 

section 1.5.4). Susceptibility is dependent on an individual’s immune system. Immunology is 

poorly studied amongst temperate bats, with the only detailed studies focussing on 

lyssaviruses (O'Shea et al. 2003; Turmelle et al. 2010). Contact rates, key to understanding 

transmission, are similarly poorly understood. Research to date has been limited by the 

feasibility of making observations on all individuals in a population. Studies therefore typically 
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study only a few large roosts in the landscape (Entwhistle et al. 2000; Park et al. 2000) or track 

a small number of individuals over a short time period using radio-tracking (Johnson, 2012; 

Garroway, 2007). Additionally analysis of population genetics at national and continental scale 

have been used to infer movement of individuals (Atterby et al. 2010, Bryja et al. 2009) and 

possible rates of disease transmission (Smith et al. 2011) but these tell us little of the 

heterogeneity of contact rates within populations and how these change over short time 

periods. 

In addition to understanding how bat population structure may affect pathogen prevalence, 

surveillance of bat populations for pathogens of potential human health concern is important 

for predicting future spillover events. For example, pathogens closely related to those found in 

humans, or with characteristics linked to spillover (e.g. generalist viruses with high mutation 

rates) would warrant greater concern. Additionally these pathogens allow us to test models of 

disease transmission. 

An understanding of pathogens infecting bats, and how they spread through populations is not 

only important from a human health standpoint. Such information may also be important for 

their conservation as diseases can cause population declines, as demonstrated by the current 

spread of white nose syndrome across North America (Blehert et al. 2009). Understanding 

where such diseases originated and how they are spread could help to design strategies to 

reduce or reverse impacts on bat populations. 

Bat populations have been adversely affected by the increase in human population size over 

the past millennia. No more so than in the past few hundred years in which we have seen a 

rapid increase in extinctions, loss of biodiversity and anthropogenic climate change (Chapin et 

al. 2000). To conserve bat populations in areas where habitat is being lost or in areas where 

habitat creation or regeneration is planned it is important to have an understanding of their 

ecology. For each species of conservation concern this should include details on: life history, 

social structure, habitat requirements for roosting and foraging, and their response to 

environmental perturbation such as roost loss. While some of this information is known for 

many temperate bat species, important details such as the social structure of populations, 

roost preferences of species, and the area needed to support a population remain poorly 

understood for many species. 

Much of the information required for effective conservation of bats and for accurate modelling 

of disease in bat populations are the same. Therefore in this thesis I present the conservation 

implications of the findings alongside the implications for models of disease.  



229 
 

The aim of this thesis was to further our understanding of woodland bat ecology and social 

structure to better assess how disease may spread through populations. The population 

structure was investigated over 6 summers providing novel insights into the ecology of bats 

and how diseases may spread through populations. The impact of the population structure on 

ectoparasite and pathogen distribution was tested, and at the same time novel viruses of 

potential human health concern were identified. Additionally, data presented has implications 

for the conservation of bat populations. Here I discuss my findings in the context of broader 

research and suggest areas where future work could provide valuable new information. 
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6.2 The population structure of bats: implications for models of 

disease 
 

The simplest models of disease use the theory of mass action, where contact rate is assumed 

to be uniform between individuals, however, recent studies have found this is not an accurate 

reflection of reality (Bansal et al. 2007, McCallum et al. 2001). Instead, knowledge of 

population structure is recognised to be key to predict the spread of pathogens (Perkins et al. 

2009). 

To parameterise epidemiological models of disease parameters must be estimated or derived 

from empirical data. Chief amongst these are individuals’ susceptibility and transmission rates. 

Susceptibility is the probability that an individual will become infected given appropriate 

contact with an infected individual. Transmission rate is the rate at which an infected 

individual exposes others to a pathogen and is dependent on the contact rates between 

individuals as well as their infectivity. Variability, as well as the absolute values, of 

susceptibility and transmission rates have been shown to be important in models of disease 

spread in a number of recent studies (Lloyd-Smith et al. 2005; Beldomenico & Begon 2010). 

Variability in susceptibility can lead to individuals with high disease burden, and variability in 

transmission rate can result in a small number of individuals with a large number of contacts 

with others. In both instances this can result in super-spreaders, individuals who contribute 

disproportionally to the spread of disease within a population (Kramer-Schadt et al. 2009; 

Perkins et al. 2009; Beldomenico & Begon 2010; Gardy et al. 2011). This is quite different from 

the theory of mass action (McCallum et al. 2001). Targeting super-spreaders during a disease 

outbreak can help to control its spread (Salathé & Jones, 2010). Social networks constructed 

from information on contact events, such as in this thesis, can be used to assess rates of 

transmission amongst individuals. 

Amongst bats, very little is known about the heterogeneity of contact rates within a 

population, in fact, even the definition of a population of bats is poorly understood. In this 

thesis I have described, in detail, the population structure of two woodland bat species and 

discussed the implications this had for models of disease. 

The population of M. nattereri inhabiting Wytham Woods showed a clear separation into 

social groups with high intra-group connectivity but very low inter-group connectivity (Chapter 

2). Furthermore a social group was often found split over a number of roosts on any given day. 

This observed structure, which is likely to approximate the true contact network, clearly does 

not fit the assumption of mass action, instead suggesting that contact rates between 
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individuals, at the scale of a wood such as Wytham, is highly variable. With the observed 

structure it is likely that pathogens will spread rapidly within social groups but slowly between 

social groups. 

The population structure observed in M. daubentonii was different from that of M. nattereri. 

Females had a structure similar to that of M. nattereri, however, males showed higher levels of 

mixing facilitating a higher level of connectivity in the population as a whole. As with M. 

nattereri this social structure demonstrates a high level of variability in the contact rates 

between individuals in the population. Since males are responsible for connectivity between 

female groups it could be hypothesised that they would be important for the transmission of 

disease through the population. However, this has not been supported by some empirical 

studies of wild mammal populations. A similar structure has been observed in populations of 

meerkats (Suricata suricatta). In meerkat populations males are known to rove between social 

groups, these males have been found to have an increased risk of infection with TB 

(Mycobacterium bovis) however members of the groups visited were not found to be at 

increased risk of infection (Drewe 2010). Similarly nomadic lions (Pantera leo) that move 

between prides were not found to be important in the transmission of disease in the 

population. This was in part because their movements were infrequent and less important 

than occasional pride-pride interactions (Craft et al. 2010). Despite uncertainty in its 

implications, this new understanding of contact rates in summer populations of M. 

daubentonii may have implications for the spread of diseases, for example EBLV-2, a lyssavirus, 

known to be present in M. daubentonii in Britain, and should be included in future models of 

this virus. 

The strong social structure apparent amongst M. nattereri and M. daubentonii is similar to the 

assortative networks discussed by Eames (2007). These networks, in which intergroup contact 

is low, have reduced overall prevalence and select for chronic benign infections as immunity 

within a sub-group is quickly achieved. Infections in assortative networks can be best 

controlled by identifying individuals that may be responsible for transmission between groups 

such as male M. daubentonii in this study. However, this will be moderated by individual 

behaviour and immune systems. Additionally rare contacts between individuals from different 

social groups are likely to be important in models of diseases in bats but will only be revealed 

by social network studies with high temporal resolution 

To ensure that the observed population structure was not a result of the aggregation of bats at 

a limited number of roost sites, the roost preference of the species was investigated (Chapter 

3). M. nattereri and P. auritus showed high variability in the roosts they used when using a 
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number of local and landscape variables suggesting that roost sites for these species were not 

limiting. M. daubentonii showed lower variability, however, there were many roosts available 

in the areas preferred by this species (i.e. close to water) and over the course of this study 162 

roosts were found occupied by this species. This data supports the conclusion that the 

population structure observed is a result of behaviour, rather than environmental constraints, 

and is therefore likely to be common to other populations of the same species occupying 

similar habitat. Recent work by Angell et al (2013) suggests that the population structure of M. 

daubentonii differs over an altitudinal gradient and therefore care must be taken when 

extrapolating the results presented to dissimilar habitat. 

There are a number of limitations when using the social network data presented to predict 

disease transmission. Firstly, the network is the result of pooling data over 6 years, which is a 

different time scale to that over which transmission is likely to occur. In addition, since data is 

pooled over a long time period we do not know how the structure of this network changes 

over time. The dynamics of population structure are known to be important, but difficult to 

measure in wildlife populations (Craft & Caillaud 2011, Keeling & Eames 2005). 

To better understand the change in social structure over short time periods the composition of 

colonies was recorded throughout the summer (Chapter 2). Results showed that both species 

had a greater number of mixed sex colonies in the post-nursery period compared to the 

nursery period.  

The results from chapters 2 and 3 suggest that transmission rates are likely to be higher within 

social groups than between social groups, and in the nursery period, higher within nursery 

colonies (those dominated by females) and bachelor colonies than between these colony 

types. By studying the ectoparasites and pathogens of this population I was able to test these 

predictions. 

Empirical studies of the distribution of ectoparasites and coronavirus found support for the 

predicted effect of colony type (Chapters 4 and 5). During the nursery period individuals in 

nursery colonies experience high parasite burdens, perhaps as a result of increased 

susceptibility of females and juveniles, and Spinturnicid mites preference for females (Christe 

et al. 2007). This high parasitism was not seen in the bachelor colonies whose individuals were 

segregated from females during this time of the year (Chapter 4). Models of coronavirus found 

a related trend amongst M. daubentonii (Chapter 5). Adult males, isolated from nursery 

colonies in the nursery period, had a low prevalence of infection, but this increased in the 

post-nursery period when bachelor colonies were found infrequently and mixed colonies 

where more commonly observed.  
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Parameters describing the position of individuals within the social network were poor 

predictors of disease prevalence. Degree, the number of individuals a target individual has 

been recorded roosting with, and betweeness, the importance of an individual for connecting 

others in the networks, where both found to have generally low importance. As suggested 

previously, the poor ability of these parameters to predict disease prevalence may be a result 

of the time scale of the study. For example the degree of an individual over the previous week 

may be a good predictor of whether it is infected with a disease, while the degree over several 

years, as in this study, may be a relatively poor predictor. 

Social group (females only when testing M. daubentonii) was found to be an important 

parameter in models of ectoparasites for both M. nattereri and M. daubentonii. This was not 

related to the size of the social group, but might be expected from the social structure we 

observed. Low connectivity between social groups suggests that stochastic variation in the 

abundance of parasites or the prevalence of pathogens would not be averaged out across the 

population. Instead, given the isolation of the social groups from one another, the relative 

differences in disease prevalence should be approximately maintained throughout the 

summer. 

Future models for disease in bat populations should include colony type, sex, reproductive 

status and age, since these were all found to be important in our empirical studies. 

Additionally, increased susceptibility of reproductive females and juveniles during the nursery 

period, and seasonal variation in social networks, should be the target of future research. 

Future models could be tested against the empirical data used in this thesis to test their ability 

to produce realistic results. 

