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Abstract. We consider the dynamics of small networks of cou-
pled cells. We usually assume asymmetric inputs and no global or
local symmetries in the network and consider equivalence of net-
works in this setting; that is, when two networks with different
architectures give rise to the same set of possible dynamics. Fo-
cusing on transitive (strongly connected) networks that have only
one type of cell (identical cell networks) we address three questions
relating the network structure to dynamics. The first question is
how the structure of the network may force the existence of in-
variant subspaces (synchrony subspaces). The second question is
how these invariant subspaces can support robust heteroclinic at-
tractors. Finally, we investigate how the dynamics of coupled cell
networks with different structures and numbers of cells can be re-
lated; in particular we consider the sets of possible “inflations” of
a coupled cell network that are obtained by replacing one cell by
many of the same type, in such a way that the original network
dynamics is still present within a synchrony subspace. We illus-
trate the results with a number of examples of networks of up to
six cells.
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1. Introduction

1.1. Coupled dynamical systems. Coupled dynamical systems are
used as models in a wide range of applications such as neuronal net-
works, biological processes, communications systems, arrays of Joseph-
son junctions and mechanical and electrical systems. If we regard the
individual unit in these models as a “cell”, with deterministic dynamics
(specified by a vector field — continuous dynamics; or map — discrete
dynamics), then a coupled cell system may be regarded as a set of
individual but interacting dynamical systems.

Each cell can be thought of as having an output and a number of
inputs coming from other cells in the system. A coupled cell system has
a network architecture that can be represented by a directed graph with
vertices corresponding to cells and each directed edge corresponding to
a specific output–input connection. Different input types correspond
to different edge types in the graph. At this level of abstraction, we use
the term coupled cell network as a way of specifying and emphasizing
the connection structure rather than the dynamics of the cells.

A central issue in the theory of coupled cell networks is understanding
the extent to which the network architecture impacts on the dynam-
ics. If the network contains subsets consisting of identical cells, then
there is the possibility of non-trivial invariant subspaces consisting of
groups of synchronized cells (‘synchrony subspaces’). The classification
of these patterns of synchrony is a significant step in understanding the
dynamics forced by the network architecture. It is well–known from the
study of equivariant dynamical systems and population dynamics that
the presence of invariant subspaces can have a major impact on both
global and local dynamics and lead to robust heteroclinic cycles, hetero-
clinic networks and bifurcation phenomena that would be non-generic
in the absence of invariant subspaces.

In this paper, we develop a structured and intuitive approach to the
dynamics of networks. We are interested in inferring dynamical prop-
erties of large networks in terms of properties of smaller networks de-
termined, for example, by invariant subspaces forced by network archi-
tecture. Our approach is bottom-up (synthetic), rather than top-down
(analytic). Our focus is on small networks and we give constructions
that naturally lead to the appearance of robust heteroclinic cycles and
(switching) heteroclinic networks. One of the most surprising results of
this investigation is that robust heteroclinic cycles and switching het-
eroclinic networks can occur in very simple asymmetric architectures
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with just three or four cells, without any assumption of network sym-
metry or specific properties (for example, Lotka-Volterra dynamics) of
the cells – we include some constructions of examples.

In many networks it is possible to talk about ‘feedback loops’ or ‘feed-
forward’ subnetworks. Implicit in this terminology is the idea that in
some sense the network has a direction – more precisely, a direction
of information flow. We will consider directed networks that typically
have no symmetries. By directed we mean that there is a definite di-
rection of coupling. Each cell in the network will have an output that
depends only on the internal state of the cell and the inputs. Such
networks appear, for example, in information processing — whether
electronic, biological or otherwise, and correspond in electrical circuits
to processing elements that have “high impedance” inputs and “low
impedance” outputs – so that the cell is not affected by the load on its
outputs. For example, in neuronal networks with synaptic coupling,
one neuron signals to another by a pulse (spike); the signalling neuron
communicates with the receiving neuron in such a way that the sig-
nalling neuron is unaffected by the state of the receiving neuron. Of
course, many networks do not have a natural directed structure in this
sense. A network consisting entirely of cells where this is not the case
(for example, where both inputs and outputs are of similar impedance)
can be modelled by including two connections, one in each direction, in
our formalism. This type of connection structure appears, for example,
in the case of neural gap junction coupling.

Our implicit assumption that the network is directed will inform
both our language and notational conventions. We have intentionally
adopted a ‘flow-chart’ formalism similar to that used in electrical and
computer engineering or control theory as it transparently encapsulates
the idea of outputs that are “decoupled” from inputs. An important
consequence of our assumption that outputs are “decoupled” from in-
puts is that it becomes natural to change the connection structure of
the network and connect cells in new ways. In the papers [5, 6] it is
shown that equivalence of networks under rearrangement of inputs is
subtly different from the equivalence under rearrangement of outputs.

We start with relatively simple network structures and then connect,
recombine and “inflate” them to understand more complex dynamical
behavior, including synchrony and heteroclinic switching. The dynam-
ics for cells may take a range of types, including discrete, continuous
time or hybrid dynamics. However, for most our results we will assume
dynamics is governed by smooth finite dimensional ordinary differential
equations (ODEs). Note that even if the individual cells are modelled
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by ODEs, the connections between subnetworks may be modelled by
discrete dynamics that in practice may be asynchronously updated.

1.2. Approaches to modelling synchrony patterns in network

dynamics. Many methods are used for analysis of the dynamics of
large complex networks. These methods range from numerical simula-
tions to statistical graph theoretical studies of the interactions, assum-
ing the network connections are distributed according to some known
statistical law. For example, Restrepo et al. [52] give conditions on the
adjacency matrix of a network that imply synchronization of the net-
work. Strogatz [56] discusses synchronization in the presence of noise
in phase oscillators while the monograph Pikovsky et al. [49] discusses a
range of approaches to synchronization in coupled periodic and chaotic
systems.

There are various approaches to modelling the nonlinear dynamics
of exact synchrony in coupled cell networks. One powerful approach
assumes that patterns of synchrony are associated with symmetries in
the network. This has been widely used to understand coupled net-
works of identical oscillators where the symmetry group in the model
may be implicitly [30] or explicitly [16] described. Examples in appli-
cations that have used symmetries to understand synchrony patterns
include, for example, Golubitsky et al. [26] who use symmetry to model
quadruped locomotion using a simple 8 cell system with symmetries.
This network can be thought of as a model of a neural central pattern
generator (CPG) embedded in a larger neural network that actuates
muscle control. The symmetry group of a network is the group of per-
mutations of cells that preserves the network structure. A necessary
condition for this group to be non-trivial is that the network must
contain subsets of identical cells. For example, the network symmetry
group of a set of N identical cells with all-to-all coupling and symmet-
ric inputs is SN , the symmetric group on N symbols. If the network
symmetry group is non-trivial, this can lead to a range of different
synchrony subspaces that can be enumerated; see for example [16] for
phase oscillators.

However, network symmetries are not necessary for synchrony sub-
spaces to be present. Most of the networks we investigate in the pa-
per have trivial network symmetry groups: symmetry plays a very
minor role. In a series of papers, Stewart, Golubitsky and cowork-
ers [55, 24, 28] have formulated a general theory for asymmetric net-
works of interacting dynamical systems; for a recent overview, see [27].
Their approach is algebraic in character and uses balanced equiva-
lence relations, groupoid formalism, graphs and the idea of a quotient
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network to develop a number of results. The notation developed by
Stewart et al. (in particular, their multi-arrow formalism [28]) can be
seen as equivalent to the formalism here but because our conceptual
approach, language and notation are somewhat different, we obtain
different insights and results. Indeed, the groupoid formalism [27] ele-
gantly encodes the local symmetry structure of a network, and many
results have been obtained. For example, it has helped illuminate the
appearence of multi-rhythms, the effect of local symmetries, and how
network structure influences bifurcation theory for coupled cell net-
works (see [27, 25]). An alternative approach, closer to the approach
of this paper, is discussed in [21].

We emphasize some aspects of our approach as a contrast with that
of [27]. (a) We focus on the cells themselves as the building blocks,
and the importance of distinguishing outputs and number and type
of inputs a priori. (b) We consider a range of input types where the
symmetry assumptions among permutations of inputs are explicit. (c)
We consider processes that “inflate” cells into multiple copies within
networks, as a way of designing new networks with desired properties.
(d) We regard synchrony subspaces as primary quantities rather than
the balanced equivalence relations and groupoids used in [27]. (e) We
emphasize the importance of identifying equivalence of networks that
produce the same dynamics.

x = f(x;x,y)
y = f(y;x,x)

.

.

1 2A A Mx y N

x = g(x;x,y,x)
y = g(y;x,y,x)

.

.

x
1 2B B

y

(x,y denote the states of first and second cells)

Figure 1. Dynamically equivalent networks; for any f
that represents the cell dynamics of the network on the
left, there is a g that gives precisely the same dynamics
for the network on the right, and vice-versa.

Concerning (e), we are not only interested in identifying when two
different network architectures are dynamically equivalent, but we are
also concerned with how specific dynamics with one architecture is
realized in a different but equivalent architecture. This viewpoint is
extensively developed in Agarwal and Field [5, 6] where dynamical
equivalence is described in terms of input and output equivalence. Dias
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and Stewart [18] have developed the abstract ideas of ODE and linear
equivalence in a restricted set of networks (linear phase space, smooth
dynamics) but their approach does not easily yield explicit algorithms
for obtaining dynamical equivalence (indeed, obtaining such algorithms
was not the intent of their work).

B

B

B

+

+

A

Figure 2. Building a new A cell from B cells. Using
two of these new A cells in the network M, we obtain
identical dynamics to in the original network N .

For example, the network architectures M and N in figure 1, with
two identical cells and both with asymmetric inputs are dynamically
equivalent (we give precise explanations of notation and terminology
in subsequent sections). The dynamic equivalence of the network ar-
chitectures follows easily from a simple algebraic condition on adja-
cency matrices [18, 5]. Moreover, it is shown in Agarwal and Field [5]
that equivalence can be achieved by either input or output equivalence.
What this means is that if we build a two input cell by linearly com-
bining outputs of three B cells used to construct the network N — as
in figure 2 — and connect these new cells according to the architecture
M, then the resulting coupled cell system (with architecture M) has
identical dynamics to that defined by the original B cells connected
according to the architecture N (we also can achieve this result by
linearly combining inputs). In this way, one can view the networks as
having a hierarchical structure where we may wish to consider cells as
a smaller subnetworks or modular motifs [37, 58].

