The Social Structure, Ecology and Pathogens of Bats in the UK

Submitted by Thomas Adam August to the University of Exeter

as a thesis for the degree of

Doctor of Philosophy in Biological Sciences

In September 2012

This thesis is available for library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other university.

Signature:

Dedicated to the memory of Charles William Stewart Hartley

Abstract

This thesis examines the ecology, parasites and pathogens of three insectivorous bat species in Wytham Woods, Oxfordshire; *Myotis nattereri* (Natterer's bat), *M. daubentonii* (Daubenton's bat) and *Plecotus auritus* (Brown long-eared bat).

The population structure was assessed by monitoring associations between ringed individuals, utilising recent advances in social network analysis. Populations of both *M. daubentonii* and *M. nattereri* were found to subdivide into tight-knit social groups roosting within small areas of a continuous woodland (average minimum roost home range of 0.23km² and 0.17km² respectively). If this population structure is a general attribute of these species it may make them more sensitive to small scale habitat change than previously thought and has implications for how diseases may spread through the population.

M. daubentonii had a strong preference for roosts close to water, away from woodland edge and in areas with an easterly aspect. The factors driving roost choice in *M. nattereri* and *P. auritus* remain elusive. The segregation of *M. daubentonii* into bachelor and nursery colonies was not a result of the exclusion of males from roosts close to water by females, or variation in microclimate preferences between the sexes, as was predicted. Body condition (weight/forearm length) was correlated with host characteristics including age and reproductive status, and weather variables.

Astroviruses and Coronaviruses, which have characteristics typical of zoonotic viruses, were identified in UK bat species for the first time. Coronaviruses identified formed species-specific clades while Astroviruses were highly diverse. Though not closely related to human viruses these are potential zoonotic diseases of the future. Models of Coronavirus and ectoparasite distribution suggest individual attributes (e.g. sex and age) and population structure (e.g. the formation of nursery and bachelor colonies) are important predictors of parasite and pathogen prevalence.

This study characterises a system that offers many opportunities for future research including studies of sociality, disease modelling and conservation management.

Table of Contents

Abstrac	Abstract			
List of T	List of Tables			
List of F	igures		17	
Abbrev	iations	5	25	
1 Ge	eneral	Introduction	29	
1.1	Intr	oduction	29	
1.2	Biol	ogy of bats	30	
1.2	2.1	General life history	30	
1.2	2.2	Taxonomy of bats	30	
1.2	2.3	Reproductive cycle of temperate bats	30	
1.2	2.4	Life in colonies	31	
1.3	Bats	s as ecosystem service providers		
1.3	3.1	Consumption of agricultural pests		
1.3	3.2	Bats as pollinators and seed dispersers	34	
1.3	3.3	Bats as a resource	34	
1.3	3.4	Cultural services	35	
1.4	Con	servation of bats		
1.4	4.1	Threats to bat populations		
1.4	4.1.1	Land use change and habitat loss		
1.4	4.1.2	Hunting		
1.4	4.1.3	Exposure to toxins		
1.4	4.1.4	Current threats to bats in the UK		
1.4	4.2	Understanding species ecology		
1.4	4.3	Social network analysis (SNA): a conservation tool		
1.5	Bats	s and disease	42	
1.5	5.1	Bats and ectoparasites	42	
1.5	5.2	Emerging infectious diseases	43	
1.5	5.3	Bats as a source of zoonotic EIDS	43	
1.5	5.3.2	EID viruses associated with bats in the UK	48	
1.5	5.4	Can we predict and mitigate zoonotic diseases from bats?		
1.5	5.4.1 D	Privers of disease emergence	51	
1.5	5.4.2 C	Current predictive models of disease emergence	52	
1.5	5.4.3 G	Gaps in our understanding: Contact rates	52	

	1	.5.4.4	Gaps in our understanding: Susceptibility	55
	1	.5.4.5	Gaps in our understanding: Disease surveillance	55
	1.6	Th	e study system	56
	1	.6.1	The study site	56
	1	.6.2	The study species	57
	1	.6.3	Ethical approval and licensing	59
	1.7	Th	esis aims	60
	1.8	Re	ferences	62
2	V	Voodla	nd bats form tight-knit social groups with exclusive roost home ranges .	79
	2.1	Int	roduction	79
	2.2	M	ethods	82
	2	.2.1	Fieldwork	82
	2	.2.2	Social network analysis	83
	2	.2.3	Structural analysis	
	2	.2.4	Spatial Analysis	85
	2	.2.5	Temporal analysis	
	2	.2.6	Statistical analysis	
	2.3	Re	sults	88
	2	.3.1	Species specific differences in sex ratio and recapture rates	89
	2	.3.2	Species specific differences in observed colony types	90
	2	.3.3	Identification of multiple social groups within the wood for both speci	ies 91
	2	.3.4	Spatial distribution of social groups	96
	2	.3.5	Duration of association between individuals	97
	2.4	Dis	scussion	100
	2.5	Re	ferences	104
3	h	ntra- a	nd inter-specific roost preferences in three woodland bat species	109
	3.1	Int	roduction	109
	3.2	M	ethods	112
	3	.2.1	Sampling site	112
	3	.2.2	Species' roost preference	112
	3	.2.2.1	Occupancy records	112
	3	.2.2.2	Habitat and box types	113
	3	.2.2.3	LiDAR and derived data	115
	3	.2.2.4	Distance to landscape features	
	3	.2.3	Roost preferences in <i>M. daubentonii</i> nursery and bachelor roosts	122