Different network measures to those used here may better predict infection risk. Studies have 

highlighted, for example, the benefits of including network parameters such as path length and 

clustering coefficient (Ames et al. 2011) and using weighted networks in which the direction of 

behaviour is recorded (Keeling & Eames, 2005). Future analyses which consider these options 

will undoubtedly make use of rapid technological advances being made in wildlife tracking. For 

example, the continued miniaturisation of GPS trackers, radio-transmitters and RF-ID tags 

(Craft & Caillaud, 2011). These technologies will provide wildlife researchers with more 

accurate data at increased temporal resolution, allowing more accurate quantification of 

network structure. 
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6.3 Pathogen surveillance 
 

This work found, for the first time, that Coronaviruses infect bats in the UK (Chapter 5). This 

finding adds to the consensus that this group of viruses are endemic in many bat species and 

have a global distribution. We found closely related Alphacoronavirus sequences in M. 

nattereri from Savernake Forest and Wytham Woods, and M. daubentonii in Wytham Woods 

hosted viruses closely related to strains identified in Germany. These and other published data 

suggest that Coronaviruses are undergoing co-evolution with particular host species.  

If directly transmitted viruses followed the same trends that we observed for the directly 

transmitted mites, the nursery period would be a high risk period for spillover events. 

However, a seasonal effect on prevalence was not seen in our model of Coronaviruses 

(Chapter 5). The molecular analysis used for Coronaviruses in this study could be modified to 

provide data on the amount of virus detected in the faeces. Real-time PCR or quantitative PCR 

(qPCR), a method that can measure the amount of genetic material present in a sample, could 

be used to detect peaks in virus shedding. This would provide data better suited to predicting 

periods when the risk of disease spillover is highest. 

An area that has been significantly under researched to date is bat immunology. Laboratory 

and field studies of rabies in bats show that bats produce antibodies to rabies virus (O'Shea et 

al. 2003; Turmelle et al. 2010) but there is little evidence that these antibodies provide 

protection against subsequent infections. Understanding the mechanisms and dynamics of bat 

immune systems in response to infection with specific pathogens is important for predicting 

individuals’ susceptibility to disease, and to understand transmission rates among individuals 

in a social network. For example studies of field voles (Microtus agrestis) suggest that 

individuals with increase susceptibility are not only more likely to become infected but may be 

the most important source of infection in others (Beldomenico et al. 2009). Susceptibility is 

therefore an important factor for modelling pathogen prevalence in a population and 

predicting when spillover events may occur. Maternal passive immunity is thought to be an 

important factor in driving susceptibility in bat populations (Chapter 1). A means to measure 

antibody responses to a pathogen would help to investigate the length of protection afforded 

to juveniles by maternal passive immunity and would indicate when juveniles become most 

susceptible to infection, a time when disease prevalence would be likely to increase 

(Wacharapluesadee et al. 2010). 

Our analyses of Astroviruses RdRP sequences present in UK bats revealed a wide range of 

viruses. This data suggests that unlike Alphacoronaviruses which showed species-specific 
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associations, a single species of bat may host more than one distantly related Astroviruses. For 

example we identified Astroviruses infecting M. nattereri from 4 different clades (with 

similarity as low as 55%) and observed three of these strains infecting individuals in the same 

roost box at the same time. Sequences from one of these clades were closely related to 

sequences reported from rodents in Hong Kong (Chu et al. 2010). If the presence of this virus is 

taken to be indicative of active infection then this virus may be able to infect both bats and 

rodents. Coinfection with this virus and other Astrovirus strains may permit recombination 

which is often presumed to be a precursor to the emergence of infectious diseases. 

Understanding the potential for recombination between Astroviruses infecting bats and 

viruses from other species will require a great deal of further work. 

Assessing the risk to humans from Astroviruses and Coronaviruses hosted by wild bat 

populations is very difficult. While these viruses have high prevalence amongst some UK bat 

species, contact between bats and humans or domestic animals is very infrequent. This gives 

little opportunity for the virus to infect and replicate in these potential hosts. Therefore the 

risk of a spillover from bats to humans is extremely low. Nevertheless it is worth knowing what 

pathogens are present in our wildlife and their biology in their natural hosts so that if a novel 

pathogen did emerge in man we could rapidly identify and isolate the source. Whilst the risk of 

disease spill over from bats in the UK has been identified as extremely low, a common route of 

disease emergence identified in Chapter 1 is from wildlife to domestic animals. It is therefore 

recommended that artificial bat roosts are not placed in areas where domestic animals will be 

in prolonged contact with bats, their faeces or urine, such as in and around cattle sheds, 

stables and piggeries. 
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6.4 Ecology and conservation of bats 
 

Our study of bats in Wytham Woods shows that bat populations within a contiguous wood 

from distinct social groups. Although both M. daubentonii and M. nattereri were studied using 

the same roost type (bird boxes) the social structure was different for each species. While M. 

daubentonii males were frequently observed in bachelor groups and often associated with 

more than one female social group, M. nattereri males were observed less frequently and only 

associated with a single, mixed sex, social group. Female M. daubentonii and both sexes of M. 

nattereri formed social groups with spatially restricted roost home ranges. Within species 

there was very little overlap between social group roost home ranges suggesting that there 

may be competitive exclusion between social groups. This has not been explored previously 

and is worthy of further investigation. If territoriality does exist it is likely that any major 

change to habitat, or high mortality within social groups, could lead to increased conflict 

between groups, analogous to that seen in populations of badgers after culling (Tuyttens et al. 

2000). 

This thesis identifies bat social groups as the functional unit of the population which should be 

the target of conservation (Chapter 2). At present UK law protects individual bats and roosts 

from disturbance or destruction (Mitchell-Jones & McLeish 2004) and as such protects social 

groups. This protection is afforded by the Habitat Regulations put in place by the UK 

government as required by the EU Habitat Directive. These regulations are currently under 

review with the aim of reducing ‘red-tape’ by streamlining guidance. While future research 

may show that some roosts are of greater importance to social groups than others, such a 

detailed investigation is beyond everyday bat survey work. As such the current regulations, 

giving protection to all roosts, are the most practical, and best protect social groups. 

When aiming to restore, retain or create habitat for bats the observed population structure 

should be taken into account. Our study showed social groups used numerous roosts within a 

small area of woodland. Though more work is needed to investigate if these patterns are seen 

across other woodlands and habitat types, these results support efforts to increase roost 

availability in habitats where they are lacking (e.g. immature woodlands) either by introducing 

artificial roost sites or encouraging the retention of mature trees. 

More consideration should also be given to the implications social structure has for bat 

conservation in woodlands that are being managed for timber. In these woodlands trees are 

sometimes clear felled which may quickly remove much or all of the roost home range of a 

given social group, especially since this thesis suggests the roost home ranges of M. 
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daubentonii and M. nattereri may be only 42-57 acres. Given the population structure 

observed, significant disruption or local extinction of social groups is more likely than if they 

had larger, overlapping roost home ranges. Additionally, felling is likely to directly increase 

mortality and may increase competition between neighbouring groups for suitable roosts. It is 

currently recommended practise for woodland managers to leave mature or standing dead 

trees when felling to encourage wildlife that depend on them. This practice is undoubtedly 

beneficial to bats and other wildlife. However, since species were found to roost in areas close 

to favourable foraging habitat, the quality of these roosts to woodland foragers such as M. 

nattereri and P. auritus will be diminished when surrounding trees are removed. The present 

study considers social groups occupying deciduous woodland, while areas managed for timber 

are primarily coniferous. Caution should be taken when extrapolating our results to the 

behaviour of species in these woodlands.  

The social structure observed will undoubtedly have implications for how populations react to 

habitat change such as tree felling. Except for male M. daubentonii, we observed very few 

movements of individuals between social groups and so it is unknown whether a decline in one 

social group could lead to the integration of individuals from another social group as is 

observed in classic source-sink metapopulation models (Hanski 1999). Though it may appear 

obvious to think of these social groups in a metapopulation framework this should be done so 

with caution. Metapopulation theory focuses on the size and connectivity of patches. While it 

may be true that small social groups are more likely to become extinct than large social groups 

our understanding of immigration and emigration in social groups is extremely limited. 

Dispersal between social groups is likely to operate at local and landscape scales and consist of 

temporary and permanent migrations. The probability of immigration may be related not only 

to colony size but the probability of acceptance by individuals within the social group. It is also 

unknown how new social groups may form after local extinctions or die-offs in societies with a 

high level of structure such as bats. Current studies are limited to either temporary fission-

fusion dynamics, as in elephants (Archie et al. 2006) or the formation of social groups in 

captivity (Seres et al. 2001). Likely mechanisms of group formation include the splitting or 

merging of social groups, as has been observed in human populations (Palla et al. 2007). The 

lack of studies among wild animals is likely due to the need for high resolution long-running 

studies. 

Very few similar studies of bat social structure have been undertaken in the UK (Park et al. 

1998; Entwistle et al. 2000; Smith 2000; Rossiter et al. 2002) and to date no studies have been 

published that use social network analysis. Therefore much more research of social structure 

amongst different species and habitat types is needed. For example, many of the bat-human 
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conflicts that arise in the UK, such as the presence of bat roosts in buildings needing 

development, are in urban areas. An understanding of the population structure of specific bat 

species in this environment using the framework presented here would be invaluable for 

identifying solutions to such conflicts. 

Whether protecting areas of high quality habitat or identifying ways to improve the quality of 

existing habitat, an understanding of bat roost preferences is important. This thesis suggests 

roosts are selected for their proximity to preferred foraging habitat. M. daubentonii prefer 

roosts close to water, while M. nattereri and P. auritus, both woodland foragers, roosted 

throughout the wood (Chapter 3). Detailed data on foraging behaviour is limited for M. 

nattereri and P. auritus, an area where more work is needed. Indeed, as it is suggested bats 

choose to roost close to their foraging habitat, efforts to identifying the specific foraging 

habitats preferred by each UK species and the roosting opportunities available in proximity to 

these areas may be a valuable approach to identify and conserve areas important for bats to 

prosper. 

This study found for the first time that woodland bats BCI (i.e. weight relative to their physical 

dimensions) was correlated to weather conditions. Notably, BCI was lower in M. nattereri and 

P. auritus after nights with high wind speed whereas M. daubentonii appeared unaffected. This 

suggests a relationship between wing shape and the effect of windspeed, with broad winged 

bats such as M. nattereri and P. auritus which are adapted to agile, slow flight, more greatly 

affected than narrow winged species adapted to faster flight such as M. daubentonii. Wind 

speeds may increase with climate change (Pryor et al. 2005), though the magnitude may not 

have a significant effect on bats. P. auritus had increased BCI after warm nights, when it is 

thought moths, a major part of their diet, are in greater abundance (Anthony et al. 1981; 

McGeachie 1989). Insects’ abundance and distribution are known to be responding to climate 

change (Hickling et al. 2006) and their predators, including bats, might be expected to alter 

their distribution with them. It is beyond the scope of this study to predict the impacts climate 

change may have on bats, however, identifying dominant prey species and the expected shifts 

in their distribution would be a reasonable first step to identifying those bat species that may 

be most severely affected in the future.  
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6.5 Questions raised 
 

Here I propose a series of research programmes that would address some of the issues raised 

in my thesis. These programmes will improve our understanding of the dynamics of diseases in 

bats populations and improve bat conservation. 