1.3. Robust heteroclinic cycles in coupled cell networks. For
systems that have a nontrivial set of synchrony patterns, there is the
possibility of robust heteroclinic cycles between different synchrony
patterns. Heteroclinic attractors are not structurally stable for ‘typical’
smooth dynamical systems, but they can appear in a robust manner in
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the presence of simple constraints on the system that force certain sub-
spaces to be invariant. Robust heteroclinic cycles are a well-known phe-
nomenon in coupled differential equations modeling populations (see,
for example, [31, 32, 33, 34, 45]) and in differential equations that are
symmetric (or equivariant) with respect to a group of symmetries (see
for example, [14, 20, 22, 23, 41, 42, 43, 46, 51]). In some systems, the in-
variant subspaces appear because of system symmetries; in others they
appear for reasons such as the preservation of a ‘zero-population’ state
in a Lotka-Volterra system. It is a natural question to ask whether ro-
bust heteroclinic cycles are possible in asymmetric coupled cell systems
that do not use Lotka-Volterra type ODE models (cf the heteroclinic
sequences of [2]) or, more generally, ‘semilinear feedback’ models [20,
chapter 7].

The dos Reis/Busse-Heikes/Guckenheimer-Holmes system [29] is a
symmetric system of ODEs that admits robust simple heteroclinic cy-
cles on an approximately spherical (globally) attracting invariant set
for the system [22]. This is an example of a simple heteroclinic cy-
cle; that is, one in which the unstable manifold of each saddle point is
one dimensional and contained in the stable manifold of another sad-
dle point lying on an invariant subspace. The heteroclinic cycle can
be attracting in the sense that an open set in a neighbourhood of the
cycle is attracted to the cycle. The issue of asymptotic stability of
heteroclinic cycles is complicated because, at least in equivariant dy-
namics (as opposed to Lotka-Volterra population models), the cycle is
usually forced to be part of a larger network of connections generated
by the action of all the symmetry group elements. Although we indi-
cate some sufficiency results for asymptotic stability, we do not provide
the technical details (which use straightforward and well-known tech-
niques [31, 41, 42, 43, 53]). The Guckenheimer-Holmes system can be
regarded as a (symmetrically) coupled system of three identical cells
with 1-dimensional cell dynamics, with internal symmetries and cou-
pling as in figure 14(a). The presence of symmetries constrains the
type of robust simple heteroclinic cycles that may occur. In particular,
heteroclinic cycles will typically connect equilibria with broken symme-
tries rather than synchronized — fully symmetric — states (we refer
to [19, 20] for more examples where symmetric systems are treated as
coupled cell systems).

There has been significant recent interest in robust heteroclinic cy-
cles that appear in neural microcircuits. It has been suggested that
they give a useful paradigm to explain the function of certain neural
systems, because they give nonlinear models with “winnerless compe-
tition”; there is a local competition between different states but not
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necessarily a global winner [50]. They seem particularly useful for ex-
plaining sequence generation and spatio-temporal encoding and have
been found in rate-based [2] and other models [48]. They can also be
found in Hodgkin-Huxley-based models [30] or more general phase os-
cillator models [13]. In addition they can be used to perform finite-state
computations [12]. Figure 3 shows a typical example of the appearance
of a robust heteroclinic attractor in a simple coupled neuron system;
in this case it shows a heteroclinic cycle for a microcircuit consisting
of three coupled neurons [48]; some evidence of heteroclinic switching
has been observed in vivo in Abeles et al. [1]. Analogous behaviour is
also found in hybrid models of neural systems such as the networks of
unstable attractors in systems of delay-pulse coupled oscillators [47] as
well as in coupled chemical reaction systems [39].

We give conditions for the network architecture to support robust
heteroclinic cycles as well as constructions that lead naturally to very
simple networks supporting robust heteroclinic cycles. Symmetry will
play no role in these constructions. We emphasize that we make no
symmetry assumptions on the coupling, and no constraints on cell dy-
namics (as is the case if we assume, for example, Lotka-Volterra type
dynamics [2]).

1.4. Summary of the paper. In this paper, we show how to find
network architectures that can support robust heteroclinic cycles and
heteroclinic networks [38, 20, 14] where the cells and the invariant sub-
spaces are forced by the network architecture but not by symmetry or
constraints on the ODE models. We describe global dynamics that can
occur on ‘small’ networks of cells. One of the unexpected conclusions
of our work is that small networks of three or four cells governed by
one-dimensional dynamics can exhibit very rich dynamics. Moreover,
using these results we obtain larger networks exhibiting heteroclinic
dynamics. For that, we introduce the concept of network inflation de-
veloping a method for constructing large networks using simple small
networks.

Most of the results in this paper focus on the case of networks that
are identical cell networks (where there is only one class or ‘type’ of cell
in the network) and cells have asymmetric inputs (the different inputs
to each cell are distinguished and cannot be permuted without changing
the network). Dynamically one can realize these in a number of ways,
but for the most part we will consider a coupled cell network realized
as a system of coupled ordinary differential equations (ODEs) with
smooth dependence on variables. Robustness will be with reference to
this class of systems. We only consider networks that are irreducible
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Figure 3. Bifurcation to a robust attracting hetero-
clinic cycle in a model system of three coupled neurons,
reproduced from [48] with kind permission of the au-
thors, T. Nowotny and M. Rabinovich. As a parameter
– a stimulus current in this case – is progressively in-
creased from (a)–(c), the time series of the membrane
potentials Vi of the three neurons shows the appearance
in (c) of an attracting heteroclinic cycle, showing the typ-
ical slowing down of switching between unstable phases.
(d) shows the firing rates si of the three neurons plotted
against each other as the system approaches the cycle.
This system has the connection structure shown in fig-
ure 14(a).

in the sense that they contain no smaller subnetworks (equivalently,
have no slaved or forced subnetworks [21]) by restricting attention to
networks that are transitive. We remark that coupled cell systems with
symmetric inputs are typically more degenerate and it is usually hard to
find attracting (simple) heteroclinic cycles between fully synchronized
states if one assumes symmetric inputs. However, we give one example
of a network supporting robust attracting simple heteroclinic cycles
that combines both symmetric and asymmetric inputs.
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The paper is organized as follows: Section 2 introduces the formalism
for coupled cell networks and the dynamics of the related coupled cell
systems. We allow for continuous, discrete and hybrid models for the
cells1. Section 3 discusses properties of coupled cell networks, including
equivalence of coupled cell networks, synchrony subspaces, and infla-
tions of coupled cell networks. Inflation provides a natural operation
on networks that can generate many new invariant subspaces and can
be seen as the inverse of forming a quotient network.

In section 4 we discuss two cell systems; we demonstrate that they
have some surprises in terms of equivalence, but they do not support
robust simple heteroclinic cycles. Section 5 discusses three cell net-
works. We show that there are networks of three identical coupled cells
that support robust heteroclinic cycles. We give three new examples
of three-cell ODE networks that have heteroclinic cycles in section 5.1,
and briefly discuss how these three cell networks are likely to support
switching heteroclinic networks such as those discussed by Homburg
and Knobloch [35]. Section 6 examines networks with four or more cells
and section 7 discusses sufficient conditions for the existence of robust
heteroclinic cycles. We consider a model six cell example in some detail
and show that it can in principle support a variety of heteroclinic cycles
and networks. Some remarks on generalizations are included as part of
the discussion in section 8, including comments on both multiple cell
classes, symmetric inputs, and heteroclinic bifurcation.

2. Coupled cell networks: cells and connections

We distinguish between a coupled cell network which is an abstract
arrangement of cells and connections, and a coupled cell system which
is a particular realization of a coupled cell network as a system of
coupled dynamical equations (in our case typically a set of coupled
ordinary differential equations).

2.1. Structure of coupled cell networks. Roughly speaking, a cell
is a ‘dynamical black box’ that admits various types of input and that
has an output which is uniquely determined by the inputs and the
initial state. Two cells are regarded as being of the same class if the
same inputs and initial state always result in the same output. We use

1Hybrid systems are a mix of continuous, discrete and passive cells and are
appropriate for modelling various types of system including, for example, fast-slow
systems where we replace an ODE with multiple timescales by a singular system
that can exhibit switching as well as motion on a slow manifold. Examples where
passive cells are used appear in [5, 6].
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the term ‘class’ rather than ‘type’ so as to distinguish clearly between
cells and inputs.

InputsOutput 

(type A)

a

a

b1

b2

b2
c
c

c

d

e

A
c

2 inputs of type a (from cells of class A)

1 input type b1 (from a cell of class B)

2 inputs type b2 (from cells of class B)

4 inputs type c (from cells of class C)

1 input type d (from a cell of class D)
1 input type e (from a cell of class E)

Figure 4. A cell with multiple inputs and one output.
Inputs of the same type (for example the four inputs of
type c) can be permuted without affecting the behaviour
of the output.

Figure 4 shows a cell which accepts multiple inputs of different types
from cells of different classes. Suppose that the displayed cell is of
class A (we put A inside the symbol — in this case a triangle — to
emphasize that the cell is of class A). The cell can accept inputs from
cells of classes A, B, C, D and E. Observe that we may allow more
than one type of input from a cell of a given class. For example, the
displayed cell receives two different types of input from cells of class
B. In addition to inputs, the cell has a single output which is of type
A. Inputs of the same type can be permuted without affecting the be-
haviour of the output. We may think of cells as being coupled together
using ‘patchcords’ (see [21] and note that the use of this terminology
is suggestive of the combinatorics of coupled cell networks — we may
repatch the connections and so vary the network architecture). Each
patchcord goes from the output of a cell to an admissible input of the
same or another cell. We show three simple examples in figure 5.

In figure 5(i), we show cells X and Y of class A and B respectively.
The cell X of class A has two inputs, one of type a, the other of type
b. Both inputs of cell X are filled — the a input by the output of cell
X, the b-input by the output of cell Y. Cell Y has three inputs, two
of type a and one of type b. The input of type b is not filled and only
one of the type a inputs is filled (by the output of X).

