Probing the electrical properties of multilayer graphene

Submitted by Tymofiy Khodkov to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics December, 2012

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

> Tymofiy Khodkov December, 2012

Abstract

Graphene is a new two-dimensional (2D) material with unique electrical transport, optical and mechanical properties. However, monolayer graphene (MLG) is a gapless semiconductor, which limits its relevance for transistor applications where a large on/off ratio of the current is required. In this work the investigation of transport properties of few-layer graphene (FLG) is presented. These 2D electronic systems offer a novel solution to the problem concerned the absence of an energy gap in single layer graphene, since they exhibit an electric field and stacking-dependent band gap in the energy dispersion.

Thus far, a clear observation of a band-gap in multilayer graphene (e.g. Bernalstacked bilayers) in transport measurements was hindered by the presence of disorder. Here we develop a reliable and effective method of fabrication of high-quality suspended double-gated graphene devices, which are of crucial importance for probing the lowenergy dispersion of few-layer graphene. The current annealing technique, described in details, improves transport characteristics like carrier mobility, which is typically higher than ~ 10^4 cm²/Vs for our multilayer devices.

Electrical transport experiments on suspended dual-gated ABC-stacked trilayer are performed. We report the direct evidence of the opening of a tunable band-gap with an external perpendicular electric field, ranging from 0 meV up to 5.2 meV for an electric field of 117 mV/nm. Thermally activated transport is observed in these samples over the temperature range 0.5 - 80 K. The values of energy gap extracted from both temperature dependence of minimum conductivity measurements and non-linear I - Vcharacteristics correlate well. Our experimental results are in a good agreement with theoretical approximation, based on self-consistent tight-binding calculations. The high quality of our ABC trilayer samples is also demonstrated by a particularly high on/off ratio of the current (250 at applied electrical displacement as low as 80 mV/nm), which makes these devices promising for future semiconductor electronics.

FLG samples with reduced disorder allow us to observe quantum Hall effect (QHE) at magnetic field as low as 500 mT. We present the first study of electric field- induced new QH states in ABC trilayer graphene (TLG). The transitions between spin-polarized and valley polarized phases of the sample at the charge neutrality point are investigated. Resolved novel broken symmetry states along with observed Lifshitz transition in rhombohedral TLG display exciting phenomena attributed to rich physics in these interactive electronic systems.

Contents

A	Abstract							
\mathbf{A}	Acknowledgements							
\mathbf{Li}	List of publications							
Sy	Symbols and abbreviations used							
\mathbf{C}	Contents							
\mathbf{Li}	List of Figures 12							
\mathbf{Li}	List of Tables 2							
In	Introduction 23							
1	The	Theoretical background						
	1.1	Crysta	llographic structure of single layer grephene	27				
	1.2	2 Tight-binding approximation						
	1.3	3 Band structure of trilayer graphene		32				
		1.3.1	Introduction	32				
		1.3.2	Bernal-stacked trilayer	34				
		1.3.3	ABC-trilayer	36				
		1.3.4	Lifshitz transition	38				
	1.4	.4 Band-gap engineering in graphene-based systems		40				
		1.4.1	Introduction	40				
		1.4.2	Symmetry breaking and the role of screening in multilayer devices	41				
		1.4.3	Related experiments	42				
	1.5	.5 Properties of 2D graphene based structures						

		1.5.1	Density of states		44			
		1.5.2	Berry's phase		45			
	1.6	Quant		47				
		1.6.1	Introduction		47			
		1.6.2	Classical Hall Effect		47			
		1.6.3	QHE in 2DEG		49			
		1.6.4	LLs in graphene		53			
		1.6.5	Related experiments and theoretical expect	tations	56			
2	Fab	ricatio	n and characterization of samples.	Experimental tecl	1-			
	niqu	ıes			60			
	2.1	2.1 Introduction						
	2.2 Graphene-based transistors			60				
	2.3	Thickr	ness and quality determination		64			
		2.3.1	Optical contrast		64			
		2.3.2	Raman spectroscopy		66			
		2.3.3	Atomic force microscopy		70			
		2.3.4	Conclusions		72			
	2.4	Low-te	emperature set-up		74			
3	Fab	Fabrication of high quality double-gated devices						
	3.1	1 Introduction						
	3.2	.2 High quality samples: fabrication approaches			78			
	3.3	.3Suspended gate fabrication4Etching of SiO2						
	3.4							
	3.5	Improv	ving the quality of the samples \ldots \ldots		89			
		3.5.1	Thermal annealing		90			
		3.5.2	Current annealing		93			
	3.6	Result	s		100			
	3.7	Conclu	isions		104			
4	Gate tunable band-gap in rhomboherdal-stacked trilayer							
	4.1	Introd	uction \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots		105			
	4.2	Device	e characterization and description \ldots \ldots		106			

	4.3	Low-T measurements		107		
		4.3.1	Resistance as a function of applied top- and back-gate voltages .	108		
		4.3.2	$I-V$ characteristics and spectroscopy measurements $\ldots \ldots$	109		
	4.4	Temperature dependence analysis		110		
	4.5	Results				
	4.6	Conclusions				
5	6 Quantum transport in multilayer graphene structures at high m					
	netic field					
	5.1 Introduction					
	5.2	Effect	of external electric field on broken symmetry states in QH regime	117		
		5.2.1	Two terminal transport measurements in perpendicular magnetic			
			field \ldots	117		
		5.2.2	Evolution of QH plateaux with carrier concentration and mag-			
			netic field	120		
	5.3 Signature of the Lifshitz transition		ure of the Lifshitz transition	122		
	5.4	4 $\nu = 0$ LL and the transition between quantum Hall states		123		
	5.5	5.5 Conclusions				
	Conclusions and proposals for future work					
Bi	bliog	graphy		131		
Ι				138		
II				140		
III			142			
IV				143		