 

Exploring the dynamics and adaptability of social networks 

Studies of wildlife populations using graph theory (i.e. social networks analysis) have only 

appeared in the past 10 years and are still lagging behind advances made in the social sciences. 

Studies of wildlife populations, as in this thesis, are typically limited to an analysis of one time 

period and a simple description of the population’s structure. Few studies present data 

collected in more than one time period, and when this is done information for each period is 

typically limited preventing an accurate description of the network structure (Perkins et al. 

2009).  

Understanding the changes in social network structure through time and how networks 

change in response to external effects is important for predicting the effects of human activity 

on social animal populations. Studies of human networks already explore changes through 

time (Kossinets & Watts 2006; Palla et al. 2007) but few wildlife studies do the same (Cross et 

al. 2004; Perkins et al. 2009). The lack of research into temporal dynamics is primarily due to 

difficulties collecting detailed data at a high temporal resolution, while manipulation 

experiments in species such as elephants and whales, which are often targets of SNA studies, 

are impractical. Some studies of wildlife populations suggest that the removal of key 

individuals could lead to a breakdown of population structure (Wittemyer et al. 2005; Williams 

& Lusseau 2006), but with rare exceptions (Flack et al. 2006) few have tested these 

hypotheses. 

A recent study by Kerth, Perony et al (2011) has shown that high temporal resolution social 

networks can be generated for bat populations using passive integrated transponders (PIT) 

tags and automated readers. This approach can be enhanced by radio-tracking a number of 

individuals in the population as implemented by Garroway and Broders (2007), allowing 

colonies to be more easily followed. This method could be applied at Wytham Woods, a study 

system that offers the possibility for manipulation experiments that are not practical in other 

populations. The use of roost boxes by bats allows entire colonies to be translocated or for 

roost boxes to be selectively removed. 
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High temporal resolution data of bat associations and movement between roosts using PIT 

tags would provide insights into the sub-structure of social groups, evidence of hierarchy, and 

how these change over an annual and multi-year time scale. The Wytham Woods study system 

would allow an assessment of the adaptability of social groups in the face of disturbances. For 

example, by a) examining the change in social and spatial structure of social groups after the 

removal of roosts, b) examining the effects of introducing novel radiotracked individuals to 

explore whether individuals can integrate into foreign social groups, c) removing individuals to 

assess their role in maintaining group cohesion. 

This research would significantly further our understanding of the dynamics and adaptability of 

wildlife populations and the impacts of roost lost on UK bat populations. As bats and their 

roosts are protected in the UK this work would need the support of the Statutory Authority, 

Natural England. 

 

What is the social structure of an urban bat population? 

Most conflict between humans and bats occurs in urban settings. Future research should 

examine whether urban bat populations of the same species studied at Wytham Woods have a 

significantly different population structure than woodland bats. Since M. nattereri is a more 

frequent inhabitant of urban structures than M. daubentonii this would be the recommended 

study species. 

This research would be carried out in an area with abundant M. nattereri roosts within a 

contiguous urban landscape. Such an area could be identified through collaboration with 

Natural England and bat groups who hold information on known roosts. Initial work would 

focus on ringing individuals in the population and radio-tracking individuals to other roosts in 

the area. To get an accurate picture of the social network it is important to capture bats at as 

many roost sites in the area as possible and it is for this reason that radio-tracking is key. The 

second phase of the research would focus on capturing and ringing individuals at the roosts 

identified by radiotracking. The social network could then be characterised using the SNA 

techniques applied in Chapter 2 of this study and compared to the woodland network. As 

mentioned previously PIT tagging could also be used to increase the temporal resolution of the 

data. 

This work would allow questions to be answered about urban populations relevant to their 

conservation. For example the research would highlight the number of roosts and area used by 

a single social group. Additionally, it may be possible to identify a study population due to 
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undergo disturbance, such as the exclusion of a colony from a roof space. This would provide 

the opportunity to assess the effect displacement has on the structure of the bat population as 

well as the importance of mitigation, such as artificial bat roosts, in maintaining the population 

after exclusion. 

 

Social structure, heterogeneity and co-infection: Modelling diseases in wildlife populations. 

By the virtue of the limited data available, models of diseases in wildlife populations are often 

over simplified. This includes assumptions of random mixing (McCallum et al. 2001, Perkins et 

al. 2009), the use of mean values for transmission and susceptibility parameters (Lloyd-Smith 

et al. 2005) and a focus on a single pathogen (Telfer 2010). Here I suggest a programme of 

research that will examine the effects of these assumptions on models of bat associated 

pathogens. 

Our analysis of social networks at present is coarse, but by implementing the proposals 

outlined in the two sections it would be possible to quantify the social network more 

accurately, including assessing the dynamics of the system. These analyses can be used to 

estimate contact rates and their heterogeneity between classes of individuals (e.g. juveniles 

and adults), seasons, and after disturbance events. Models using average data and data 

inclusive of individual variability would be compared to assess the importance of 

heterogeneity for model predictions. 

To test the ability of models to accurately predict disease within the population will require 

surveillance of pathogens in greater detail than presented within this thesis. It will be 

necessary to identify all of the strains of Astroviruses and Coronaviruses present in each 

individual, as each strain may have different dynamics within the population. This could be 

achieved through Multi-Locus Sequence Typing (MLST) which uses sequence data from a 

number of representative regions of the virus genome to assign samples to strains. This 

method would first require the full genome sequences of the strains identified in this study 

from which primers could be designed for the MLST. Additionally it may be advisable to 

undertake a metagenomic analysis of faeces and blood in order to establish which other 

pathogens of interest are present and worthy of inclusion in this study. 

Susceptibility is virtually unexplored amongst bats (but see Christe et al. 2000 and Turmelle et 

al. 2010), however, it is important for accurate models of disease (Beldomenico & Begon 

2010). General measures of susceptibility could be investigated using haematological 

indicators such as red blood cell (RBC) and lymphocyte counts. Low counts of red blood cells 
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can be an indication of malnutrition (Piersma et al. 2000) while low lymphocyte counts can be 

an indication of reduced immune function (Shetty 2001). More specifically susceptibility to 

known pathogens could be inferred from assays to detect the presence of pathogen specific 

antibodies. Assays would be developed to assess the presence of antibodies to Astroviruses 

and Coronavirues amongst bats. This would include a plaque reduction neutralization test 

(PRNT) assay if it were possible to culture the viruses, or immunoassays using expressed viral 

proteins or synthesised predicted peptide epitopes should culture prove impossible. 

Additionally a previously described protocol for the detection of rabies antibodies would be 

used (Brookes et al. 2005). 

Collecting blood samples from individuals at Wytham Woods at multiple time points 

throughout the year it will be possible to assess variation in susceptibility between groups of 

different age, sex and reproductive status. Additionally multiple samples per individual would 

permit an assessment of variation within individuals. The assumption that these variables 

correlate to susceptibility could be tested by using them to predict whether individuals are 

more or less likely to become infected, and testing predictions against field observations 

(Beldomenico et al. 2009). 

The duration of immunity is likely to be an important variable in epidemiological models, 

especially as bats are long-lived, but would be difficult to study in a field setting where 

repeated exposure to pathogens would confound results. An investigation in captive 

individuals would allow the duration of immunity to be examined by exposing individuals to a 

virus and then challenging them with the same virus at set time intervals, monitoring them for 

evidence of viral replication. This would also allow the importance of red blood cell counts, 

lymphocyte counts and pathogen specific antibodies (measures of susceptibility) for predicting 

whether challenged individuals will become infected. 

Results of both field and laboratory work would be used to parameterise an acquired 

immunity function into disease models. As with estimates of transmission, models would be 

compared with and without individual variation detected to assess its importance for model 

predictions. 

Infections can increase, decrease or have no effect on the probability that an individual will 

become infected with a second pathogen. Positive associations between pathogens can result 

from down regulation of the immune system while negative associations can result from cross-

effective immune response (Telfer 2010). Using time-series data it would be possible to test 

whether infection with one pathogen influenced the probability of co-infection at a future time 
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point. Additionally ectoparasites could be included in this analysis to study interactions 

between ectoparasites and pathogens. 

Models of disease inherently seek to simplify complex systems into general equations. 

However, studies are now showing that natural variability is important for accurate 

predictions. This large research programme would quantify the variables important for 

population models and assess the importance of variability for generating accurate 

predictions. More specifically this work would increase our understanding of the immune 

system of bats, the processes that lead to high disease prevalence including the effects of 

disturbance and the effect of social structure. This would highlight periods of risk for disease 

spillover. Surveillance of rabies antibodies in this well characterised system may help explain 

why the virus is primarily found in M. daubentonii and how it is maintained within the UK at a 

very low prevalence. 
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6.6 Final remarks 
 

Bats are often perceived as a pest, in part as a result of their association with disease. This is 

perhaps no more true than in the past 15 years when the media have delighted in publishing 

alarmist articles about the discoveries of diseases in bats. This has generated tensions between 

conservationists and disease researchers, the former believing that continued research in to 

bat diseases harms conservation efforts and reaffirms the image of bats as a pest in the minds 

of the public. 