Remarks 2.1. (1) Note that in figure 5 we have used different graphical
representations of connections (patchcords) to show different types of
input. For example, the connection for a type a input is represented by
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(ii) (iii)

A A A A1 2 1 2

b

a a

b
a

(i)

X Y

Figure 5. Three coupled cell network examples: (i)
shows an incomplete network with two unfilled inputs
to cell Y, (ii) shows a two identical cell network with
inputs of the same type (symmetric inputs), (iii) shows
a different two identical cell network whose inputs are of
different type (as indicated by the different line types);
we say the cells have asymmetric inputs.

a continuous line whereas the type b input is represented by a broken
line. We may also use different arrowheads to distinguish between
different types of input (as in figure 4). We can use different graphical
symbols to differentiate between the class of a cell: a triangle for a cell
of class A and a square for a cell of class B.

To improve clarity, we mostly use a specific Roman letter to identify
the class of a cell – as in figure 5(ii,iii) – and use subscripts as labels if
there is more than one cell of a given class. If there is only one cell of a
given class we generally regard cell label and class label as synonymous.
(2) As we indicated in the introduction, the output of a cell may rep-
resent the state of the cell (this is generally assumed in the setup of
Stewart et al. [27]) or may be a scalar or vector quantity (see [5]).

In figure 5(ii), we show two cells A1, A2, both of class A. Each cell
has two identical inputs of type a and all inputs are filled. When all
the inputs are filled, as they are here, we refer to the set of cells and
connections as a network of coupled cells. Finally in figure 5(iii), we
have interchanged the inputs of A2 and made the inputs of different
type. This network is not identical to that of figure 5(ii).
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Remark 2.2. In this paper, we mainly consider cells which have asym-
metric inputs. By this we mean that for each class of cell in the net-
work, all the inputs are of different type. In particular, for a multi-input
cell X, with inputs from cells of class A, it will matter into which type
A input we plug the output of a class A cell. The network shown
in figure 5(ii) has symmetric inputs (the cells have inputs of identi-
cal type) and if we interchange the inputs of A1, this will not change
the network. On the other hand, interchanging the inputs of A1 will
change the network shown in figure 5(iii).

Let C = {A,B,C, . . .} be a finite set of (distinct) cell classes. We
assume that each X ∈ C has a finite (non-zero) number of inputs (and
therefore a finite number of input types).

Definition 2.3. Suppose that C is a set of cell classes.

(a) C is consistent if for every X ∈ C, each input type of X comes
from a cell class in C.

(b) C is indecomposable if C is consistent and we cannot write C as
a disjoint union of two non-empty consistent sets.

Suppose that N is a coupled cell network modelled on C. Let k =
k(N ) denote the number of cells in the network, and c = c(C) = c(N )
denote the number of cell classes.

Remark 2.4. Let C be consistent and indecomposable. The indecom-
posability of C implies that T is not a union of two disjoint coupled
cell networks. If N is modelled on C and k(N ) > c(C), then there will
be more than one way the cells in N can be patched together to make
a network. This leads to a combinatorics of repatching a network – we
refer to [21] for more details and examples.

In this paper we will only consider networks built from an indecom-
posable (and therefore consistent) set of cell classes. To avoid triviali-
ties, we always assume cells have at least one input.

Definition 2.5. Let C be an indecomposable set of cell classes. A
coupled cell network N modelled on C will consist of a finite number
of cells with cell classes in C such that

(a) The cells are patched together according to the input-output
rules described above.

(b) There are no unfilled inputs.

Remarks 2.6. (1) There are no restrictions on the number of outputs
we take from a cell. If a cell is connected to a total of k inputs (possibly
of different types), we say the cell has k outputs. We do not, however,
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distinguish between outputs according to the type of the input to which
the output is connected.
(2) If a cell has multiple inputs of the same type, it is immaterial which
input the patchcord (connection) is plugged into. More precisely, if a
cell X in the network has k > 1 inputs of the same type from cells of
class A then permutation of the k connections from class A cells to
these inputs is allowed and will not change the network structure. For
the graphical representation of networks, we always represent inputs to
cells of the same class in the same order. If there are symmetric inputs,
these are always grouped together (as in figures 4 and figure 5(i)).
(3) Clearly a coupled cell network (such as those in figure 5) determines
an associated directed graph where the nodes of the graph are the cells
and there is a directed edge from cell X to cell Y if and only if cell Y

receives an input from cell X. Different input types will correspond to
different edge types in the graph. If there are t different input types,
then there will be t different types of edge in the associated graph.
Noting remark (2) above we have an obvious definition of isomorphism
of directed graphs determined by a coupled cell network. At this level of
abstraction, we regard a coupled cell network as a structure — basically
a connection structure satisfying definition 2.5.

2.2. Adjacency matrices. Suppose that C = {C} and so c(C) = 1.
Let N be a coupled cell network modelled on C. Label cells in N so
that N = {C1, . . . ,Ck}. Let t = t(C) denote the number of input
types in C. In this case, all input types come from cells of the same
class. Let ℓ ∈ {1, . . . , t}. We define a k×k matrix Mℓ = [mij] by setting
mij to be the number of inputs of type ℓ that Cj receives from Ci. The
matrix Mℓ is called the adjacency matrix of type ℓ. We also define M =
M1 + · · ·+ Mt and refer to M as the adjacency matrix of the network.
The set M1, · · · ,Mt, M of adjacency matrices plays a crucial role in the
classification theory of coupled cell networks (see [18, 8, 5, 6]). Observe
that inputs of type ℓ are asymmetric if and only if there is exactly one
non-zero entry in each column of Mℓ and this entry is equal to one.
We will make use of this observation later. If c(C) > 1, we define
adjacency matrices exactly as above — each adjacency matrix will be
a k × k-matrix, where k = k(N ).

Definition 2.7. (see [21, Definition 5.12])

(a) A coupled cell network is connected if the associated graph is
connected.

(b) A coupled cell network is (strongly) transitive (or strongly con-
nected) if given any ordered pair of nodes there exists a chain
of directed edges connecting the first node to the second node.
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Remarks 2.8. (1) Obviously a transitive coupled cell network is con-
nected. All the coupled cell networks we consider will be transitive.
(2) A coupled cell network is transitive if and only if the adjacency
matrix M of the network is irreducible [40] : for each 1 ≤ i, j ≤ k,
there exists p such that (Mp)ij 6= 0.

Example 2.9. A network can be decomposed into transitive and slaved
subnetworks. In figure 6, we show a five cell network M with two cell
classes. The subnetwork M⋆ comprised of the cells A1,A2,A3 and B2

is a transitive network (we remove the outputs to B1). The subnetwork
comprised of the single cell B1 is slaved — in this case to the transitive
network M⋆.

A1 A2

B1 B2

3

Transitive subnetworkSlaved subnetwork

A

M
M*

Figure 6. A network with slaved and transitive subnetworks.

2.3. Networks and coupled cell system dynamics. We now con-
sider coupled dynamical systems (coupled cell systems) that reflect the
structure of a given coupled cell network. In this paper, we regard con-
nections between cells as dynamically neutral assignments of outputs
to inputs.2 We shall consider three contexts in which a network can be
realized as a dynamical system.

If N denotes a coupled cell network, then by F ∈ N we mean that F
is a specific coupled cell system with connection and cell type structure
determined by N . If N is a coupled cell network, we emphasize that
the number of cells k = k(N ), the number of cell classes c = c(N ), the
number of input types t = t(N ) are the same for all systems F ∈ N .

2One can regard certain dynamical effects, such as delay, as being incorporated
in the connection (patchcord) structure (that is, as a ‘delay line’). This approach
is appropriate in some applications such as hybrid computing or modelling motion
detection in vision. Of course, in the mathematical model one can always assume
that delays are included as part of the input structure of the cell, at the expense of
increasing the number of input types.
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Continuous dynamics modelled by ordinary differential equations. For
continuous dynamics, we assume that cell outputs (and therefore in-
puts) depend continuously on time. The canonical model for this sit-
uation is where each cell is modelled by an (autonomous) ordinary
differential equation. We usually suppose that the evolution in time of
cells depends on their internal state (not just their initial state). For
simplicity, we further assume that the phase space for a cell is R

N ,
where N ≥ 1. However, all of what we say applies if the phase space is
a differential manifold (see [5, 6]). We also assume that the output of
a cell is given by the state of the cell (see [5] for more general classes
of outputs).

If the phase space of a cell X is R
N , then the output of X at time t is

a vector x(t) ∈ R
N . We identify x(t) with the internal state of the cell.

In particular if the cell has no inputs, then the ordinary differential
equation model for the cell would simply be x′ = F (x), where F is a
vector field on R

N .
Now suppose that we are given a coupled cell system with a finite

cell set C = {C1,C2, . . .}. Let X ∈ C and suppose that X has p-inputs.
Then the dynamics of X will be given by a differential equation

x′ = F (x;xi1 ,xi2 , · · · ,xip).

Observe that we write the internal variable x as the first variable of
vector field F . If there is no dependence on the internal variable, we
omit the initial x and write

x′ = F (xi1 ,xi2 , · · · ,xip).

The remaining variables, following the semi-colon, give the inputs to
the cell. Thus by xij we mean an input from the cell Cij . We do
not require that {i1, . . . , ip} consists of distinct integers: they may all
be equal. However, we do group inputs of the same type together. In
particular, if the function is invariant under permutation of some of the
inputs we signify this by an overline. For example, if X has p inputs
and xi1 ,xi2 , · · · ,xip−1

are all of the same input type, and of a different
input type from xip , we write

x′ = F (x;xi1 ,xi2 , · · · ,xip−1
,xip).

We look at two simple examples that illustrate our conventions.

Examples 2.10. (1) We define a system with continuous dynam-
ics with (identical) coupled cell structure given by figure 5(ii). This
system has symmetric inputs. Allowing for dependence on the in-
ternal state of cells, we take any smooth map (C1 usually suffices)
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f : R
N ×

(

R
N
)2

→R
N which is symmetric in the second and third

variables. The ordinary differential equation model for the system is

x′
1 = f(x1;x2,x2),

x′
2 = f(x2;x2,x1).

The evolution of the system is uniquely determined by the initial states
x1(0),x2(0) and if x1(0) = x2(0) then x1(t) = x2(t) for all t ∈ R.
(2) We define a system with continuous dynamics with coupled cell
structure given by figure 5(iii). This system has asymmetric inputs.

Let f : R
N ×

(

R
N
)2

→R
N be any smooth map. Then the ordinary

differential equation model is

x′
1 = f(x1;x2,x2),

x′
2 = f(x2;x1,x2).

