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Hydrothermal convection of pore water with a temperature-dependent viscosity within a permeable,
internally heated, moderately thin spherical shell is investigated by both a perturbation analysis and a
direct numerical simulation. The analysis and simulation are mainly focused on a thin spherical shell in
that convective instabilities are characterized by the spherical harmonic degree l � 6 with a 13-fold
mathematical degeneracy. Four different three-dimensional analytical solutions of convection are derived
by removing the degeneracy through the nonlinear effect. A direct numerical simulation of the nonlinear
problem is also carried out, showing satisfactory agreement between the analytical solutions and the
numerical simulations.
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Introduction.—Convection of water through a spherical-
shell porous medium with a central gravitational force and
internal heating is likely to have occurred during the evo-
lution of a number of solar system bodies. During the stage
of early heating of carbonaceous chondrite parent bodies
[1], ice at the center of the body will melt first and the
released rock will sink to the center forming a rock core. It
is likely that liquid water did not simply fill the porosity of
the parent bodies but circulated in a convective manner
similar to what is observed in geothermal systems in
Earth’s crust [2]. Hydrothermal convection through rocky
spherical shells is also likely to have occurred or to be
presently active in a number of outer planet icy satellites
that have water-ice shells surrounding rocky cores, among
which are Europa and Enceladus [3]. Understanding the
flow structure of hydrothermal convection in a spherical-
shell porous medium helps us elucidate the evolution of
these celestial bodies. Moreover, since many astrophysical
bodies are characterized by spherical-shell geometry and a
spherically symmetric basic state, the mathematical prob-
lem classifying possible structures of nonlinear convection
in the vicinity of the critical point, though this study is
particularly concerned with hydrothermal convection in a
spherical porous medium shell, is of relevance to many
important problems in astrophysics.

Our theoretical knowledge and understanding of hydro-
thermal convection in a spherical-shell porous medium is,
however, highly limited. This is primarily due to the fact
that the convection problem with a spherically symmetric
basic state and a spherically symmetric boundary condition
is mathematically complicated, the linear stability analysis
only determines the critical eigenfunction of the spherical
harmonics Yml ��;�� of large degree l for moderately thin
spherical shells (e.g., [4]). Hence there exists a (2l� 1)-
fold degeneracy, and a complete elimination of the degen-
eracy by nonlinearity proves to be a highly challenging
task. Chossat [5] and Matthews [6] employed the group

theoretical method in an abstract mathematical system to
classify possible nonlinear solutions that may exist in the
vicinity of the critical bifurcation point in an abstract
mathematical system. In an important study, Busse [7]
considered a weakly nonlinear problem in spherical ge-
ometry without reference to the physical detail of a con-
vection system and with an assumption that all solutions of
the problem possess symmetry with respect to a plane
through the center of the sphere. Nonlinear analysis that
derives an analytical solution for hydrothermal convection
in a spherical-shell porous medium and its verification by a
direct three-dimensional numerical simulation have not
been attempted.

In this Letter, both the mathematical analysis and the
corresponding numerical simulations of weakly nonlinear
hydrothermal convection in moderately thin spherical
shells of pore water with a temperature-dependent viscos-
ity are carried out, showing satisfactory agreement be-
tween the analytical and numerical solutions.

The model and mathematical formulation.—We con-
sider a spherical shell, with inner radius ri and outer radius
r0, of water-saturated permeable porous material heated by
a uniformly distributed internal heat source which pro-
duces a linear radial temperature gradient @T0=@r �
��r, where T0 is the conduction temperature, � is a
constant, and r is the distance from the center of the
spherical system. Water, with the thermal expansivity �,
fills all of the pore space with volumetric porosity �. An
appropriate scaling [2] of Darcy’s law, the equation of
continuity, and the heat equation leads to the dimensionless
governing equations for hydrothermal convection

 0 � �rP� Rr�� �̂u; (1)

 0 � r � u; (2)

 

@�

@t
� u � r� � r � u�r2�: (3)
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Here u is the dimensionless Darcy velocity, � and P
denote the departures of temperature and pressure from
their values in the basic static state, the Rayleigh number R
is defined as R � ����r0 � ri�4=K�, whereK is inversely
proportional to the permeability, � is proportional to the
averaged thermal conductivity of the water and rock and �
is related to gravity by g � ��r, and �̂ is the temperature-
dependent viscosity (see also [8] which discussed the
convection problem for the whole sphere).
Equations (1)–(3) are subject to the boundary conditions
at the inner radius ri and the outer radius r0 of the shell

 r � u � � � 0: (4)

It is mathematically convenient to express the Darcy ve-
locity u in terms of poloidal (v) and toroidal (w) compo-
nents in the form

 u � r�r� �rv� � r� �rw�; (5)

which satisfies (2) automatically. The scalar equations for
v and w can be obtained by substituting (5) into (1) and
then applying the operators r � r� and r � r � r� onto
the resulting equation, which yields the two equations

 r � r � ��̂r� �rw� � �̂r�r� �rv�	 � 0; (6)

 RL2�� r � r�r���̂r� �rw�� �̂r�r��rv�	 � 0;

(7)

where L2 denotes the differential operator representing the
negative Laplacian on a unit sphere

 L2 � r2

�
@2

@r2 �
2

r
@
@r
�r2

�
:

The heat equation (3) in terms of the poloidal flow v
becomes

 

@�

@t
� u � r� � L2v�r2�: (8)

The boundary condition (4) can be then written as

 v � � � 0; at r � ri and r0: (9)

We first solve (6)–(8) subject to (9) analytically and de-
termine the structure of hydrothermal convection which
will then be verified by a direct numerical simulation.