In this thesis I have shown that many of the aims of conservation and disease research are the 

same, and centre on reducing contact rates between bats and humans. This reduced contact 

lowers the probability of disease spillover and reduces stress placed on bat populations by 

activities such as habitat destruction. Both research areas can benefit from collaboration and 

some research, such as that into Hendra (Plowright et al. 2008), is beginning to highlight the 

importance of reducing anthropogenic pressures on bats to prevent disease spillover. This 

interdisciplinary research should be encouraged and will benefit both bat conservation and 

disease spillover prediction and prevention.  
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7 Appendix 
 

Date Box Species Date Box Species

05/08/2006 C111 M. daubentonii 12/09/2006 O218 M. nattereri

05/08/2006 C113 P. pygmaeus 12/09/2006 O258 P. pygmaeus

05/08/2006 C159 M. daubentonii 12/09/2006 O30A M. nattereri

05/08/2006 C29 M. nattereri 12/09/2006 O211 P. pygmaeus

05/08/2006 C31 P. pygmaeus 28/09/2006 C101 M. nattereri

05/08/2006 C47 P. pipistrellus 28/09/2006 C109 P. pygmaeus

05/08/2006 C119 P. pygmaeus 28/09/2006 C124 M. daubentonii

05/08/2006 C49 M. daubentonii 28/09/2006 C113 P. pygmaeus

05/08/2006 C57 M. daubentonii 28/09/2006 C141 M. daubentonii

05/08/2006 C14 M. daubentonii 28/09/2006 C25 M. daubentonii

02/09/2006 C113 P. pygmaeus 28/09/2006 C2 M. daubentonii

02/09/2006 C119 P. pygmaeus 10/10/2006 CP105 P. pygmaeus

02/09/2006 C140 M. daubentonii 10/10/2006 CP117 M. daubentonii

02/09/2006 C45 M. daubentonii 10/10/2006 CP134 P. pygmaeus

02/09/2006 C9 M. nattereri 10/10/2006 W34 M. daubentonii

02/09/2006 C151 M. daubentonii 10/10/2006 CP113 M. daubentonii

02/09/2006 C35 M. daubentonii 10/10/2006 W24 M. daubentonii

02/09/2006 C110 M. daubentonii 10/10/2006 W19 P. auritus

02/09/2006 C27 M. daubentonii 28/04/2007 O217 P. auritus

02/09/2006 C116 M. nattereri 23/05/2007 SW11 M. daubentonii

02/09/2006 C138 M. daubentonii 24/05/2007 W8 M. daubentonii

02/09/2006 C137 M. daubentonii 26/05/2007 CP11 M. nattereri

02/09/2006 C54 M. nattereri 01/06/2007 O39 P. auritus

02/09/2006 C13 M. nattereri 01/06/2007 CP150 M. nattereri

02/09/2006 C26 M. daubentonii 01/06/2007 CP132 M. nattereri

02/09/2006 C159 M. daubentonii 05/06/2007 W37 M. nattereri

02/09/2006 C46 M. nattereri 05/06/2007 W59 M. daubentonii

09/09/2006 CP138 P. pygmaeus 05/06/2007 W99 M. daubentonii

09/09/2006 CP148 P. pygmaeus 05/06/2007 W75A M. daubentonii

09/09/2006 CP155 M. nattereri 05/06/2007 W47 M. daubentonii

09/09/2006 CP20 P. pipistrellus 05/06/2007 W100 M. daubentonii

09/09/2006 W72 M. daubentonii 05/06/2007 W36 M. daubentonii

09/09/2006 E16 M. daubentonii 05/06/2007 W56 M. nattereri

09/09/2006 CP21 M. daubentonii 05/06/2007 W64A M. daubentonii

09/09/2006 CP103 M. daubentonii 05/06/2007 W68 M. nattereri

10/09/2006 B127 P. auritus 05/06/2007 W52 M. daubentonii

10/09/2006 MP15 P. pygmaeus 08/06/2007 E14B M. daubentonii

10/09/2006 MP32 M. nattereri 08/06/2007 E9 M. daubentonii

10/09/2006 W21 M. daubentonii 12/06/2007 O216 P. pygmaeus

10/09/2006 W23 M. daubentonii 12/06/2007 SW7 P. auritus

10/09/2006 W29 M. daubentonii 12/06/2007 O51 M. daubentonii

10/09/2006 W6 M. daubentonii 07/07/2007 CP122 M. nattereri

10/09/2006 W11 M. daubentonii 15/07/2007 CP101 P. pygmaeus

10/09/2006 W59 M. daubentonii 15/07/2007 CP103 M. nattereri

10/09/2006 W17 M. daubentonii 15/07/2007 CP125 M. nattereri

10/09/2006 W13 M. daubentonii 15/07/2007 CP19 M. nattereri

10/09/2006 W61 M. daubentonii 15/07/2007 CP100 M. nattereri

10/09/2006 W50 M. daubentonii 15/07/2007 CP33 M. nattereri

12/09/2006 O201 P. pygmaeus 15/07/2007 CP153 M. nattereri  

Table 7.1 (continues over multiple pages) – A summary of all box checks detailing the date, roost box 

and species found. 
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Date Box Species Date Box Species

15/07/2007 CP32 M. daubentonii 12/08/2007 SW31 M. nattereri

15/07/2007 CP34 M. daubentonii 12/08/2007 SW20 P. auritus

15/07/2007 CP16 M. daubentonii 16/08/2007 W78 M. nattereri

15/07/2007 CP17 M. daubentonii 16/08/2007 W93 M. daubentonii

15/07/2007 CP3 M. daubentonii 16/08/2007 W74 P. auritus

15/07/2007 CP20 M. daubentonii 16/08/2007 W63 M. nattereri

15/07/2007 CP12 M. daubentonii 18/08/2007 CP131 P. pygmaeus

15/07/2007 CP137 M. nattereri 18/08/2007 CP144 P. pygmaeus

15/07/2007 CP144 M. nattereri 18/08/2007 W42 Unknown

18/07/2007 B136 M. nattereri 18/08/2007 W52 M. daubentonii

18/07/2007 B168 M. nattereri 18/08/2007 W44 M. daubentonii

18/07/2007 B32 P. auritus 18/08/2007 CP21 M. daubentonii

18/07/2007 B55 M. daubentonii 18/08/2007 W51 M. daubentonii

28/07/2007 B225 P. pygmaeus 18/08/2007 CP34 M. daubentonii

28/07/2007 MP36 P. pygmaeus 18/08/2007 W53 M. daubentonii

28/07/2007 MP46 M. nattereri 18/08/2007 W61 M. daubentonii

28/07/2007 MP52 M. nattereri 18/08/2007 CP138 M. nattereri

28/07/2007 MP64 P. auritus 18/08/2007 W68 M. nattereri

28/07/2007 MP67 M. nattereri 18/08/2007 CP135 M. nattereri

28/07/2007 MP92 M. daubentonii 22/08/2007 E12 M. daubentonii

30/07/2007 O207 P. pygmaeus 22/08/2007 E2 P. pygmaeus

30/07/2007 O238 M. nattereri 22/08/2007 E37 P. auritus

30/07/2007 O33 M. nattereri 22/08/2007 E14 M. daubentonii

30/07/2007 O235 P. auritus 22/08/2007 E6 P. auritus

30/07/2007 O211 M. nattereri 24/08/2007 E42 P. auritus

30/07/2007 O217 M. nattereri 24/08/2007 E43B P. pygmaeus

04/08/2007 C101 M. nattereri 24/08/2007 E49C M. nattereri

04/08/2007 C119 P. pygmaeus 24/08/2007 W13 M. nattereri

04/08/2007 C13 P. pygmaeus 24/08/2007 W21 M. nattereri

04/08/2007 C19 P. pygmaeus 24/08/2007 W54 M. nattereri

04/08/2007 C30 M. nattereri 24/08/2007 E49A M. daubentonii

04/08/2007 C31 P. pygmaeus 24/08/2007 E47 M. nattereri

04/08/2007 C41 M. daubentonii 24/08/2007 E19A M. daubentonii

04/08/2007 C50 M. nattereri 24/08/2007 E15 M. daubentonii

04/08/2007 C136 M. daubentonii 24/08/2007 E55 M. nattereri

04/08/2007 C35 M. daubentonii 24/08/2007 E35A M. nattereri

04/08/2007 C59 M. daubentonii 24/08/2007 W26 M. nattereri

04/08/2007 C120 M. daubentonii 24/08/2007 E43 P. auritus

09/08/2007 P109 P. pygmaeus 24/08/2007 W15 M. nattereri

09/08/2007 P13 P. auritus 02/09/2007 B181 P. pygmaeus

09/08/2007 P15 M. nattereri 02/09/2007 CP101 M. daubentonii

09/08/2007 P3 M. nattereri 02/09/2007 CP102 M. nattereri

09/08/2007 P8 M. nattereri 02/09/2007 CP106 P. pygmaeus

09/08/2007 SW64 M. nattereri 02/09/2007 CP111 P. pygmaeus

09/08/2007 P16 M. daubentonii 02/09/2007 CP112 P. pygmaeus

12/08/2007 P24 P. auritus 02/09/2007 B206 P. auritus

12/08/2007 SW62 P. auritus 02/09/2007 CP127 M. daubentonii

12/08/2007 SW109A M. nattereri 02/09/2007 CP3 M. daubentonii

12/08/2007 SW28 M. nattereri 02/09/2007 CP10 M. daubentonii  
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Date Box Species Date Box Species

02/09/2007 CP151 M. nattereri 13/10/2007 W54 M. daubentonii

02/09/2007 CP117 M. nattereri 13/10/2007 W73 M. nattereri

02/09/2007 W13 M. daubentonii 13/10/2007 W77 M. daubentonii

02/09/2007 CP157 M. nattereri 13/10/2007 W52 M. daubentonii

09/09/2007 O231 M. nattereri 13/10/2007 W23 M. nattereri

09/09/2007 O249 P. pygmaeus 13/10/2007 W3 M. daubentonii

09/09/2007 O261 P. pygmaeus 13/10/2007 W34 M. daubentonii

09/09/2007 O253 M. nattereri 13/10/2007 W5 M. daubentonii

09/09/2007 O19 M. nattereri 11/05/2008 B213 M. daubentonii

09/09/2007 O77 M. nattereri 15/05/2008 W93 M. daubentonii

09/09/2007 O240 M. daubentonii 17/05/2008 CP153 M. daubentonii

16/09/2007 C103 M. nattereri 19/05/2008 O223 M. nattereri

16/09/2007 C113 P. pygmaeus 20/05/2008 E2 M. nattereri

16/09/2007 C37 M. daubentonii 07/06/2008 CP110 M. nattereri

16/09/2007 C45 M. nattereri 13/06/2008 E12 P. auritus

16/09/2007 C46 M. daubentonii 13/06/2008 W47 M. daubentonii

16/09/2007 C102 M. nattereri 13/06/2008 W16 M. nattereri

16/09/2007 C152 M. daubentonii 16/06/2008 MP68 P. auritus

16/09/2007 C32 M. nattereri 20/06/2008 C59 M. daubentonii

16/09/2007 C107 M. daubentonii 20/06/2008 C135 M. daubentonii

17/09/2007 C24 M. nattereri 20/06/2008 C11 M. daubentonii

20/09/2007 MP76 N. noctula 20/07/2008 E31A M. daubentonii

20/09/2007 MP32 M. nattereri 20/07/2008 E59 M. daubentonii

20/09/2007 MP67 M. daubentonii 24/07/2008 C39 M. daubentonii

20/09/2007 MP3 M. daubentonii 24/07/2008 C13 M. daubentonii

21/09/2007 O34 P. pygmaeus 26/07/2008 O228 P. pygmaeus

21/09/2007 O227 M. nattereri 26/07/2008 O232 M. nattereri

21/09/2007 O27 P. auritus 26/07/2008 O24 M. daubentonii

21/09/2007 O210 M. nattereri 26/07/2008 O242 M. nattereri

21/09/2007 O213 P. pygmaeus 26/07/2008 O82 M. nattereri

21/09/2007 O213 M. nattereri 26/07/2008 O239 M. nattereri

24/09/2007 P103 M. nattereri 27/07/2008 W37 M. nattereri

24/09/2007 P104 M. nattereri 27/07/2008 W15 M. daubentonii

24/09/2007 P116 M. nattereri 27/07/2008 W41 M. daubentonii

24/09/2007 P120 P. pygmaeus 27/07/2008 W55 M. daubentonii

24/09/2007 P112 P. pygmaeus 27/07/2008 W68 M. daubentonii

24/09/2007 P23 M. nattereri 27/07/2008 W95 M. daubentonii

30/09/2007 E4 N. noctula 27/07/2008 W103 M. daubentonii

30/09/2007 E41A M. nattereri 27/07/2008 W91 M. daubentonii

30/09/2007 E62 M. daubentonii 27/07/2008 W42 M. daubentonii

30/09/2007 E39A M. nattereri 03/08/2008 MP47 M. nattereri

30/09/2007 E39C M. daubentonii 03/08/2008 MP76 N. noctula

07/10/2007 SW109 M. nattereri 03/08/2008 MP82 M. nattereri

07/10/2007 SW13 M. nattereri 03/08/2008 MP69 P. auritus

07/10/2007 SW8 P. auritus 03/08/2008 MP38 M. nattereri

07/10/2007 SW126 M. nattereri 03/08/2008 MP76 M. daubentonii

07/10/2007 SW103 M. daubentonii 03/08/2008 MP80 M. nattereri

07/10/2007 SW19 P. auritus 09/08/2008 P117 P. pygmaeus

13/10/2007 W105 P. pygmaeus 09/08/2008 P16 M. daubentonii  
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Date Box Species Date Box Species