As before, the evolution of the system is uniquely determined by the
initial states x1(0) and x2(0) and if x1(0) = x2(0) then x1(t) = x2(t)
for all t ∈ R.

Discrete time dynamics. We define a discrete time coupled cell system
to be a system of coupled maps updated at regular time intervals. As
in the continuous time case, we model a cell X at time n using a phase
space variable x(n) ∈ R

N (for more general phase spaces see [5]) and
then update by

(2.1) x(n + 1) = f(x(n);xi1(n),xi2(n), · · · ,xip(n))

where f is a continuous function depending on the internal state x(n)
together with the p inputs to cell X.

Example 2.11. Given a continuous function f : R
N ×

(

R
N
)2

→R
N , we

may define a system with discrete dynamics that realizes the network
of figure 5 (iii). Specifically, if we let x1(n),x2(n) ∈ R

N denote the
states at time n of A1,A2 respectively, then

x1(n + 1) = f(x1(n);x2(n),x2(n)),

x2(n + 1) = f(x2(n);x1(n),x2(n)).

In this case the evolution depends on the internal state of the cells. If
instead we consider the network of figure 5 (ii) (symmetric inputs) and
assume evolution is independent of internal state, then

x1(n + 1) = f(x2(n),x2(n)),

x2(n + 1) = f(x1(n),x2(n)),



SYNCHRONY, HETEROCLINIC CYCLES AND INFLATION 19

where f is symmetric. In either case, the evolution of the system is
uniquely determined by the initial state x1(0),x2(0). If x1(0) = x2(0),
then x1(n) = x2(n) for all n ≥ 1.

Hybrid dynamics. Some models combine both discrete and continu-
ous dynamics in a coupled cell system. This is particularly the case
for models of fast-slow systems (prevalent for example in neural sys-
tems); we can model the effect of the fast dynamics as a slaving to slow
variables except for occasional rapid transitions of the fast variables.
We may also consider systems with thresholds controlling switching in
cells where the dynamics are, for the most part, governed by (smooth)
differential equations.

We give a simple example below (see figure 7(a)) of a two cell hybrid
system where one cell is modelled by continuous dynamics, the other
by discrete dynamics.

x y
C D A AA1 2 3

(a) (b)

Figure 7. Simple oscillatory hybrid and switching networks.

We suppose the cells shown in figure 7(a) have one dimensional dy-
namics. We denote the outputs of C,D by x, y ∈ R respectively. Let
the cell C be governed by the ordinary differential equation x′ = 1.
(There is no internal variable.) For discrete dynamics on D, we fix
x0 < X ∈ R. Let the output of D be given by the map y : R→R

defined by

y(x) =

{

x, if x < X

x0, if x ≥ X.

For this system, whenever x(t) < X, x(t) is given as a solution to the
ODE x′ = 1. When x(t) = X, the ODE is reset with initial condition
x0. Necessarily, there is a discontinuity in the solution x(t). The system
C,D models a relaxation oscillator with output a sawtooth wave.

The example network shown in figure 7(b) produces an oscillator
state if realised by three cells with threshold switching as follows. Sup-
pose each cell has phase space [0, 1] and satisfies ẋi = f(xi; xi+1) on
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the ring, where

f(x; y) =











ax + a, if y = 1, x 6= 0,

Ax + A, if y < 1, x 6= 1,

0, otherwise,

where a ≪ 0 < A (and so a + A < 0). For this choice of f , the system
has a unique attracting limit cycle of period 3

A
log 2. One can check

that the oscillatory state is such that each cell will be ±2π/3 out of
phase with the remaining cells: a simple instance of how the network
architecture may organize the dynamics.

In section 5.1, we propose the use of networks built from simple cells
of this type, but with multiple inputs, as one way of modelling certain
heteroclinic phenomena.

3. Properties of coupled cell networks

3.1. Equivalence of coupled cell networks. In this section we give
a notion of equivalence between network architectures that enables us
to identify different network architectures that define the same dynam-
ics. What we say is closely related to the ideas of network equivalence
developed by Dias & Stewart [18]; however, the conceptual framework
is different and, as indicated in the introduction, this leads to somewhat
different questions and results [5, 6].

Let F and G be two coupled cell systems with the same number k
of cells. We say that F , G have identical dynamics if we can label the
cells of F and G, say as {A1, . . . ,Ak} and {B1, . . . ,Bk} respectively,
so that

(1) The cells Ai, Bi have the same phase space, 1 ≤ i ≤ k.
(2) The time evolution of both systems is identical.

Remarks 3.1. (1) By ‘identical dynamics’ we mean exactly that; we do
not mean topological equivalence.
(2) If F and G have identical dynamics both systems must have the
same number of cells (c(F) = c(G)) but the input structures of corre-
sponding cells can be quite different.

We define a partial ordering on coupled cell networks, and an asso-
ciated equivalence relation.

Definition 3.2. Let N ,M be coupled cell networks with k(N ) =
k(M) = k.

(a) We write N ≺ M if there exist respective orderings {A1, . . . ,Ak}
and {B1, . . . ,Bk} of the cells of N , M such that given any
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F ∈ N , there exists an F⋆ ∈ M such that the systems F and
F⋆ have identical dynamics.

(b) We say N and M are equivalent, N ∼ M, if N ≺ M and
M ≺ N .

Clearly ≺ is a transitive relation on coupled cell networks and the
relation ∼ is an equivalence relation on coupled cell networks.

Remarks 3.3. (1) Equivalence of two coupled cell networks N , M im-
plies that given a system in the class N , we can replace it by an equiv-
alent system in the class M, and conversely. Both systems will have
exactly the same dynamics though, of course, the structure of the net-
works N and M may appear quite different.
(2) If F ,F ′ ∈ N have the same dynamics, it does not follow that
F = F ′. That is, the F - and F ′-cells can be quite different but when
connected according to the architecture N may give rise to identical
dynamics. An example of a non-trivial self-equivalence is given in [6,
Example 4.11].

We give examples of the use of these relations in the next section.
For now we present a simple example to illustrate the ideas.

Example 3.4. In figure 8 we show two coupled cell networks, both
consisting of identical cells. In the first network N each cell has two
inputs of different types (the cell has asymmetric inputs). In the second
network M, each cell has two inputs of the same type (inputs are
symmetric). Assume the phase space for cells is R

N . We claim that

AA1 2N A A1 2M

Figure 8. N , M: two input identical cell networks.
Network N has asymmetric inputs; network M has sym-
metric inputs.

N ∼ M. Suppose first that F ∈ N . There exists f :
(

R
N
)3

→R
N such

that dynamics on the cells A1, A2 are given by

x′
1 = f(x1;x2,x2),

x′
2 = f(x2;x1,x1).

There are two ways we can define g :
(

R
N
)3

→R
N to establish the

equivalence: we can vary the input structure or the output structure.
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These approaches give rise to the ideas of input and output equivalence
and are developed in [5, 6]. We vary input structure by defining

g(x;y, z) = f

(

x;
y + z

2
,
y + z

2

)

.

We vary output structure by taking

g(x;y, z) =
1

2
(f(x;y, z) + f(x; z,y)) .

Observe that in either case g(x;y, z) is symmetric in y, z and so defines
a coupled cell system F⋆ ∈ M which has the same dynamics as F
(since g(x;y,y) = f(x;y,y), for all x,y ∈ R

N). Hence N ≺ M.

Conversely suppose F⋆ ∈ M is defined by g :
(

R
N
)3

→R
N . Then we

may take f = g so as to define a coupled cell system F ∈ N (one
may disregard the symmetry in the second and third variable). Hence
M ≺ N and N ∼ M. For this example one can check that N and
M are equivalent to the two identical cell coupled cell network for
which each cell has a single input coming from the other cell. For the
remainder of this article, we realize equivalence using input equivalence
as this is particularly simple for cells with asymmetric inputs [5]. This
approach may fail if there are symmetric inputs or if the phase space is
a differential manifold, such as a torus (we refer to [5, 6] for examples).

Remarks 3.5. (1) If we had disallowed internal variables, then we would
still have M ∼ N , by the same argument. Note that both networks
have a symmetry defined by interchanging cells. The assumption of
identical inputs does not force any extra symmetry. However, either
network with internal variables is definitely not equivalent to the cor-
responding network without internal variables. For example, if we
deny internal variables and outputs from a cell into itself, then the
resulting flow is divergence free and so volume preserving (cf. Dias and
Lamb [17]).
(2) In the setting of symmetry groupoids, Dias and Stewart [18] have
considered the problem of equivalence in coupled cell networks with
Euclidean phase space and continuous C∞ dynamics. Their main re-
sult shows that coupled cell networks are equivalent if and only if they
are equivalent when we restrict to linear vector fields on cells with 1-
dimensional dynamics.
(3) In terms of adjacency matrices, two network architectures (with k
cells) are equivalent if and only we can choose an ordering of the cells of
both networks so that the adjacency matrices span the same subspace
of k × k matrices (if we assume internal variables, the identity ma-
trix is included in the spanning set). We refer to [18, 5, 6] for details.
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Aguiar and Dias [8] have considered the problem of finding minimal
models for coupled cell networks where by ‘minimal’ is meant finding
representative(s) of the equivalence class with the smallest number of
connections.
(4) Suppose that we consider the set Net(k) of networks with k identi-
cal cells. We assume asymmetric inputs. We can construct a maximal
or universal network U in Net(k) for the order ≺. That is, for every
F ∈ N ∈ Net(k), there exists F⋆ ∈ U such that F ≺ F⋆. Using
the algebraic condition for equivalence described in (3) above, one can
check that U can be chosen to have at most k2 − k + 1 inputs (nec-
essarily asymmetric). We will give specific examples later for the case
k = 2. In general, even if U is universal and has the minimal number
of inputs, U will not be unique (even up to isomorphism of associated
graph structure).

3.2. Synchrony subspaces. Synchrony subspaces are discussed in
some detail in [21] as well as in works that develop the balanced equiv-
alence relation approach to coupled networks (for example, [55, 24, 28,
54, 9]).

Let N be a coupled cell network modelled on C. Let k = k(N ) be
the number of cells and c = c(N ) the number of cell classes.

Suppose that X = {Xj | 1 ≤ j ≤ p} is a partition of the set of cells
of N such that

(1) Each Xj consists of cells of the same class.
(2) Each Xj contains at least one cell and at least one Xj contains

two or more cells.