Perturbation analysis and numerical simulations.—We
first derive small amplitude solutions near the onset of
convective instability of (6)–(8) satisfying (9) through a
perturbation analysis. We expand v,w, R and �̂ in terms of
small but nonzero amplitude � of convection,

 v � �v0 � �2v1 � . . . ; (10)

 � � ��0 � �
2�1 � . . . ; (11)

 R � R0 � �R1 � �2R2 . . . ; (12)

 �̂ � �̂0�r� � ��̂1�r��0 � �2�̂1�r��1 � . . . ; (13)

where we take �̂0 � �̂1 � 10q�r�ri�
2

for water [9] (see also
[8]) with q � 0:05 used in our simulation. We also assume
that the exchange of instability is valid in our nonlinear
analysis. Substitution of (10)–(13) into (6)–(8) gives the
leading-order equations describing the onset of instability

 R0L2�0 � �̂0�r�L
2r2v0 �

1

r
@�̂0

@r
L2

�
@
@r
�rv0�

�
� 0;

(14)

 

@�0

@t
� L2v0 �r

2�0; (15)

subject to the boundary conditions

 v0 � �0 � 0; at r � ri and r0: (16)

For moderately thin spherical shells, for example, at
ri=r0 � 0:6 on which we shall focus, the general solution
of the leading-order problem can be written as

 v0 �
Xm�6

m��6

ZmPm6 ���e
im’

�XN
n�1

cnfl�	nr�
�
; (17)

 �0 �
Xm�6

m��6

ZmPm6 ���e
im’

�XN
n�1

42cn
	2
n
fl�	nr�

�
; (18)

with

 fl�	nr� � nl�	nri�jl�	nr� � jl�	nri�nl�	nr�;

where jl�z� and nl�z� denote the spherical Bessel functions
of the first and second kinds for l � 6, 	n is determined by
the equation f6�	nr0� � 0, N is the truncation parameter
usually taken as N � O�10�, R0 and cn can be determined
by the linear stability analysis, and Pml ��� is the associated
Legendre function normalized such that

 

1

4


Z 2


0

Z 


0
fjPml ���e

im�j2g sin�d�d� � 1:

Note that all coefficients cn in (17) and (18) can be deter-
mined by the linear stability analysis. It is important to
notice that (i) the leading-order problem is not self-adjoint
although its adjoint problem, the solution of which will be
denoted by v�0 and ��0 , can be derived in a similar way,
and (ii) the values of complex coefficients Zm cannot be
determined by the stability analysis. The complex coeffi-
cients Zm are determined by the nonlinear effect in con-
nection with the O��2� problem governed by

 �̂ 0L2w1 � r � r � ��̂1�0r�r� �rv0�	; (19)

 � R0L
2�1 � �̂0L

2r2v1 �
1

r
@�̂0

@r
L2

�
@
@r
�rv1�

�
� R1L

2�0 � r � r � r� ��̂1�0r�r� �rv0�	; (20)
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 L2v1 �r
2�1 � �r�r� �rv0�	 � r�0; (21)

subject to the boundary conditions

 v1 � �1 � 0; at r � ri and r0: (22)

The solvability condition (19)–(21) can be written as

 R1Zk
Z ro

ri

1

�̂0
f�l �r�gl�r�r

2dr �
1

4
�R0I1 � I2�; (23)

where l � 6, k � 0; 1; 2; . . . ; 6, and

 I 1 �
Xm�6

m�0

Xq�6

q�0

ZmZq��m� k� q�

�
Z 


0
P�kl Pml P

q
l sin�d�

�
�
Z ro

ri

dg�l
dr

flglrdr

�
Z r0

ri

dgl
dr

flg
�
l rdr

�
;

 I 2 �
Xm�6

m�0

Xq�6

q�0

ZmZq��m� k� q�

�
Z 


0
P�kl Pml P

q
l sin�d�

�Z r0

ri
�̂1gl

d
dr

�
rf�l
�̂0

�

�
d�rfl�
dr

dr� l�l� 1�
Z r0

ri
�̂1gl

�
f�l
�̂0

�
fldr

�
;

where f�l and g�l are the adjoint solution of the leading-
order problem, ��n � 0� � 1 and ��n � 0� � 0. The non-
linear equation (23) can be solved for determining the
structure of the hydrothermal convection. After an exten-
sive search, four different solutions of three-dimensional
convection are derived. The first analytical solution con-
tains only one associated Legendre function given by

 v �
� ������

13
p
�R� 10:43�

0:104 87

�
P0

6���
�XN
n�1

cnfl�	nr�
�
; (24)