23/08/2008 CP108 M. daubentonii 21/09/2008 W17 M. daubentonii

23/08/2008 CP127 M. daubentonii 26/09/2008 MP3 M. daubentonii

23/08/2008 CP130 M. nattereri 26/09/2008 B122 M. daubentonii

23/08/2008 CP142 P. pygmaeus 26/09/2008 MP11 M. daubentonii

23/08/2008 CP141 M. nattereri 09/10/2008 SW104A P. pipistrellus

23/08/2008 CP8 M. daubentonii 09/10/2008 SW21 P. pygmaeus

23/08/2008 CP112 M. daubentonii 09/10/2008 SW31 M. nattereri

23/08/2008 CP144 M. nattereri 09/10/2008 SW35 N. noctula

23/08/2008 CP15 M. daubentonii 09/10/2008 SW71 M. nattereri

23/08/2008 CP19 M. daubentonii 12/10/2008 B156 M. nattereri

23/08/2008 CP134 M. daubentonii 12/10/2008 B57 P. auritus

30/08/2008 E28 M. nattereri 15/10/2008 E75 Pipistrellus sp.

30/08/2008 E49C P. pygmaeus 15/10/2008 E86 M. nattereri

30/08/2008 E50 P. pygmaeus 15/10/2008 E88 P. pygmaeus

30/08/2008 E51C M. nattereri 15/10/2008 E89 P. auritus

30/08/2008 E62G M. nattereri 15/10/2008 E92 P. auritus

30/08/2008 SCH P. auritus 19/10/2008 C123 M. daubentonii

30/08/2008 E51B M. daubentonii 19/10/2008 C139 M. daubentonii

30/08/2008 E63 M. daubentonii 19/10/2008 C145 M. nattereri

30/08/2008 E31A M. daubentonii 04/05/2009 SW55 P. auritus

30/08/2008 E51A M. nattereri 06/05/2009 B91 M. nattereri

30/08/2008 E55 M. daubentonii 07/05/2009 W64 M. nattereri

30/08/2008 E47 M. daubentonii 30/05/2009 W33 M. daubentonii

31/08/2008 E2 P. pygmaeus 30/05/2009 W64A M. daubentonii

31/08/2008 E6 P. pygmaeus 06/06/2009 MP5 M. nattereri

31/08/2008 E19 M. daubentonii 17/06/2009 CP124 M. nattereri

31/08/2008 SCH P. pygmaeus 17/06/2009 SCH Pipistrellus sp.

31/08/2008 E14A M. daubentonii 17/06/2009 CP155 M. daubentonii

31/08/2008 E8 M. daubentonii 17/06/2009 CP32 P. auritus

31/08/2008 E8A M. daubentonii 17/06/2009 SCH Pipistrellus sp.

31/08/2008 E19A M. daubentonii 17/06/2009 CP22 M. nattereri

31/08/2008 E10A P. auritus 17/06/2009 CP14 M. daubentonii

08/09/2008 CP102 M. nattereri 18/06/2009 W18 M. nattereri

08/09/2008 CP5A M. daubentonii 18/06/2009 W38 M. nattereri

08/09/2008 CP148 M. nattereri 18/06/2009 W45 M. daubentonii

08/09/2008 CP6 M. nattereri 18/06/2009 W2 M. daubentonii

08/09/2008 W2 M. daubentonii 18/06/2009 W39 M. daubentonii

11/09/2008 W10 M. daubentonii 18/06/2009 W76 M. daubentonii

11/09/2008 W12 M. daubentonii 18/06/2009 W35 M. daubentonii

12/09/2008 C112 P. pygmaeus 18/06/2009 W31 M. daubentonii

12/09/2008 C116 M. nattereri 18/06/2009 W16 M. nattereri

12/09/2008 C21 M. nattereri 03/07/2009 CP31 M. nattereri

12/09/2008 C114 M. daubentonii 03/07/2009 CP36 M. daubentonii

12/09/2008 C3A M. daubentonii 03/07/2009 E13 M. daubentonii

21/09/2008 W74 P. auritus 03/07/2009 E21 M. daubentonii

21/09/2008 O9 M. daubentonii 08/07/2009 W105 M. daubentonii

21/09/2008 O261 P. pygmaeus 08/07/2009 W102 M. daubentonii

21/09/2008 W73 M. daubentonii 08/07/2009 W101 M. daubentonii

21/09/2008 O256 M. nattereri 09/07/2009 C30 M. nattereri  
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Date Box Species Date Box Species

09/07/2009 C104 P. pygmaeus 22/08/2009 E16 M. daubentonii

09/07/2009 C101 M. daubentonii 22/08/2009 SCH Pipistrellus sp.

09/07/2009 C13 M. daubentonii 22/08/2009 SCH Pipistrellus sp.

09/07/2009 C102 M. daubentonii 24/08/2009 W95 M. daubentonii

09/07/2009 C122 M. nattereri 24/08/2009 W52 M. daubentonii

11/07/2009 O204 P. pygmaeus 12/09/2009 CP105 M. nattereri

11/07/2009 SW109 M. nattereri 12/09/2009 CP107 M. daubentonii

11/07/2009 SW37 P. pygmaeus 12/09/2009 CP157 M. daubentonii

11/07/2009 O217 M. nattereri 12/09/2009 CP130 M. nattereri

11/07/2009 SW124 M. nattereri 12/09/2009 CP103 M. daubentonii

23/07/2009 W32 M. daubentonii 12/09/2009 SCH P. pygmaeus

23/07/2009 W49 M. daubentonii 12/09/2009 SCH Pipistrellus sp.

23/07/2009 W52 M. daubentonii 16/09/2009 O230 M. nattereri

23/07/2009 W68 M. daubentonii 16/09/2009 O237 P. auritus

23/07/2009 W58 M. daubentonii 16/09/2009 O223 M. nattereri

26/07/2009 MP82 M. nattereri 16/09/2009 O36 P. auritus

26/07/2009 MP67 P. auritus 21/09/2009 CP103 M. daubentonii

26/07/2009 MP29 M. nattereri 23/09/2009 CP103 M. daubentonii

26/07/2009 MP54 M. nattereri 23/09/2009 CP156 M. nattereri

30/07/2009 O246 P. pygmaeus 23/09/2009 CP154 M. daubentonii

30/07/2009 P120 P. pygmaeus 23/09/2009 CP133 M. daubentonii

30/07/2009 O252 M. nattereri 23/09/2009 CP131 Unknown

30/07/2009 SW63 P. auritus 23/09/2009 CP123 M. nattereri

04/08/2009 C119 M. nattereri 23/09/2009 W4A M. nattereri

04/08/2009 C43 M. nattereri 23/09/2009 W8 P. pygmaeus

04/08/2009 C61 M. nattereri 24/09/2009 CP103 M. daubentonii

04/08/2009 C36 M. daubentonii 24/09/2009 W54 M. daubentonii

04/08/2009 C26 M. daubentonii 25/09/2009 MP37 P. auritus

04/08/2009 C58 M. daubentonii 25/09/2009 MP55 M. daubentonii

04/08/2009 C139 M. daubentonii 25/09/2009 MP67 M. nattereri

04/08/2009 C124 M. daubentonii 25/09/2009 MP27 M. nattereri

11/08/2009 CP114 P. pygmaeus 25/09/2009 MP33 M. daubentonii

11/08/2009 CP115 P. pygmaeus 03/10/2009 C113 P. pygmaeus

11/08/2009 CP117 M. nattereri 03/10/2009 C140 M. daubentonii

11/08/2009 CP144 P. auritus 03/10/2009 C4 M. daubentonii

11/08/2009 CP124 M. nattereri 03/10/2009 MP96 P. auritus

11/08/2009 CP118 M. daubentonii 04/10/2009 W55 M. daubentonii

11/08/2009 CP35 M. daubentonii 04/10/2009 SCH Pipistrellus sp.

11/08/2009 SCH Pipistrellus sp. 11/06/2010 B45 M. nattereri

14/08/2009 W98 M. daubentonii 15/06/2010 O20 M. nattereri

14/08/2009 W61 M. daubentonii 15/06/2010 O45 P. auritus

22/08/2009 E31A P. pygmaeus 15/06/2010 O39 P. auritus

22/08/2009 E42A M. daubentonii 15/06/2010 O46 M. nattereri

22/08/2009 E48A M. nattereri 23/06/2010 O57 P. auritus

22/08/2009 E31 M. daubentonii 23/06/2010 E8 P. auritus

22/08/2009 E33 M. daubentonii 23/06/2010 E4 P. auritus

22/08/2009 E29 M. daubentonii 23/06/2010 E11 M. daubentonii

22/08/2009 E22 M. daubentonii 02/07/2010 SW124 P. auritus

22/08/2009 E40 P. auritus 02/07/2010 SW122 P. auritus  
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Date Box Species Date Box Species