Let d(j) = |Xj| be the number of cells in Xj, 1 ≤ j ≤ p.
If x = (x1, . . . ,xk) denotes the state of the system, then we may

group vectors according to the partition X and write

x = (x1, . . . ,xp),

where xj = (xj1 , . . . ,xd(j)) will denote the state of the d(j) cells in Xj.
Since all the cells in Xj are of the same class, the cells in Xj will all
have the same underlying phase space, irrespective of whether we are
looking at a continuous, discrete or hybrid system. Define

∆j = {xj | xj1 = · · · = xd(j)}, 1 ≤ j ≤ p

and
∆(X ) = {x = (x1, . . . ,xp) | xj ∈ ∆j, 1 ≤ j ≤ p}.

Definition 3.6. The partition X is a synchrony class for the network
N if the subspace ∆(X ) is invariant for every realization of N as a
coupled cell system. If X is a synchrony class then we say ∆(X ) is a
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synchrony subspace (or a polydiagonal subspace in the terminology of
[27]).

With a slight abuse of notation we will sometimes refer to a syn-
chrony subspace of a network rather than a system.

Remarks 3.7. (1) Notice that if d(j) = 1, then there are no restrictions
placed on the evolution of xj. Instead of allowing for partitions of the
set of cells, we might equally have looked at families of mutually dis-
joint subsets of the set of cells with each subset consisting of at least
two cells of the same type.
(2) If we partition the set of cells by class, then the corresponding
subspace is always a synchrony subspace (excluding the trivial case
k(N ) = c(N )). We call this partition the maximal synchrony class
and denote it by S = S(N ). The associated space to this is the maxi-
mal synchrony subspace S = ∆(S). Note that the maximal synchrony
subspace is the synchrony subspace of minimal dimension for any given
realization of a coupled cell network. In particular, it is a subspace of
every synchrony subspace. Following [21], we use the term null (or
minimal) synchrony class for the space of desynchronized cells — that
is, the null synchrony subspace is the complement of the union of all
synchrony subspaces. In terms of partitions, it is defined by the parti-
tion into singletons. The null synchrony subspace will be invariant for
the dynamics of all invertible systems in N (that is, systems defined
by continuous ODEs or invertible maps).
(3) Many examples of synchrony subspaces described using our ap-
proach may be found in [21, 4]. For examples based on the approach
of Stewart et al. see [55, 24, 28].
(4) The simplest way of finding synchrony subspaces is to look at initial
conditions. If we can find a coupled cell system realizing a network and
can choose initial conditions in the proposed synchrony subspace de-
termined by the partition X that lead to evolution out of the subspace
then the subspace cannot be a synchrony subspace. In particular, if
we can choose (identical) initial conditions for the cell(s) in a parti-
tion set Xj ∈ X that lead to different inputs on cells in the partition
set X i ∈ X (possibly equal to Xj), then the subspace cannot be a
synchrony subspace. (The sufficiency of this condition for continuous
dynamics follows by uniqueness of solutions differential equations —
assuming that equations are Lipschitz.) We give a simple application
of this observation in the proof of the next theorem.

Given distinct partitions Xj, j = 1, 2 we denote by X12 the partition

{X i
1 ∩ Xj

2 | X i
1 ∈ X1, X

j
2 ∈ X2}.
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Theorem 3.8. Let N be a coupled cell network with asymmetric in-
puts. Suppose that ∆(Xj) are synchrony subspaces associated to the
partitions Xj, j = 1, 2. Then the partition X12 defines a synchrony

subspace of N provided that there exist i, j such that |X i
1 ∩ Xj

2 | > 1.

Proof. Observe first that X i
1 ∩ Xj

2 = ∅ unless X i
1, X

j
2 consist of cells of

the same class. Suppose that X i
1 ∩Xj

2 6= ∅ and that |X i
1 ∩Xj

2 | = d > 1
(there is nothing to prove if d = 1). Choose two different cells Cα,Cβ ∈
X i

1 ∩ Xj
2 . We consider the initial conditions on Cα,Cβ at time t = 0

under the assumption that the cell states in Xℓ
1∩Xm

2 are equal at t = 0,
for all Xℓ

1 ∩Xm
2 ∈ X12. Let u, v denote the initial condition on the qth

input of Cα, Cβ respectively, q ≥ 1. Since X i
1 ∩ Xj

2 ⊂ X i
1 ∈ X1, there

exists Xℓ
1 ∈ X1 such that u, v are outputs of cells in Xℓ

1. Similarly, there
exists Xm

2 ∈ X2 such that u, v are outputs of cells in Xm
2 . Therefore,

u, v are outputs of cells in Xℓ
1 ∩ Xm

2 and so are equal. This holds
for all cell pairs and all inputs. Hence X12 is a synchrony subspace by
remarks 3.7(4). �

Remark 3.9. Theorem 3.8 is false if we allow symmetric inputs. For an
example, see [21, Example 6.21] and also section 7.1.

The next lemma will be useful later.

Lemma 3.10. Let N be a transitive coupled cell network. Suppose that
there exist distinct partitions X1 = {X1

1 , X
2
1}, X2 = {X1

2 , X
2
2} defining

synchrony subspaces (we always assume X i
j 6= ∅, i, j = 1, 2). Then the

partition X12 contains either three or four sets.

Proof. If there exists i, j such that X i
1 ⊂ Xj

2 then X12 contains three
sets. Otherwise X12 contains four sets. �

Definition 3.11. A synchrony subspace ∆(X ) is basic if there is ex-
actly one subset Xj ∈ X which contains more than one element. A
basic synchrony subspace is atomic if it is not contained in any other
synchrony subspace.

Remark 3.12. A basic synchrony subspace corresponds to a set of syn-
chronized identical cells. If F is a coupled cell network consisting of
identical cells then the maximal synchrony subspace is always basic
and is atomic if and only if it is the only synchrony subspace of N .

3.3. Dynamics on a synchrony subspace. Let N be a coupled cell
network and suppose that ∆(X ) is the synchrony subspace determined
by the synchrony class X = {Xj | 1 ≤ j ≤ p}. Associated to X we may
naturally define a coupled cell network NX in such a way that for every
coupled cell system F ∈ N , there is a coupled cell system FX ∈ NX
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which realizes the dynamics of F restricted to the synchrony subspace
∆(X ).

We briefly recall the construction of this network using the repatch-
ing approach of [21]. We start by defining the cells of NX . We choose
exactly one cell Dj from each set Xj ∈ X , 1 ≤ j ≤ p. Observe that
the only case where there is any choice is when d(j) > 1. It remains
to define connections. If Dk receives a total of ℓ inputs of a given type
from the cells in Xj, then we require that Dk receives ℓ inputs of that
type from Dj. Note that if d(j) = 1, then the connections from Dj to
Dk are exactly the same as in N .

The construction of NX is presented in [28] using a different termi-
nology and the network NX is referred to as a ‘quotient’ network.

Notation for synchrony classes and subspaces. Let ∆(X ) be the syn-
chrony subspace determined by the synchrony class X = {Xj | 1 ≤ j ≤
p}. Let X ′ = {Xj | d(j) > 1}. Each Xj ∈ X ′ corresponds to a group of
at least two cells. If X ′ = {Xj1 , . . . , Xjk}, we denote the synchrony sub-
space (or class) by {Xj1‖Xj2‖ . . . ‖Xjk}. Typically, we expand each Xji

to identify the individual cells. For example, suppose that X ′ = {X2}
and X2 = {C1,C4}. Then we denote the associated synchrony sub-
space by {C1,C4}. If instead, X ′ = {X1, X2} and X1 = {C1,C2,C5},
X2 = {C3,C4}, then we denote the associated synchrony subspace by
{C1,C2,C5‖C3,C4}. In the first case the notation indicates that it
is possible for the cells C1,C4 to be synchronized in any coupled cell
system with this network structure. In the second example, the nota-
tion indicates that it is possible for the groups of cells C1,C2,C5 and
C3,C4 to be synchronized, but does not imply that C1,C2,C3,C4,C5

are all synchronized (the cells need not even be of the same class).

3.4. Inflations of coupled cell networks. In this section we describe
a construction that can be regarded as an inverse to the construction of
the ‘quotient’ network associated to a synchrony class. As we see later,
this construction is very useful as an aid to constructing architectures
which can support heteroclinic cycles and heteroclinic networks.

Let N be a coupled cell network with cell set C = {C1, · · · , Ck}.
A coupled cell network M is an inflation of N if there exists a map
Π : M→N sending cells to cells, connections to connections (preserving
type) such that

(1) {Π−1(C1)‖Π
−1(C2)‖ · · · ‖Π

−1(Ck)} is a synchrony subspace of
M.

(2) Π maps the set of connections in M onto the set of connections
in N . More precisely, there is a connection of type ℓ from
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Ci to Cj, if and only if there exist cells Ciα ∈ Π−1(Ci) and
Cjβ ∈ Π−1(Cj) such that there is a connection of type ℓ from
Ciα to Cjβ.

Remarks 3.13. (1) It is trivial that if M is an inflation of N , then N
is the quotient network M{Π−1(C1)‖Π−1(C2)‖···‖Π−1(Ck)} of M.
(2) In this paper we always require that an inflation of a transitive net-
work is transitive. Sometimes we emphasize this by saying ‘transitive
inflation’.

Of particular interest are what we term simple inflations. Let p ≥ 2
and let Ci ∈ C. We say a coupled cell network M is a (p-fold) simple
inflation of N at Ci if

(1) The set of cells of M is equal to C \{Ci}∪{Ci1 . . . ,Cip}, where
each cell Cij has the same class as Ci.