	3.2.3.1	Sample design	122
	3.2.3.2	Temperature and humidity recordings	123
	3.2.3.3	Roost box variables	123
	3.2.3.4	Habitat variables	124
	3.2.4	Statistical analysis	124
3.3	3 Resi	ults	126
	3.3.1	Assessment of vegetative cover estimates	126
	3.3.2	Co-correlation of explanatory variables	126
	3.3.3	Principal components analysis of LiDAR data	127
	3.3.4	Roost preference, what is the general trend?	128
	3.3.5	Species specific roost preferences	129
	3.3.5.1	Roost preference modelling using all roost occupancy records	129
	3.3.5.2	Roost preference modelling using roosts checked on more than five occasior 134	15
	3.3.6 colonies	Variation in roost preference of <i>M. daubentonii</i> bachelor, nursery and mixe using occupancy records	d 135
	3.3.7	Microclimate and field observations of known M. daubentonii bachelor and	
	nursery r	oosts	135
	3.3.7.1	The effects of presence of bats on roost temperature and humidity	136
	3.3.7.2	Comparison of the properties of nursery, bachelor and random roosts	138
3.4	4 Disc	ussion	141
	3.4.1	Roost preferences of <i>M. daubentonii, M. nattereri</i> and <i>P. auritus</i>	141
	3.4.2	Observed variation in roost use by <i>M. daubentonii</i> colony types	143
	3.4.2.1	Competitive exclusion	143
	3.4.2.2	Microclimate and thermoregulation	143
	3.4.2.3	Parasite avoidance	144
	3.4.3	Conclusions	145
3.5	5 Refe	erences	147
4	Effects o 151	f host and ectoparasite ecology on parasite distribution and host body condit	tion.
4.2	1 Intro	oduction	151
4.2	2 Met	hods	153
	4.2.1	Sampling site	153
	4.2.2	Recording individual attributes	153
	4.2.3	Body condition index (BCI)	154
	4.2.4	Social network attributes	154

	4.2.5	Ectoparasites	155
	4.2.6	Identification of Spinturnicid mites	158
	4.2.7	Parasite abundance estimates	159
	4.2.8	Weather data collection and transformation	159
	4.2.9	Colony data	160
	4.2.10	Statistical analysis	160
	4.3 Res	ults	
	4.3.1	Identification of Spinturnicid mites	
	4.3.2	Species specific differences in ectoparasite prevalence and load	162
	4.3.3	Analyses of Spinturnicid mite loads	
	4.3.4	Analyses of non-Spinturnicid mite loads	173
	4.3.5	Analyses of bat fly loads	177
	4.3.6	Parasite avoidance by non-breeding females	178
	4.3.7	Analyses of variables predicting body condition index (BCI)	178
	4.4 Dise	cussion	183
	4.4.1	Patterns of ectoparasite abundance	
	4.4.2	Social network variables as predictors of ectoparasite load	186
	4.4.3	Patterns of Body Condition Index	
	4.4.4	Implications for models of disease transmission	188
	4.4.5	Conclusions	189
	4.5 Ref	erences	190
5	Surveilla	nce for pathogens of potential human health concern in British bats	195
	5.1 Introdu	iction	195
	5.2 Me	thods	198
	5.2.1	Sample collection for Candida, and viral analyses	198
	5.2.2	Detection of Coronaviruses and Astroviruses	198
	5.2.3	Sampling and detection methodology for Cryptococcus	201
	5.2.4	Investigation of putative Candida samples	201
	5.2.5	Analysis of infection risk factors	202
	5.3 Res	ults	204
	5.3.1	Coronaviruses	204
	5.3.2	Astroviruses	209
	5.3.3	Cryptococcus neoformans	211
	5.3.4	Candida species	211
	5.4 Dise	cussion	

	5.4.1	1 Coronaviruses	
	5.4.2	2 Astroviruses	
	5.4.3	3 Crypotococcus neoformans and Candida species	
	5.4.4	4 Risk to human health and prevention of transmission	
5	.5	References	220
6	Gen	neral discussion	227
6	.1	Introduction	227
6	.2	The population structure of bats: implications for models of disease	230
6	.3	Pathogen surveillance	
6	.4	Ecology and conservation of bats	
6	.5	Questions raised	239
6	.6	Final remarks	
6	.7	References	
7	Арр	endix	250
Glo	ssary.		
Ack	nowle	edgements	271