02/07/2010 SW9 P. auritus 16/08/2010 C130 M. daubentonii

08/07/2010 O234 M. nattereri 16/08/2010 C134 M. daubentonii

08/07/2010 O48 M. nattereri 24/08/2010 O247 M. nattereri

08/07/2010 O235 M. nattereri 24/08/2010 O44 P. auritus

10/07/2010 CP135 M. nattereri 24/08/2010 O245 P. auritus

10/07/2010 CP149 M. nattereri 01/09/2010 W103 M. daubentonii

10/07/2010 CP23 M. nattereri 01/09/2010 W65 M. daubentonii

10/07/2010 CP29 P. auritus 01/09/2010 W72 P. pygmaeus

17/07/2010 C43 M. nattereri 01/09/2010 W200 M. daubentonii

17/07/2010 C54 M. nattereri 01/09/2010 W87 M. daubentonii

17/07/2010 C134 M. nattereri 01/09/2010 W73 M. nattereri

17/07/2010 C56 M. daubentonii 04/09/2010 ST10 P. pygmaeus

17/07/2010 C39 M. daubentonii 04/09/2010 ST11 M. daubentonii

18/07/2010 W68 M. daubentonii 04/09/2010 ST9 M. daubentonii

18/07/2010 W101 M. daubentonii 08/09/2010 E50 P. pygmaeus

18/07/2010 W63 M. daubentonii 08/09/2010 E51A M. daubentonii

20/07/2010 E49C M. daubentonii 08/09/2010 E14A M. daubentonii

20/07/2010 E31 M. daubentonii 08/09/2010 E21 M. nattereri

20/07/2010 E58 M. daubentonii 10/09/2010 B192 M. nattereri

20/07/2010 E50 M. daubentonii 10/09/2010 H26 P. pygmaeus

21/07/2010 W22 P. auritus 10/09/2010 B92 M. daubentonii

21/07/2010 W31 M. nattereri 12/09/2010 SW101A P. pygmaeus

23/07/2010 CP124 M. nattereri 12/09/2010 SW129 P. pygmaeus

23/07/2010 W10 M. daubentonii 12/09/2010 SW133 P. pygmaeus

23/07/2010 W1 M. nattereri 12/09/2010 SW31 M. nattereri

26/07/2010 CP102 M. nattereri 12/09/2010 SW121 M. nattereri

26/07/2010 W67 M. nattereri 14/09/2010 W28 P. auritus

28/07/2010 CP117 M. nattereri 14/09/2010 W29 M. daubentonii

28/07/2010 CP104 M. nattereri 14/09/2010 W12 M. daubentonii

28/07/2010 CP3 Unknown 14/09/2010 W45 M. nattereri

31/07/2010 CP24 M. nattereri 14/09/2010 W42 M. daubentonii

31/07/2010 W11 M. daubentonii 14/09/2010 W57 M. nattereri

31/07/2010 W19 P. auritus 15/09/2010 B22 M. nattereri

02/08/2010 C151 M. daubentonii 15/09/2010 MP77 M. nattereri

02/08/2010 C104 M. daubentonii 15/09/2010 MP90 P. pygmaeus

02/08/2010 C61 M. daubentonii 15/09/2010 MP27 M. nattereri

05/08/2010 MP66 P. auritus 15/09/2010 MP7 M. daubentonii

05/08/2010 MP54 M. nattereri 16/09/2010 E106 P. auritus

05/08/2010 MP48 M. nattereri 16/09/2010 W202 P. pygmaeus

05/08/2010 MP30 M. daubentonii 16/09/2010 W203 P. pygmaeus

08/08/2010 O247 P. pygmaeus 16/09/2010 E105 P. auritus

08/08/2010 O56 M. nattereri 16/09/2010 W72 P. pygmaeus

08/08/2010 O250 M. nattereri 16/09/2010 E120 P. auritus

08/08/2010 O13A P. auritus 16/09/2010 W91 M. daubentonii

08/08/2010 O9 M. daubentonii 16/09/2010 E104 P. auritus

15/08/2010 CP13 M. daubentonii 16/09/2010 W42 M. daubentonii

15/08/2010 W22 M. nattereri 16/09/2010 W59 M. nattereri

15/08/2010 W64A M. nattereri 18/09/2010 C113 P. pygmaeus

16/08/2010 C129 M. nattereri 18/09/2010 C145 M. nattereri  



256 
 

Date Box Species

18/09/2010 C29 M. daubentonii

18/09/2010 C24B M. daubentonii

18/09/2010 C58 M. daubentonii

18/09/2010 E63 M. daubentonii

19/09/2010 CP21 M. daubentonii

19/09/2010 CP110 M. nattereri

19/09/2010 CP143 M. nattereri

19/09/2010 CP147 M. nattereri

19/09/2010 CP15 Unknown

20/09/2010 E67 P. pygmaeus

20/09/2010 E38A P. auritus

21/09/2010 E43C P. auritus

21/09/2010 O9 M. daubentonii

22/09/2010 O30 M. nattereri

22/09/2010 O39 M. nattereri

22/09/2010 O257 M. nattereri

22/09/2010 O2 P. auritus

22/09/2010 O34 M. nattereri

23/09/2010 MP56 M. daubentonii

23/09/2010 MP76 M. nattereri

23/09/2010 O25 P. auritus

24/09/2010 MP12 P. pygmaeus

24/09/2010 MP44 P. pygmaeus

24/09/2010 MP83 P. pygmaeus

24/09/2010 P112 P. pygmaeus

24/09/2010 SW102 M. nattereri

05/10/2010 W21 P. pygmaeus

05/10/2010 W53 M. daubentonii

05/10/2010 W211 M. nattereri

08/10/2010 E118 P. pygmaeus

08/10/2010 W103 M. daubentonii

08/10/2010 W6 M. daubentonii

08/10/2010 W200 M. daubentonii

14/10/2010 CP6 M. daubentonii

14/10/2010 CP10 M. daubentonii

14/10/2010 CP19 M. daubentonii

14/10/2010 CP152 M. nattereri  
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Variable recorded / Purpose  Equipment details

Wind Speed A100R anemometer

Relative Humidity HMP45C temperature & relative humidity probe

Air Temperature 107 Termistor probe with 41303-5 Gill radiation shield

Solar Radiation CM6B Kipp & Zonen pyranometer

Rainfall  ARG100 Raingauge

Data Recorder CR1000 Campbell datalogger

 

Table 7.2 – A list of equipment used to record weather variables at Wytham woods. All equipment was 

supplied by Campbell Scientific, Shepshed, UK. 
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Species Age Sex
Reproductive

status

Coronavirus

presence
Season Social group Betweeness Degree BCI

Spinturnicid

load
Year

M. daubentonii Juvenile M NA 0 Post-nursery 6 974.051 23 0.185 0 2010

M. daubentonii Juvenile F Non-breeder 0 Post-nursery 6 0 13 0.213 2 2010

M. nattereri Adult F Post-lactating 0 Post-nursery 6 67.899 45 0.180 1 2010

M. nattereri Adult F Non-breeder 0 Post-nursery 6 5.738 24 0.180 2 2010

M. nattereri Adult F Post-lactating 0 Post-nursery 6 67.899 45 0.182 1 2010

M. nattereri Adult F Post-lactating 0 Post-nursery 6 18.019 36 0.199 0 2010

M. nattereri Adult F Post-lactating 1 Post-nursery 1 228.459 39 0.242 1 2010

M. nattereri Adult M NA 0 Post-nursery 1 105.646 38 0.186 2 2010

M. nattereri Juvenile M NA 1 Post-nursery 1 8.5 38 0.184 3 2010

M. nattereri Juvenile M NA 1 Post-nursery 1 8.5 38 0.170 1 2010

M. nattereri Adult F Post-lactating 1 Post-nursery 1 29.675 35 0.211 5 2010

M. nattereri Juvenile M NA 0 Post-nursery 1 6.146 37 0.184 0 2010

M. daubentonii Adult M NA 1 Post-nursery 8 123.188 8 0.237 0 2010

M. daubentonii Adult M NA 1 Post-nursery 7 0 7 0.203 0 2010

M. daubentonii Adult M NA 1 Post-nursery 7 0 7 0.231 1 2010

M. daubentonii Adult F Post-lactating 1 Post-nursery NA NA NA 0.229 1 2010

M. nattereri Adult M NA 0 Post-nursery 5 0.167 7 0.187 0 2010

M. nattereri Adult M NA 0 Post-nursery 5 217.167 12 0.198 0 2010

M. nattereri Adult M NA 0 Post-nursery 5 0 6 0.197 0 2010

M. nattereri Adult M NA 0 Post-nursery NA NA NA 0.199 0 2010

M. nattereri Adult F Non-breeder 0 Post-nursery 3 29.054 33 0.195 2 2010

M. nattereri Adult F Post-lactating 1 Post-nursery 6 22.211 36 0.009 0 2010

M. nattereri Adult M NA 1 Post-nursery 6 2.179 31 0.183 0 2010

M. daubentonii Juvenile M NA 1 Post-nursery 4 153.917 28 0.187 9 2010  

Table 7.3 (continues over multiple pages)– A summary of data used in chapter 5 to explore the drivers behind infection with coronavirus. Coronavirus infection is indicated as 1 for 

positive and 0 for negative. 
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Species Age Sex
Reproductive