(2) {Ci1, . . . ,Cip} is a synchrony class of M and the quotient net-
work structure on the synchrony subspace {Ci1, . . . ,Cip} is
equal to that of N ,

Remarks 3.14. (1) We give a number of examples of network inflation
in section 6. For the present we emphasize that even a simple inflation
need not be uniquely determined up to equivalence and that the number
of p-fold simple inflations can grow very rapidly with the size of the
network (see [4]).
(2) The work in [10] develops a systematic method, given a (quotient)
identical cell network with one input type, to enumerate all networks
that inflate from that quotient. That is, it describes the shape of the
adjacency matrices of all networks that can have that quotient. Here
we use inflation to construct bigger networks from smaller networks
that have interesting dynamics.
(3) If we restrict to transitive networks, then single input unidirectional
networks with more than one cell can never be simply inflated. A
necessary and sufficient condition for k ≥ 2 input transitive networks
N to admit a p-fold simple inflation to a transitive network at a cell
A is that either A has a self-input or A has at least p outputs. In
particular, if A has no self input and only one cell receives an output
from A, then there are no simple inflations of N at A.
(4) If two coupled cell networks N , M are equivalent and N ′ is a simple
inflation of N , then it does not follow that there is simple inflation of
M which is equivalent to N ′. That is, the set of equivalence classes of
simple inflations of N can be quite different from the set of equivalence
classes of simple inflations of M even though N and M are equivalent.
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4. Networks of two identical cells

In this and the following section we consider the structure of (and
equivalence between) transitive networks consisting of two or three
identical cells with no more than three inputs, all of which are asymmet-
ric. Our focus will be on possible configurations of synchrony subspaces
and the existence of heteroclinic cycles. The standing assumption of a
transitive network means there will be no slaved subnetworks. We will
always realize networks as coupled cell systems modelled by ordinary
differential equations.

Using the algebraic criterion for equivalence given in terms of the
space spanned by the adjacency matrices (remarks 3.5(3)), it is simple
to verify that, up to equivalence, there are exactly two classes of tran-
sitive networks with identical cells and asymmetric inputs. We show
representative networks in figure 9.

1A A2

N    0
yx A21A

yx
N

1

(a) (b)

Figure 9. Equivalence classes of transitive 2-cell asym-
metric input networks.

In figure 9(a) we show the unidirectional 2-cell network N0. This
network is symmetric (under interchange of cells) and so cannot be
equivalent to N1 which is asymmetric with respect to interchange of
cells. If we regard N0 as a coupled cell system, modelled by an ordinary
differential equation, and denote the outputs by x,y ∈ R

N , then x,y
will satisfy the differential equations

x′ = f(x;y),(4.2)

y′ = f(y;x).(4.3)

Here f :
(

R
N
)2

→R
N is an arbitrary smooth map. Like all two identical

cell systems, there is exactly one synchrony subspace: the maximal
synchrony subspace defined by ∆(S) = {(x,y) | x = y}.

The cells in N0 have just one input. In figure 10, we show two
identical cell networks equivalent to N0 which are built from cells with
two inputs.

Although these networks appear more complicated than the network
N0 shown in figure 9(a), it is clear that all three networks should be
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yx
AN A1 202

yx
AN A1 201

Figure 10. The networks N01, N02: two asymmetric
input identical cell networks.

equivalent. In particular, for the network N01, we can absorb the cell
feedback loops in the internal variables and for N02, we can replace the
double connections by a single connection.

We now consider the network of figure 9(b). This network is a univer-
sal network for 2 identical cell networks. Specifically, the dynamics of
any two identical cell network, with symmetric or asymmetric inputs,
can be realized in the architecture of the network N1 (in particular,
N0 ≺ N1). In figure 11(a), we show a two cell network M where cells
have three symmetric inputs. If we define a new two (asymmetric) in-
put cell as shown in figure 11(b) and connect this cell according to the
architecture N1 then the resulting system will have dynamics identical
to that defined by the original cell in the architecture M.

A

(b)

AA1 2

(a)

M

Figure 11. The network M.

The network N1 is not unique amongst universal networks for two
identical input cells with the minimal number of inputs. The network
N2 shown in figure 12 is equivalent to N1 and therefore is also universal.

yx
AN A21

2

yx
AN A1 21

Figure 12. The networks N1, N2: equivalent 2 cell networks.
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A system with network architecture N1 is modelled by the equations

x′ = g(x;y,x),(4.4)

y′ = g(y;x,x),(4.5)

and a system with network architecture N2 by the equations

x′ = h(x;y,x),(4.6)

y′ = h(y;y,x).(4.7)

We give a direct verification that N1 ∼ N2 (using ideas based on
input equivalence [5]).

We first prove N2 ≺ N1. Suppose h determines the dynamics of the

network N2 according to (4.6,4.7). Define g :
(

R
N
)3

→R
N by

g(x;y, z) = h(x;y − z + x, z).

We have g(x;y,x) = h(x;y,x) and g(y;x,x) = h(y;y,x). Hence the
dynamics of the network N1 defined by g is identical to that of the
network N2 defined by h, proving N2 ≺ N1. The proof of the reverse
relation N1 ≺ N2 is equally simple.

Remarks 4.1. (1) The coupled cell network N2 is not equivalent to N1

if we assume both networks have symmetric inputs. Indeed, we then
have N1 6≺ N2 and N2 6≺ N1.
(2) At first sight it may seem surprising that the coupled cell networks
N1 and N2 are equivalent. This equivalence holds quite generally; for
example, if we assume dynamics defined on a manifold or for many net-
works determined by discrete dynamics. The best way of understanding
the equivalence is through the ideas of input and output equivalence
and we refer the reader to [5, 6] for more examples and results.

4.1. Robust heteroclinic cycles for two identical cell networks.

Let N be a two identical cell network and note that we can take N ∼
N0 or N ∼ N1. As previously noted, N has precisely one synchrony
subspace — the maximal synchrony subspace, S.

We claim that the ODE coupled cell systems associated with N
do not support robust simple heteroclinic cycles between equilibria.
Indeed, in view of the robustness requirement, we can assume that
equilibria are hyperbolic and that intersections of stable and unstable
manifolds of equilibria are transverse off S. Consequently, the only way
we can generate robust non-transverse intersections is if equilibria lie on
S. We look at the case where there are two equilibria p,q ∈ S and we
assume one-dimensional cell dynamics and so dim(S) = 1 (the general
case is no more difficult). A simple local computation (assuming N ∼
N0 or N ∼ N1), shows we can assume p,q are saddles and that there is
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a one-dimensional saddle connection from p to q within S. But now the
unstable manifold of W u(q), and W s(p) will both be one-dimensional
and transverse to S. Generically, we have W u(q) ⋔ W s(p) and so,
since the phase space for N is two-dimensional, W u(q) ∩ W s(p) = ∅.
Hence there can be no robust simple heteroclinic cycle.

Remarks 4.2. (1) The same argument shows that if N is a coupled
cell network consisting of N -identical cells, N > 2, such that the only
synchrony subspace of N is the maximal synchrony subspace, then the
coupled cell systems associated with N do not support robust sim-
ple heteroclinic cycles between equilibria. For those familiar with the
theory of equivariant dynamics, we emphasize that robustness here is
relative to the set of all smooth ODE coupled cell systems realizing the
architecture N . In particular, we do not assume any extra structure
or limit the number of inputs of the individual cells.
(2) If we drop the requirement that the heteroclinic cycle is simple, then
there may exist robust heteroclinic cycles connecting equilibria on the
maximal synchrony subspace even when there are no other synchrony
subspaces. We indicate an example in the next section.

5. Networks of three identical cells

In this section we consider transitive coupled cell networks with three
identical cells and up to three asymmetric inputs. As we shall see, there
are two equivalence classes of three identical cell networks that admit
robust simple heteroclinic cycles. Conversely, by remark 4.2(1), if a
coupled cell network has only the maximal synchrony subspace then it
does not admit robust simple heteroclinic cycles. In particular, no cou-
pled cell systems associated with networks of identical cells with single
input can admit robust simple heteroclinic cycles. Figure 13(a-c) shows
three examples of three cell networks. The only synchrony subspace for
network P is the maximal synchrony subspace S = {A1,A2,A3}. Net-
work Q has the non-maximal synchrony subspace {A1,A3}. Finally,
network R has non-maximal synchrony subspaces {A1,A2}, {A1,A3},
and {A2,A3}. All of these synchrony classes are basic and atomic.
Since the number of synchrony classes is obviously an invariant of
equivalence, these networks are inequivalent.

Remark 5.1. Unless we assume symmetric inputs, there are no three cell
networks with two-input identical cells that admit {A1,A2}, {A1,A3},
and {A2,A3} as synchrony classes. In figure 14(a) we show an example
of a two input identical three cell network that has no non-maximal
synchrony subspaces if inputs are regarded as asymmetric but which
has synchrony subspaces {A1,A2}, {A1,A3}, and {A2,A3} if inputs
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A A A1 2 3

A A A1 2 3

(b)

A

(c)

A A1 2 3

(a)

P

Q

R

Figure 13. Three inequivalent three cell networks with
different synchrony subspaces; see text.

are symmetric. In figure 14(b) we show an example of a three cell
networks with three asymmetric inputs that has synchrony subspaces
{A1,A2}, {A1,A3}, and {A2,A3}.

AA A1 2 3A A A1 2 3

(a) (b)

Figure 14. 3 cell networks with three non-maximal
synchrony subspaces.

Although we can sometimes get more synchrony subspaces with sym-
metric inputs, the assumption of symmetric inputs typically forces mul-
tiple eigenvalues of the linearization at synchronized equilibria. This
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can make it hard (or impossible) to construct robust simple hetero-
clinic cycles between fully synchronized equilibria. With or without
symmetric inputs, the networks of figure 14 do not support robust sim-
ple heteroclinic cycles (indeed, any type of heteroclinic cycle in the
case of 1-dimensional cell dynamics). Nonetheless, such cycles may be
supported if there are higher dimensional phase spaces - an example of
this for the network in Figure 14(a) is shown in Figure 3.

Since equilibria for a robust simple heteroclinic cycle must lie on the
maximal synchrony subspace, this claim can be verified by comput-
ing the linearization of network compatible vector fields at equilibrium
points on the maximal synchrony subspace. We find that in the direc-
tion transverse to the maximal synchrony subspace, there is always a
two-dimensional eigenspace which is either contracting or expanding
for the flow.

A A A A A A

A

A A A A A A

A A A A A A

A A A1 3
A A2

1 1

1

1 1

2

2

3

3

2

2

2

3

3

3

1 2 3
321

Figure 15. Eight inequivalent networks with one non-
maximal synchrony class {A1,A3}.