List of Tables

Table 1.1 – Summary of previous EIDs thought to originate from bat populations
Table 1.2 – Comparison of the morphology and ecology of the three species studied in detail atWytham Woods. Data are taken from Altringham (2003) and Norberg and Rayner(1987)
Table 2.1 – Summary of the frequency distribution of captured bats by species and sex
Table 2.2– Summary of the sex ratio by year of <i>M. daubentonii</i> and <i>M. nattereri</i> , adults and juveniles 89
Table 2.3 – Recapture rates of juveniles in the years following their birth
Table 3.1 – Tests for correlations between estimates of vegetative cover using LiDAR and field observations, and estimates from fish-eye photography. Estimates using LiDAR data did not accurately predict canopy cover
Table 3.2 – Results of multimodel inference of variables influencing the probability of roost occupancy by all species. A roost was said to be occupied if bats or faeces were found in it at any time. Variables with an importance greater that 0.9 (i.e. a 90% chance that the variable is present in the best model) are indicated in bold
 Table 3.3 – Results of multimodel inference of variables influencing the probability of roost occupancy by <i>M. daubentonii, M. nattereri</i> and <i>P. auritus</i>. Variables with an importance greater that 0.9 (i.e. a 90% chance that the variable is present in the best model) are indicated in bold
 Table 3.4 – Results of multimodel inference of variables influencing the probability of roost occupancy by <i>M. daubentonii</i>, <i>M. nattereri</i> and <i>P. auritus</i>, when only boxes checked on more than five occasions are considered. Variables with an importance greater that 0.9 (i.e. a 90% chance that the variable is present in the best model) are indicated in bold
Table 3.5 – ANOVA and Chi-squared tests of variables between <i>M. daubentonii</i> bachelor (n =

correlated with nursery roosts (n = 9) compared to bachelor roosts (n = 12). Understory is divided into three categories, 0 - no understory, 1 - scattered

Table 4.1 – The mites of *M. daubentonii*. Adapted from Baker and Craven (2003) 156

- Table 4.2 The mites of *M. nattereri*. Adapted from Baker and Craven (2003) 156
- Table 4.4 Results of Spinturnicid mite identification by microscopy revealing each host

 species was parasitised by a single species of mite

 162

Table 4.5 – The distribution of capture events in Wytham Woods by species, sex and year. . 162

- Table 5.4 Results of a backwards stepwise logistic regression of factors explaining variation in the probability of infection by Coronaviruses. a) The *M. daubentonii* model explains 16% of the observed deviance while b) the *M. nattereri* model explains 21% of the observed deviance. Parameters with a *p*-value less than 0.05 are indicated in bold type.

Table 5.6 – Results of sequencing fungal isolates. None were found to be Candida species
instead representing probable plant and insect associated fungi
Table 7.1 (continues over multiple pages) – A summary of all box checks detailing the date,
roost box and species found
Table 7.2 – A list of equipment used to record weather variables at Wytham woods. All
equipment was supplied by Campbell Scientific, Shepshed, UK
Table 7.3 (continues over multiple pages)– A summary of data used in chapter 5 to explore the
drivers behind infection with coronavirus. Coronavirus infection is indicated as 1 for
positive and 0 for negative258

List of Figures

- Figure 1.1 The annual cycle of bat activity in the UK (adapted from Altringham (2003)) with modifications showing details for Wytham Woods (using data from 2009 and 2010). 31

- Figure 2.5 The social network of *M. daubentonii* including all females, and males observed in a) 1 or more b) 2 or more and c) 3 or more years. Males, blue circles; females red

- Figure 3.3 The design of a) Blue tit and b) Great boxes used as roosting sites by bats 115

- Figure 3.9 Bodies of water close to Wytham Woods, Farmoor reservoir and the Thames River, were mapped in Arc GIS. Intersections of the woodland edge with linear features including hedgerows and tree lines were also mapped. The distance from each box to the closest water body and woodland/linear feature intersection were calculated .. 121
- Figure 3.11 Distribution of *M. daubentonii* summer roosts 2006-2010 129

- Figure 3.19 Boxplot of counts of bat fly puparia from occupied (n = 21) and unoccupied roosts (n = 13). The smallest observation, lower quartile, median (bold horizontal bar), upper quartile, and largest observation are shown. Unoccupied roosts have significantly fewer bat fly puparia than recorded in bachelor or nursery roosts 140

- Figure 4.8 The abundance of Spinturnicid mites observed infesting adult female *M. daubentonii*, grouped by the reproductive status of the host. Pairwise comparisons:

- Figure 5.3 Variation in Coronavirus prevalence amongst *M. daubentonii* for those factors found to be significant in models. Juveniles had a higher prevalence than adults and males had a significantly elevated prevalence in the post-nursery period compared with the nursery period (Table 5.4a). The prevalence was calculated from the raw data and error bars show the 95% confidence intervals. Labels indicate the sample size.. 208