status

Coronavirus

presence
Season Social group Betweeness Degree BCI

Spinturnicid

load
Year

M. daubentonii Adult F Lactating 1 Nursery 4 188.925 39 0.249 13 2009

M. daubentonii Adult F Lactating 0 Nursery 4 26.491 26 0.253 12 2009

M. daubentonii Adult F Lactating 1 Nursery 4 314.188 32 0.237 7 2009

M. daubentonii Juvenile M NA 0 Nursery 4 40.503 27 0.183 21 2009

M. daubentonii Juvenile M NA 1 Nursery NA NA NA 0.189 21 2009

M. daubentonii Adult F Lactating 0 Nursery 4 101.757 35 0.249 6 2009

M. daubentonii Adult F Lactating 1 Nursery 4 179.746 34 0.225 13 2009

M. daubentonii Juvenile F Non-breeder 1 Nursery 4 1777.772 39 0.180 10 2009

M. daubentonii Adult F Lactating 0 Nursery 4 22.604 21 0.241 22 2009

M. daubentonii Juvenile M NA 0 Nursery NA NA NA 0.171 19 2009

M. daubentonii Adult F Lactating 0 Nursery 4 115.338 34 0.234 NA 2009

M. daubentonii Juvenile M NA 0 Nursery 4 626.48 38 0.205 22 2009

M. daubentonii Adult F Lactating 0 Nursery 4 53.131 25 0.245 8 2009

M. daubentonii Juvenile F Non-breeder 0 Nursery 4 250.79 37 0.176 32 2009

M. daubentonii Juvenile F Non-breeder 1 Nursery 4 9.531 21 0.190 17 2009

M. daubentonii Adult F Lactating 1 Nursery 4 113.75 34 0.256 6 2009

M. daubentonii Adult F Lactating 0 Nursery 4 22.284 23 0.249 11 2009

M. daubentonii Adult F Lactating 0 Nursery 4 97.49 30 0.248 38 2009

M. daubentonii Adult M NA 0 Nursery 2 181.263 24 0.251 3 2009

M. daubentonii Adult M NA 0 Nursery 2 301.043 28 0.225 11 2009

M. daubentonii Adult M NA 0 Nursery NA NA NA 0.218 7 2009

M. daubentonii Adult M NA 0 Nursery 2 214.307 27 0.244 3 2009

M. daubentonii Adult M NA 0 Nursery 2 376.731 30 0.235 7 2009

M. daubentonii Adult M NA 0 Nursery 2 181.263 24 0.233 2 2009  
 



260 
 

Species Age Sex
Reproductive

status

Coronavirus

presence
Season Social group Betweeness Degree BCI

Spinturnicid

load
Year

M. daubentonii Adult F Post-lactating 1 Nursery 2 659.744 24 0.229 9 2009

M. daubentonii Adult M NA 1 Nursery 2 2055.059 27 0.244 7 2009

M. daubentonii Adult M NA 0 Nursery NA NA NA 0.224 2 2009

M. daubentonii Adult M NA 0 Nursery 1 59.149 12 0.223 4 2009

M. daubentonii Adult M NA 0 Nursery 1 110.447 13 0.233 5 2009

M. nattereri Juvenile M NA 1 Nursery NA NA NA 0.178 2 2009

M. nattereri Juvenile F Non-breeder 0 Nursery 2 23.609 14 0.212 2 2009

M. nattereri Adult F Lactating 1 Nursery 2 112.659 20 0.194 1 2009

M. nattereri Juvenile M NA 1 Nursery NA NA NA 0.181 1 2009

M. nattereri Adult F Lactating 1 Nursery 2 112.659 20 0.199 3 2009

M. nattereri Juvenile M NA 1 Nursery NA NA NA 0.167 0 2009

M. nattereri Adult F Lactating 1 Nursery 2 23.609 14 0.208 0 2009

M. nattereri Adult F Lactating 0 Nursery 2 112.659 20 0.196 1 2009

M. nattereri Juvenile F Non-breeder 1 Nursery NA NA NA 0.167 3 2009

M. nattereri Juvenile M NA 1 Nursery NA NA NA 0.178 5 2009

M. nattereri Adult F Lactating 1 Nursery NA NA NA 0.193 4 2009

M. nattereri Adult F Lactating 0 Nursery 2 112.659 20 0.200 4 2009

M. nattereri Adult F Lactating 1 Nursery 2 23.609 14 0.195 2 2009

M. nattereri Juvenile M NA 1 Nursery NA NA NA 0.187 0 2009

M. daubentonii Juvenile M NA 0 Nursery NA NA NA 0.194 26 2009

M. daubentonii Juvenile M NA 0 Nursery 1 85.902 15 0.194 44 2009

M. daubentonii Juvenile M NA 0 Nursery 1 166.434 20 0.182 21 2009

M. daubentonii Juvenile F Non-breeder 0 Nursery 1 381.147 27 0.190 19 2009

M. daubentonii Adult F Non-breeder 0 Nursery 1 4571.703 21 0.246 25 2009  
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Species Age Sex
Reproductive

status

Coronavirus

presence
Season Social group Betweeness Degree BCI

Spinturnicid

load
Year

M. daubentonii Adult F Lactating 0 Nursery 1 173.303 25 0.235 20 2009

M. daubentonii Adult F Lactating 0 Nursery 1 300.643 31 0.259 26 2009

M. daubentonii Juvenile M NA 1 Nursery 1 4.214 16 0.182 20 2009

M. daubentonii Adult F Lactating 1 Nursery 1 277.528 27 0.260 25 2009

M. daubentonii Juvenile F Non-breeder 1 Nursery 1 164.267 25 0.184 46 2009

M. daubentonii Adult F Lactating 0 Nursery 1 96.337 29 0.267 33 2009

M. daubentonii Juvenile M NA 1 Nursery 1 146.848 16 0.193 20 2009

M. daubentonii Juvenile F Non-breeder 1 Nursery 1 9.679 23 0.193 35 2009

M. nattereri Juvenile F NA 1 Nursery NA NA NA 0.162 NA 2009

M. nattereri Juvenile M NA 1 Nursery NA NA NA 0.161 NA 2009

M. nattereri Adult F NA 0 Nursery NA NA NA 0.202 NA 2009

M. nattereri Adult F NA 1 Nursery NA NA NA 0.202 NA 2009

M. nattereri Juvenile F NA 1 Nursery NA NA NA 0.170 NA 2009

M. nattereri Adult F NA 0 Nursery NA NA NA 0.226 NA 2009

M. nattereri Adult M NA 1 Nursery NA NA NA 0.191 NA 2009

M. nattereri Adult F Non-breeder 0 Nursery 5 0.515 8 0.211 NA 2009

M. nattereri Adult F NA 0 Nursery NA NA NA 0.202 NA 2009

M. nattereri Adult M NA 0 Nursery NA NA NA 0.209 NA 2009

M. nattereri Juvenile F NA 0 Nursery NA NA NA 0.180 NA 2009

M. nattereri Adult F NA 0 Nursery NA NA NA 0.159 NA 2009

M. nattereri Adult F NA 1 Nursery NA NA NA 0.212 NA 2009

M. nattereri Juvenile F NA 1 Nursery NA NA NA 0.174 NA 2009

M. nattereri Adult M NA 1 Nursery 5 0.515 8 0.196 NA 2009

M. nattereri Adult F NA 1 Nursery NA NA NA 0.214 NA 2009  
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presence
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Spinturnicid

load
Year

M. nattereri Adult F NA 0 Nursery NA NA NA 0.221 NA 2009

M. nattereri Adult F NA 1 Nursery NA NA NA 0.199 NA 2009

M. nattereri Juvenile M NA 1 Nursery NA NA NA 0.197 2 2009

M. nattereri Adult F Non-breeder 1 Nursery NA NA NA 0.210 2 2009

M. nattereri Juvenile M NA 1 Nursery NA NA NA 0.196 1 2009

M. nattereri Juvenile F Non-breeder 1 Nursery NA NA NA 0.197 0 2009

M. daubentonii Adult M NA 0 Nursery 5 152.611 28 0.195 12 2009

M. daubentonii Adult M NA 0 Nursery 5 1352.948 41 0.218 9 2009

M. daubentonii Adult F Non-breeder 0 Nursery 5 932.859 33 0.215 0 2009

M. daubentonii Adult M NA 0 Nursery 5 111.07 25 0.222 16 2009

M. daubentonii Adult M NA 1 Nursery 5 428.632 26 0.208 6 2009

M. nattereri Adult F Non-breeder 1 Nursery 3 1.971 20 0.210 1 2009

M. nattereri Adult F Post-lactating 0 Post-nursery 3 99.685 30 0.215 6 2009

M. nattereri Adult F Non-breeder 1 Nursery 3 8.432 27 0.206 7 2009

M. nattereri Adult F Non-breeder 0 Nursery 3 7.708 21 0.216 4 2009

M. nattereri Juvenile M NA 1 Nursery NA NA NA 0.170 1 2009

M. nattereri Juvenile M NA 1 Nursery 3 14.831 35 0.149 0 2009

M. nattereri Adult F Post-lactating 1 Post-nursery 3 136.78 37 0.216 0 2009

M. nattereri Juvenile F Non-breeder 1 Nursery NA NA NA 0.182 16 2009

M. nattereri Adult F Lactating 0 Nursery 3 9.326 30 0.191 1 2009

M. nattereri Juvenile M NA 0 Nursery 3 2.504 18 0.183 11 2009

M. nattereri Adult F Post-lactating 0 Post-nursery 3 17.274 35 0.208 1 2009

M. nattereri Juvenile F Non-breeder 1 Nursery NA NA NA 0.176 1 2009

M. nattereri Adult F Lactating 0 Nursery 3 7.68 28 0.214 10 2009  
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M. nattereri Adult F Post-lactating 1 Post-nursery 3 26.835 34 0.218 0 2009

M. nattereri Juvenile F Non-breeder 1 Nursery 3 49.289 24 0.145 2 2009

M. nattereri Adult F Non-breeder 0 Nursery 3 12.854 24 0.213 0 2009

M. nattereri Adult F Lactating 0 Nursery 3 39.813 43 0.205 3 2009

M. nattereri Adult F Non-breeder 1 Nursery 3 37.091 40 0.201 8 2009

M. nattereri Juvenile M NA 1 Nursery NA NA NA 0.178 0 2009

M. nattereri Adult F Lactating 0 Nursery 3 18.443 34 0.207 4 2009

M. nattereri Adult M NA 0 Nursery NA NA NA 0.201 1 2009

M. nattereri Adult F Lactating 1 Nursery 3 32.415 36 0.189 0 2009

M. nattereri Juvenile M NA 1 Nursery NA NA NA 0.172 6 2009

M. nattereri Adult M NA 0 Nursery 5 0.167 7 0.207 0 2009

M. nattereri Adult M NA 0 Nursery 2 0 14 0.220 0 2009

M. daubentonii Adult F Non-breeder 1 Nursery NA NA NA 0.242 5 2009

M. daubentonii Adult M NA 0 Nursery 1 31.825 13 0.223 7 2009

M. daubentonii Adult F Non-breeder 0 Nursery 1 3.414 9 0.243 1 2009

M. daubentonii Juvenile M NA 0 Nursery 1 33.752 15 0.178 11 2009

M. daubentonii Juvenile M NA 1 Nursery 1 85.902 15 0.225 19 2009

M. daubentonii Juvenile F Non-breeder 1 Nursery NA NA NA 0.228 4 2009

M. daubentonii Juvenile F Non-breeder 1 Nursery 10 1736.918 19 1.000 19 2009

M. daubentonii Adult F Post-lactating 1 Post-nursery 10 1262.699 27 0.245 16 2009

M. daubentonii Adult F Post-lactating 0 Post-nursery 10 190.078 20 0.249 19 2009

M. daubentonii Adult F Post-lactating 0 Post-nursery 10 61.342 15 0.245 11 2009

M. daubentonii Adult F Post-lactating 0 Post-nursery 10 680.338 26 0.281 9 2009

M. daubentonii Adult F Post-lactating 1 Post-nursery 9 1082.434 28 0.226 7 2009  
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M. daubentonii Adult F Post-lactating 1 Post-nursery 9 336.517 14 0.265 4 2009