Networks with one non-maximal synchrony class. Using the same ar-
gument presented in the previous section, it is straightforward to show
that a transitive network of three identical cells which has exactly one
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non-maximal synchrony subspace admits no robust simple heteroclinic
cycles. For reference we show the complete set of equivalence classes
of two input three cell identical cell networks with one non-maximal
synchrony class in figure 15. Observe that each of these networks
has {A1,A3} as non-maximal synchrony class. The straightforward
verification of this classification, together with that of networks with
two non-maximal synchrony subspaces presented below, uses the lin-
ear equivalence results of Dias and Stewart [18] and starts off from the
classification of one- and two-input three cell homogeneous networks
given by Leite and Golubitsky [44]. Alternatively, we can apply simple
inflation to the networks N01,N02,N1 and N2.

Networks with two non-maximal synchrony subspaces. In figure 16, we
show (up to equivalence) the only two input three cell identical cell
networks that admit two non-maximal synchrony classes.

A

N N

A A1 2 13A 2 A3A

3 4

Figure 16. The two inequivalent networks with non-
maximal synchrony classes {A1,A2}, {A1,A3}.

5.1. Robust simple heteroclinic cycles: one dimensional cell

dynamics. We show that the network architectures N3,N4 in fig-
ure 16 support the existence of robust attracting simple heteroclinic
cycles. We start by verifying this for identical cells governed by one
dimensional dynamics (the lowest dimensional case is the hardest on
account of consistency conditions forced by the identical cell struc-
ture). Specifically, we show that if cells have one dimensional dynam-
ics, then it is possible to find cell dynamics such that there exists
a robust asymptotically attracting simple heteroclinic cycle with two
equilibria p,q both lying on the maximal synchrony subspace. The
connections between p and q will lie in the non-maximal synchrony
subspaces {A1,A2} and {A1,A3}. Referring to figure 17, the equilib-
ria p,q ∈ {A1,A2,A3} = {A1,A2} ∩ {A1,A3} and are both assumed
to be hyperbolic saddle points with 1-dimensional unstable manifolds.
We assume W u(p) ⊂ {A1,A3} and W u(q) ⊂ {A1,A2}. Since syn-
chrony subspaces are flow invariant, the conditions that the equilib-
ria lie in the maximal synchrony subspace and 1-dimensional unstable



SYNCHRONY, HETEROCLINIC CYCLES AND INFLATION 35

manifolds lie in a non-maximal synchrony subspace are preserved un-
der all sufficiently small C1-perturbations of the vector fields consistent
with the network architecture.

qp

1

1

1
ρ

κ
2

{A ,A }

{A ,A ,A }

{A ,A }

2 3

3

Figure 17. A simple heteroclinic cycle connecting p,q.

Before we start a detailed analysis we give a heuristic explanation as
to why heteroclinic cycles can be expected in coupled cell systems with
the architecture N3 (the argument for N4 is broadly similar). Consider
first a trajectory on the {A1,A2} synchrony subspace. Since both cells
A1 and A2 receive the same input from A3, it is possible for the cell
A3 to ‘drive’ the trajectory towards a fully synchronous equilibrium —
for this A3 only needs one of the inputs from A1 and A2 as a reference.
The same argument shows that A2 can drive a trajectory on {A1,A3}
towards a fully synchronous equilibrium. This shows that it is reason-
able for there to exist connections in {A1,A2} and {A1,A3} between
equilibria on the trivial synchrony subspace. For the architecture N3,
the cell A1 plays a special role in that there are two connections of
different type from A1; one to A2, the other to A3. If we regard
A1 as a ‘controller’ cell, this allows the possibility of periodic switch-
ing between approximately A1,A2 and A1,A3 synchronized states. It
is straightforward to realize these possibilities using hybrid or thresh-
old dynamics. However, there are some subtleties involved if we work
with one dimensional cell dynamics governed by an ordinary differential
equation.

Turning now to the details, there are two issues we have to address
in the construction of a robust heteroclinic cycle of the type shown in
figure 17. The first problem is local: given a point u ∈ {A1,A2,A3},
can we choose a vector field consistent with the given coupled cell struc-
ture so that u is a hyperbolic saddle with a one dimensional unstable
manifold lying either in {A1,A2} or {A1,A3}? The second problem is
global: given a vector field defined on a neighbourhood of {A1,A2,A3}
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and with saddle equilibria as shown in figure 17, can we extend the vec-
tor field consistent with the coupled cell structure so that we obtain
saddle connections between p,q defining a simple heteroclinic cycle?
We outline below the solution to these problems for the coupled cell
network N3 (a similar analysis applies to N4).

5.2. Heteroclinic orbits: local construction. Differential equa-
tions modelling the network N3 are given by

x′ = f(x;y, z),

y′ = f(y;x, z),(5.8)

z′ = f(z;y,x).

For 1-dimensional dynamics, we write x, y, z rather than x,y, z. We
assume f : R

3→R is a general C1-map. Let Xf denote the vector field
on R

3 determined by (5.8). Let p = (v, v, v) lie on the synchrony space
{A1,A2,A3}. If f(p) = 0, then p is an equilibrium of Xf . The matrix
J(p) of the linearization of Xf at p is

J(p) =





α β γ
β α γ
γ β α



 ,

where α = ∂f

∂x
(p), β = ∂f

∂y
(p), and γ = ∂f

∂z
(p). A simple computation

verifies that the eigenvalues and eigenlines of J(p) are

µ1 = α + β + γ, x = y = z (= {A1,A2,A3}),
µ2 = α − β, y = −(1 + γβ−1)x, x = z (⊂ {A1,A3}),
µ3 = α − γ, z = −(1 + βγ−1)x, x = y (⊂ {A1,A2}).

It is clear that we can choose α, β, γ so that µ1, µ2, µ3 take any preas-
signed values.

Remarks 5.2. (1) If βγ 6= 0, then the eigenlines corresponding to µ2,
µ3 have slopes of opposite sign if and only if βγ < 0,
(2) Similar computations and results hold for the network N4 of fig-
ure 16 (the eigenvalue α − β is replaced by α).
(3) If we assume p-dimensional cell dynamics, p > 1, then we replace
α, β, γ by general p × p matrices A,B,C respectively. Eigenvalues are
then given by the eigenvalues of A + B + C, A − B, A − C. We may
choose A,B,C so as to achieve any preassigned set µ1, . . . , µ3p of eigen-
values (real or complex). In particular, we can always choose A,B,C
so that there is exactly one eigenvalue µ > 0, with eigenspace in either
{A1,A3} or {A1,A2}, and all other eigenvalues have negative real part
strictly less than −µ.
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We start by looking at dynamics near the maximal synchrony sub-
space x = y = z. In figure 18, we show two possible configurations of
eigenlines in {A1,A2} and {A1,A3} that are consistent with the sta-
bility assignments in figure 17. In both cases µ1 < 0 at p,q. In the left
hand figure, the {A1,A3}-eigenline lies above the {A1,A2} eigenline
at q and below the {A1,A2}-eigenline at p. In the right hand figure,
{A1,A3}-eigenline lies above the {A1,A2} eigenline at p and q. It is

α=−1, β=2, γ=−3

α−β < 0

α−γ < 0

α−β > 0

β/γ < −1

α−γ > 0

γ/β < −1 γ/β < −1 α−β < 0

α−γ > 0

γ/β < −1

α=−1, β=−3, γ=2 α=−2.5, β=−3, γ=3.5

α−γ < 0

α−β > 0

y,z

x

x=y=z x=y=z

p

q q

p

invariant manifold contained in x = y

invariant manifold contained in x = z

Figure 18. Possible configurations of eigenlines — the
synchrony subspaces x = y and x = z are projected onto
the same plane.

easy to realize either configuration of eigenlines by taking f to be a
cubic polynomial.

5.3. Heteroclinic orbits: global construction. In order to com-
plete our construction we need to show that we can choose f so that
there are 1-dimensional connections between p,q (the connections ρ, κ
shown in figure 17). Since unstable manifolds are 1-dimensional and
disconnected by removing the equilibrium, we need to construct four
connections to give the maximal number of heteroclinic connections
between p and q.

Let Y = (Yx, Yy), Z = (Zx, Zz) denote the vector fields obtained
from Xf by restriction to the (x, y)-space {A1,A3} and (x, z)-space
{A1,A2} respectively. Then Y, Z have the same vertical components:
Yy(t, s) = Zz(t, s), for all (t, s) ∈ R

2. Outside of a neighbourhood of
the diagonal S, there are no other constraints on Y, Z. We have already
shown that there are no obstructions on eigenvalues and eigendirections
along the diagonal. If we assume the left hand configuration shown
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in figure 18, there are no obstructions to extending f outside of a
neighbourhood U of the diagonal so as to obtain a pair of connections —
it suffices to ensure the connections in the (x, y) = (x, z)-space (that is,
identifying y and z) do not cross (see figure 19 and note that, following
the conventions of figure 17, we let ρ1, ρ2 denote the connections from
p to q and κ1, κ2 denote the connections from q to p).

U

κ

q

p

2

ρ
1

ρ
2

κ1

y,z

x

Figure 19. Non-crossing configuration of connections.

If the second configuration of figure 18 holds, the connections must
cross in the (x, y) = (x, z)-space. Where the connections cross, the
vertical components of Y , Z coincide. We can construct an explicit
smooth vector field f satisfying these conditions using bump functions.
However, it is not so easy to construct a low degree polynomial which
gives all four connections. An example of a quartic polynomial vector
field f which has a single simple heteroclinic cycle (two connections)
which is attracting in the quadrant of R

3 defined by z ≥ x ≥ y is given
by

(5.9)
f(x; y, z) = x(1 − x2 − y2 − z2) + 0.13x(y − z)

+βx2(y + z) + 0.18x3(y − z) + 0.52(y2 − z2)
+0.17(y + z) + 0.25x2(y2 − z2),

where β = 0.498. In figure 20 we show the time series for the x, y and
z which are characteristic of a heteroclinic cycle (initial conditions are
x = 0.6313, y = 0.631, z = 0.64). The cycle connects the equilibria
±p = (p, p, p), where p ≈ 0.8175. Heteroclinic cycles exist for these
initial conditions for β lying between 0 and 0.4987. For slightly larger
values of β, the cycle ceases to be asymptotically attracting and, after
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a long periodic transient close to the cycle, trajectories converge to an
attracting equilibrium3.
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Figure 20. Time series x, y, z of (5.8) with f defined
by (5.9), giving an attracting simple heteroclinic cycle.
Note that there is a switching between two states that
are both of from (x, x, x), and a slowing down associated
with approach the heteroclinic cycle.