 � �
� ������

13
p
�R� 10:43�

0:104 87

�
P0

6���
�XN
n�1

42cn
	2
n
fl�	nr�

�
: (25)

The second convection solution comprises two associated
Legendre functions P0

6��� and P6
6���

 

v�
� ������

13
p
�R� 10:43�

0:067632

��XN
n�1

cnfl�	nr�
�

�

�
0:056302P0

6����
0:810 093

720
��������
231
p P6

6��� sin�6��
�
; (26)

 � �
� ������

13
p
�R� 10:43�

0:067 632

��XN
n�1

42cn
	2
n
fl�	nr�

�

�

�
0:056 302P0

6��� �
0:810 093

720
��������
231
p P6

6��� sin�6��
�
:

(27)

The third solution comprises two associated Legendre
functions P0

6��� and P5
6���

 

v �
� ������

13
p
�R� 10:43�

0:225 439

��XN
n�1

cnfl�	nr�
�

�

�
0:589 302P0

6��� �
0:623 61

360
������
77
p P5

6��� sin�5��
�
; (28)

 ��
� ������

13
p
�R�10:43�

0:225439

��XN
n�1

42cn
	2
n
fl�	nr�

�

�

�
0:589302P0

6����
0:62361

360
������
77
p P5

6���sin�5��
�
: (29)

The fourth solution also contains two associated Legendre

FIG. 1 (color online). Isosurfaces of the temperature of con-
vection for ri=r0 � 0:6. Red contours indicate �> 0 and blue
contours correspond to �< 0. The left panels (a),(c),(e),(g)
show analytical solutions while the right column shows the
corresponding numerical simulations.
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functions P0
6��� and P4

6���
 

v�
� ������

13
p
�R� 10:43�

0:019 774

��XN
n�1

cnfl�	nr�
�

�

�
0:471405P0

6����
0:881 917

120
������
14
p P4

6��� sin�4��
�
; (30)

 � �
� ������

13
p
�R� 10:43�

0:019 774

��XN
n�1

42cn
	2
n
fl�	nr�

�

�

�
0:471 405P0

6��� �
0:881 917

120
������
14
p P4

6��� sin�4��
�
:

(31)

The profiles of four different analytical solutions are shown
in the left column of Fig. 1.

A huge effort is made to simulate directly the nonlinear
equations (1) and (3) subject to the boundary condition (4)
using a three-dimensional finite difference scheme based
on uniform grids in the azimuthal direction but nonuniform
grids in the latitudinal and radial directions. The particular
numerical scheme, discussed in [10] which is only con-
cerned with convection of constant viscosity, produces a
system of finite difference equations in the tridiagonal form
which can be readily solved by a domain decomposition
method. By fixing the Rayleigh number R at a value that is
slightly above the critical Rayleigh number �R� R0� �
0:57, where R0 � 10:43 for the case ri=r0 � 0:6, and by
changing the initial conditions, we are also able to obtain
four different numerical solutions of the nonlinear hydro-
thermal convection all of which are stationary. The profiles
of the four numerical solutions are depicted in the right
column of Fig. 1. A comparison of the left and right
columns shows satisfactory agreement between the ana-
lytical solutions given by (24)–(31) and the nonlinear
simulation of a direct numerical integration of equa-
tions (1)–(3). Some noticeable differences should be an-
ticipated since our numerical simulations are performed at
a finite supercritical Rayleigh number �R� R0� � 0:57.
For example, the excitation of other spherical harmonics
and the resulting modification at a moderate supercritical
Rayleigh number used in simulations may explain the
differences between Figs. 1(g) and 1(h). A direct three-
dimensional numerical integration of the nonlinear con-
vection at a very small supercritical Rayleigh number is
extremely computationally expensive.

Concluding remarks.—A linear stability analysis for
hydrothermal convection in a moderately thin shell only
determines the critical Rayleigh number R0 at which the
basic motionless state becomes unstable with respect to

infinitesimal disturbances characterized by the spherical
harmonics of large degree l. For ri=r0 � 0:6, there exists a
13-fold degeneracy. In this Letter, we present the first
mathematical analysis for a realistic physical problem of
spherical convection that eliminates the degeneracy by
nonlinearity and determines the structure of convective
flows. It is also the first time that satisfactory agreement
between the analytical solutions and direct numerical
simulations for hydrothermal spherical convection is
achieved.

It is important to point out that, in addition to the four
simplest solutions discussed, we have also found many
other analytical solutions which usually appear to be
much more complicated, comprising more than two
Legendre functions in the expression of the solutions.
However, we are able to show that the three-dimensional
structures of the additional analytical solutions are exactly
the same as the four solutions after performing an appro-
priate rotational transformation. This is because the posi-
tion of a pole or an equator in the convection system is
arbitrary as a consequence of the spherically symmetric
basic state and boundary condition. Our mathematical
analysis and numerical simulation suggest that there are
a variety of different patterns of water circulation through
the porous spherical shells in planetesimals and icy
satellites.
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