M. daubentonii Adult F Post-lactating 0 Post-nursery 9 17.711 8 0.219 5 2009

M. daubentonii Adult F Post-lactating 0 Post-nursery 9 286.339 22 0.245 12 2009

M. nattereri Adult F Post-lactating 1 Post-nursery 1 366.178 42 0.212 13 2009

M. nattereri Adult M NA 0 Nursery 1 0.739 5 0.192 5 2009

M. daubentonii Adult M NA 1 Post-nursery 3 0 8 0.273 1 2009

M. daubentonii Adult M NA 1 Post-nursery 4 36.254 14 0.225 2 2009

M. daubentonii Adult M NA 1 Post-nursery 5 687.645 29 0.328 0 2009

M. daubentonii Juvenile M NA 0 Post-nursery 4 2484.403 40 0.219 7 2009

M. daubentonii Juvenile F Non-breeder 1 Post-nursery 4 938.247 33 0.228 7 2009

M. daubentonii Juvenile M NA 1 Post-nursery 4 72.394 30 0.215 6 2009

M. daubentonii Adult F Post-lactating 0 Post-nursery 4 1258.989 41 0.242 4 2009

M. nattereri Adult F Post-lactating 1 Post-nursery 1 246.124 42 0.216 10 2009

M. nattereri Adult M NA 1 Post-nursery 5 31.671 21 0.185 2 2009

M. nattereri Adult F Post-lactating 1 Post-nursery 5 54.8 25 0.207 3 2009

M. nattereri Adult F Post-lactating 0 Post-nursery 5 26.85 20 0.196 4 2009

M. nattereri Adult F Non-breeder 1 Post-nursery 5 4.892 10 0.198 0 2009

M. nattereri Adult F Non-breeder 0 Post-nursery 5 22.442 9 0.214 1 2009

M. nattereri Adult F Post-lactating 1 Post-nursery 5 12.37 11 0.206 2 2009

M. nattereri Adult F Non-breeder 0 Nursery 3 5.396 25 0.210 0 2010

M. nattereri Adult F Non-breeder 1 Nursery 3 169.031 37 0.195 0 2010

M. nattereri Adult F Non-breeder 0 Nursery NA NA NA 0.203 3 2010

M. nattereri Adult M NA 0 Nursery NA NA NA 0.211 0 2010

M. nattereri Adult M NA 0 Nursery 7 2.152 5 0.200 0 2010  
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M. nattereri Adult M NA 0 Nursery 1 4.854 32 0.191 0 2010

M. nattereri Juvenile M NA 1 Nursery 2 4 10 0.153 2 2010

M. daubentonii Adult M NA 0 Nursery 1 2429.236 16 0.214 13 2010

M. daubentonii Adult M NA 1 Nursery 5 86.606 14 0.211 NA 2010

M. nattereri Adult F Lactating 0 Nursery 1 155.789 37 0.207 0 2010

M. nattereri Adult F Non-breeder 0 Nursery 1 7.272 36 0.216 0 2010

M. nattereri Juvenile F Non-breeder 0 Nursery 1 7.06 37 0.150 18 2010

M. nattereri Juvenile F Non-breeder 0 Nursery 1 8.5 38 0.161 9 2010

M. nattereri Juvenile F Non-breeder 0 Nursery 1 8.5 38 0.157 10 2010

M. daubentonii Adult M NA 1 Nursery 6 1054.109 22 0.227 3 2010

M. daubentonii Adult F Lactating 0 Nursery 4 2216.677 52 0.255 4 2010

M. daubentonii Adult F Lactating 1 Nursery 4 1136.824 37 0.276 10 2010

M. daubentonii Juvenile M NA 0 Nursery 4 98.678 27 0.211 6 2010

M. daubentonii Juvenile M NA 0 Nursery 4 88.804 28 0.218 9 2010

M. nattereri Adult M NA 1 Nursery NA NA NA 0.213 0 2010

M. nattereri Adult F Lactating 0 Nursery 7 82.979 36 0.221 6 2010

M. nattereri Juvenile M NA 0 Nursery NA NA NA 0.185 4 2010

M. nattereri Adult M NA 0 Nursery 7 41.971 20 0.185 0 2010

M. daubentonii Juvenile M NA 0 Nursery 1 18.63 18 0.204 4 2010

M. daubentonii Adult F Non-breeder 0 Nursery 1 309.72 23 0.244 12 2010

M. nattereri Adult F Lactating 0 Nursery 3 153.438 36 0.212 7 2010

M. nattereri Juvenile M NA 1 Nursery 3 5.448 17 0.174 5 2010

M. nattereri Adult F Lactating 0 Nursery 5 15.756 12 0.218 NA 2010

M. daubentonii Adult F Non-breeder 0 Nursery NA NA NA 0.243 5 2010  
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M. nattereri Adult F Non-breeder 0 Nursery 6 22.58 34 0.232 2 2010

M. nattereri Adult F Non-breeder 1 Nursery 6 2.179 31 0.202 2 2010

M. nattereri Adult F Non-breeder 0 Nursery 6 58.927 42 0.210 0 2010

M. nattereri Adult M NA 0 Nursery NA NA NA 0.192 4 2010

M. nattereri Adult F Lactating 1 Nursery 6 68.461 46 0.214 2 2010

M. nattereri Adult M NA 0 Nursery NA NA NA 0.178 0 2010

M. daubentonii Juvenile F Non-breeder 1 Nursery NA NA NA 0.217 9 2010

M. daubentonii Adult F Non-breeder 0 Nursery 10 742.715 24 0.246 5 2010

M. daubentonii Juvenile F Non-breeder 0 Nursery 10 0 6 0.214 2 2010

M. daubentonii Adult F Post-lactating 0 Post-nursery NA NA NA 0.262 1 2010

M. nattereri Juvenile M NA 1 Nursery NA NA NA 0.205 2 2010

M. daubentonii Adult F Non-breeder 0 Post-nursery NA NA NA 0.298 10 2010

M. nattereri Adult F Post-lactating 0 Post-nursery 6 55.573 39 0.213 1 2010

M. nattereri Adult M NA 0 Post-nursery 6 8.021 34 0.181 1 2010

M. nattereri Adult M NA 0 Post-nursery 6 8.021 34 0.193 1 2010

M. nattereri Juvenile M NA 0 Post-nursery 6 5.027 28 0.187 1 2010

M. nattereri Adult F Post-lactating 0 Post-nursery 6 13.63 31 0.197 1 2010

M. daubentonii Adult M NA 0 Post-nursery 2 432.946 21 0.257 2 2010

M. daubentonii Adult M NA 1 Post-nursery 2 495.159 23 0.261 0 2010

M. daubentonii Juvenile F Non-breeder 1 Post-nursery 4 7.538 20 0.232 4 2010

M. daubentonii Adult F Non-breeder 1 Post-nursery 4 215.03 37 0.220 0 2010

M. daubentonii Juvenile F Non-breeder 1 Post-nursery 4 6.617 19 0.219 2 2010

M. daubentonii Adult F Non-breeder 0 Post-nursery NA NA NA 0.223 3 2010

M. daubentonii Adult F Post-lactating 1 Post-nursery NA NA NA 0.254 2 2010  
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M. daubentonii Adult F Post-lactating 1 Post-nursery NA NA NA 0.229 1 2010

M. daubentonii Juvenile M NA 1 Post-nursery NA NA NA 0.211 3 2010

M. daubentonii Adult F Post-lactating 1 Post-nursery NA NA NA 0.229 1 2010

M. daubentonii Juvenile M NA 1 Post-nursery NA NA NA 0.215 1 2010

M. daubentonii Adult F Post-lactating 1 Post-nursery NA NA NA 0.275 1 2010

M. daubentonii Adult M NA 1 Post-nursery 5 29.22 17 0.238 1 2010

M. daubentonii Juvenile F Non-breeder 1 Post-nursery 4 175.011 17 0.207 3 2010

M. daubentonii Adult M NA 1 Post-nursery 5 175.959 30 0.233 1 2010

M. daubentonii Adult F Post-lactating 0 Post-nursery 4 195.345 28 0.243 1 2010

M. nattereri Adult F Post-lactating 0 Post-nursery 6 30.081 38 0.198 0 2010

M. nattereri Juvenile M NA 0 Post-nursery 6 0.753 28 0.186 0 2010

M. nattereri Adult M NA 1 Post-nursery 6 2.179 31 0.182 3 2010

M. daubentonii Juvenile M NA 1 Post-nursery 4 16.874 21 0.196 1 2010

M. daubentonii Adult M NA 0 Post-nursery 4 699.889 23 0.225 0 2010

M. daubentonii Adult F Post-lactating 0 Post-nursery NA NA NA 0.185 1 2010

M. daubentonii Adult M NA 1 Post-nursery 4 67.161 22 0.214 1 2010

M. daubentonii Juvenile M NA 1 Post-nursery 4 124.55 26 0.202 3 2010

M. nattereri Juvenile M NA 0 Post-nursery 3 8.903 25 0.195 1 2010

M. nattereri Adult F Post-lactating 0 Post-nursery 3 39.713 39 0.204 3 2010

M. nattereri Juvenile M NA 0 Post-nursery 3 6.882 18 0.185 1 2010

M. nattereri Adult F Post-lactating 0 Post-nursery 3 30.314 39 0.195 3 2010

M. daubentonii Adult F Post-lactating 1 Post-nursery NA NA NA 0.211 1 2010

M. daubentonii Adult M NA 1 Post-nursery 7 536.737 14 0.199 0 2010

M. daubentonii Adult M NA 1 Post-nursery 6 67.781 10 0.184 1 2010  
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Glossary 
 

 

Allogrooming – An activity where individuals groom others in a group (i.e. colony). This may be 

important for maintaining social bonds and reducing parasite loads. 

Bachelor colony – A colony dominated by, or exclusively made up of males. In this thesis a 

bachelor colony is defined as a colony constituting more than 66.6% adult males. 

Biomagnification – The increase in concentration of substances (e.g. pollutants) within 

organisms as they pass up the food chain. 

Body Condition Index (BCI) – A measure used to estimate the amount of fat reserves an 

individual possesses. This value is calculated by dividing the weight (g) by the forearm 

length (mm) and is used as an indication of an individual’s health. 

Clear felling – Also known as clear cutting, a forestry practise where all trees within a given 

area are cut down. 

Clique – A small group of individuals who associate more frequently than others within a social 

group. 

Colony – An aggregation of bats in a roost. 

Ecosystem Service – The elements of ecosystems that are used directly and indirectly to 

support human wellbeing. 

Endocrine disruptor – Chemicals that interfere with the hormone system and can lead to 

developmental defects. 

Environmental Change Network (ECN) – A network of study sites and scientists across the UK 

dedicated to long-term monitoring of changes in the natural environment. 

Homeothermy/heterothermy – Homeothermic individuals maintain a stable internal 

temperature regardless of fluctuations in external temperatures. Heterothermic 

individuals maintain a stable internal temperature when active, but when inactive this 

temperature is allowed to drop to the same temperature as the environment as a 

mechanism to conserve energy. 

Minimum Convex Polygon (MCP) – A polygon drawn by connecting the outermost of a set of 

points in space so as to create the smallest possible convex polygon that encloses all 

points. 

Nursery period – The period between the first and last colony of lactating females with 

juveniles. 

Parasite load – The number of individuals of a given parasite infesting an individual host. 

Prevalence – The proportion of a set group of individuals that are infected with a pathogen or 

parasite. 
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Protonymph – The developmental stage of a mite after egg and larvae. Spinturnicid mites give 

birth to young that have already developed to this stage. 

Reservoir host –The long-term host species of a pathogen. Typically this species carries the 

pathogen with limited symptoms. 

Roost – The physical space used by bats to rest during the day. 

Social group – A group of individuals who associate with each other more than would be 

expected by chance.  

Social group roost home range – A minimum convex polygon encompassing all roosts used by 

individuals belonging to a specific social group.  

Social thermoregulation – A mechanism by which individuals reduce the energetic demands of 

homeothermy by maintaining close proximity or direct contact with others so that 

body heat is shared and body surface area in contact with the environment is reduced. 
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