Alternatively, we may introduce a threshold in the cells so that if the
state of any of the cells reaches a critical level T , then there is a jump in
the state of the cell. We can arrange this so as to produce a connection.
Note that we only require a jump in state for the isolated unsynchro-
nized cell, not for the pair of synchronized cells. An explicit example
can be built using the hybrid dynamics described in section 2.3. In
particular, we suggest it should be relatively easy to design a simple
three identical cell electronic circuit realizing this network that exhibits
a simple attracting heteroclinic cycle.

5.4. Example: two-dimensional cell dynamics. For the example
we continue to assume the architecture N3. With two-dimensional cell
dynamics, the constructions are simpler as 1-dimensional connections
generically do not intersect in the 4-dimensional synchrony subspaces
x = y and x = z. Complex eigenvalues may occur for linearizations
at equilibria in the maximal synchrony subspace and with associated
eigenspaces transverse to the maximal synchrony subspace x = y = z.
Since the synchrony subspaces x = y and x = z are of codimension

3Computations were performed using xppaut [57] with a fourth order Runge-
Kutta integrator and time step 0.05.
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two, there is also the possibility of heteroclinic switching and forward
switching [35, 7].

We give some very brief details on a recent example constructed by
Agarwal that at least hints at the rich dynamics that can occur in this
simple network architecture. Full details will be presented elsewhere
and what we reproduce here is with the kind permission of Nikita
Agarwal.

Agarwal’s equations. Consider the equations (5.8) on
(

R
2
)3

for the cu-
bic f = (f1, f2) given by

f1(x;y, z) = x1(1 − x2
1) − 0.4(y3

1 + z3
1) + x1

(

1

6
(y1 − z1) +

3

2
(y2 − z2)

)

−
1

4
(2x2 − y2 − z2)(y

2
1 + z2

1) + y2
1 − z2

1 + y3
2 + z3

2

f2(x;y, z) = − x2 + 0.4(y2 + z2) − 3x1(y1 − z1) +
5

6
x1(y2 − z2)

+ y2
1 − z2

1 .

Agarwal shows that if we use f as a model in the architecture
N3, then there are three hyperbolic equillibria ±p and O on the 2-
dimensional maximal synchrony subspace {x = y = z} given by

p =

(

√

1

2.6
, 0,

√

1

2.6
, 0,

√

1

2.6
, 0

)

, O = (0, 0, 0, 0, 0, 0).

The equilibria ±p have 1-dimensional unstable manifolds as well as
complex contracting eigenvalues with eigenspace contained in one of
the non-maximal synchrony subspaces and transverse to {x = y = z}.
In the four-dimensional space x = y, there are connections γ1, γ2 from
−p to p. Similarly, in the four-dimensional space x = z, there are
connections γ3, γ4 from p to −p. The heteroclinic cycle consisting of
these four connections is robust under perturbations preserving the
network architecture and is asymptotically stable.

We indicate an example of the dynamics that can occur using this
vector field in figures 21 and 22.

5.5. Example: phase dynamics. As a final example, we consider
the following three cell coupled system with the same architecture as
above, where each cell is described by a phase - i.e. is parametrized by
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Figure 21. Plot showing time evolution of x = (x1, x2).
The labels Ci indicate which connection the trajectory
x(t) is tracking in the (x1, x2)-plane – each Ci is close to
the projection of γi in the (x1, x2)-plane.

a single periodic variable θi ∈ [0, 2π):

θ′1 = f(θ1; θ2, θ3)

θ′2 = f(θ2; θ1, θ3)(5.10)

θ′3 = f(θ3; θ2, θ1)

where

f(x; y, z) =p0 + p1 sin(2x) + p2 sin(y − z) sin(x + p3)

+ p4 sin(2(y − z)) sin(x + p5) + p6 sin(y + z + p7)
(5.11)

and we choose parameters

p0 = 2.0 p1 = 1.9 p2 = 1.5 p3 = −1 p4 = 1.3 p5 = 5 p6 = 0.7 p7 = −0.5.

For the system (5.10,5.11) with these parameters, there is an attracting
robust heteroclinic cycle that is shown in figure 23 (a) in a simulation
for small amount of added noise - (b) shows the schematic structure
of the heteroclinic cycle where the two connections from the saddles
wind around the torus in a nontrivial way. For other choices of f we
suspect there may be “heteroclinic ratchets” in this system where only
one branch of each unstable manifold winds nontrivially on the torus
[36].
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Figure 22. Plots of components of corresponding vari-
ables x1(t), x2(t) from three two-dimensional cells cou-
pled as (5.8) from Agarwal’s example. Observe the
switching between connections and the clear “slowing
down” - a sign of asymptotic stability of the heteroclinic
cycle.

Remark 5.3. Although we have emphasized robust simple cycles in this
section, it is possible for systems with three identical cells, with sym-
metric or asymmetric inputs and one-dimensional cell dynamics, to
support robust non-simple heteroclinic cycles. This is the case even if
the only synchrony class is the maximal synchrony class. For exam-
ple, the network P of figure 13 supports a coupled cell system with
one-dimensional cell dynamics such that there is a robust non-simple
heteroclinic cycle connecting equilibria p,q ∈ S. For this example,
eigenvalues of the linearizations at p,q transverse to S can be required
to be complex. This type of heteroclinic cycle may lead to complex
dynamical behaviour such as switching [7].

6. Networks with four or more identical cells

In this section we look at transitive coupled cell networks with more
than three cells with a view to identifying network architectures that
can support heteroclinic cycles. Even though the number of configura-
tions grows superexponentially in the number of cells, we are able to
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Figure 23. Attracting heteroclinic network for the sys-
tem (5.10,5.11). (a) The time series in the presence of
low amplitude noise. (b) The cycle relative to the invari-
ant subspaces θ1 = θ3 and θ1 = θ2, shown schematically
on T

3. Note that the equilibria marked a are identified
on the torus by a change in phase by 2π. It can be seen
in that the cycle connects saddle equilibria a, a′ that are
fully synchronized.

identify certain classes of coupled cell networks whose associated cou-
pled cell systems can support simple heteroclinic cycles and networks.
We will show that inflation gives a very effective and systematic way of
identifying network architectures that can support heteroclinic cycles.
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In figure 24, we show a simple example of a configuration that has
non-maximal synchrony classes: {A1,A2}, {A3,A4}, {A1,A2,A4},
and {A1,A2‖A3,A4}. We recall that the last notation means that
A1 = A2 and A3 = A4. The maximal synchrony class is a proper
subspace of {A1,A2‖A3,A4}. If we assume one-dimensional cell dy-

A AA A1 2 3 4

Figure 24. A four cell network supporting a hetero-
clinic cycle.

namics (the multidimensional case is no harder), it is straightforward
to show that this configuration supports hyperbolic saddle points on
{A1,A2‖A3,A4} which have a one-dimensional unstable manifold con-
tained in either {A1,A2} or {A3,A4}. Along similar lines to those we
used to study simple heteroclinic cycles in coupled cell systems asso-
ciated to networks with three identical cells, we can construct simple at-
tracting heteroclinic cycles connecting two equilibria in {A1,A2‖A3,A4}.

Remarks 6.1. (1) If we assume identical (symmetric) inputs in figure 24,
there are no robust simple heteroclinic cycles.
(2) Assuming one-dimensional cell dynamics, we can choose a vector
field compatible with the coupled cell structure of figure 24 which has
a hyperbolic saddle point on the maximal synchrony subspace, such
that the saddle has one-dimensional unstable manifold lying in ei-
ther {A1,A2} or {A3,A4}. It is then straightforward to show that
the coupled cell systems associated to this coupled cell network can
support simple attracting heteroclinic cycles joining two equilibria in
{A1,A2,A3,A4} and with connections lying in {A1,A2} ∪ {A3,A4}.
(3) If we interchange the inputs of cells A3,A4 (so that the output from
A1 goes into the lower input, not the upper), then the coupled cell sys-
tems associated to the new network, which is not equivalent to the
original network, can support robust simple heteroclinic cycles. (How-
ever, for the coupled cell systems associated to this network there do
not exist hyperbolic saddle points on the maximal synchrony subspace
with one-dimensional unstable manifold contained in either {A1,A2}
or {A3,A4}.)
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(4) If we interchange the inputs of A4, the resulting network has one
non-maximal synchrony class {A1,A2}. Another variation, shown in
figure 25, again has the single non-maximal synchrony class {A1,A2}.
(5) If instead of assuming all four cells are identical, we suppose that
the cells A1 and A2 are identical and the cells A3 and A4 are identi-
cal, then the coupled cell systems associated to the network will admit
simple attracting heteroclinic cycles connecting two equilibria. The
previous analysis continues to apply.

A AA A1 2 3 4

Figure 25. A network with one non-maximal syn-
chrony class {A1, A2} in addition to maximal synchrony.

6.1. Inflations and quotients of coupled cell networks. The pre-
vious examples show that a more structured approach is needed for the
determination and analysis of dynamics in multi-cell networks. What
we do is start with a specific identical cell network exhibiting interest-
ing dynamics (for example, one of the three cell architectures N3,N4

that supports robust simple heteroclinic cycles) and then considering it
as embedded as a synchrony class in a bigger transitive network. The
larger network will be an inflation of the smaller network which, in the
terminology of Stewart et al. [55, 28], will be a quotient of the inflated
network (see section 3.4).

Example 6.2. Consider either of the inequivalent identical three cell
networks N3,N4 (see figure 16). The coupled cell systems associated to
both networks can support heteroclinic cycles and have non-maximal
synchrony subspaces {A1,A2} and {A1,A3}. The two identical cell
network associated to the synchrony classes {A1,A2} and {A1,A3} will
be one of the three equivalent networks shown in figure 26. Specifically,
the {A1,A2} synchrony class determines the network N a

1 for both N3

and N4. The synchrony class {A1,A3} of N3 determines N1 and the
synchrony class {A1,A3} of N4 determines N2. Conversely, N3 is the
simple inflation of N a

1 at A1 or the simple inflation of N1 at A1. Similar
comments hold for N4.
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Figure 26. Possible quotient networks corresponding
to the non-maximal synchrony classes of N3 and N4.

Consequently both N3 and N4 (the only two input three identical cell
network architectures that supports robust heteroclinic cycles) can be
obtained by simple inflations of one two-cell networks of figure 26. We
remark that five of the network architectures shown in figure 15 arise
from a simple inflation of either N1,N

a
1 or N2 and these architectures

do not support robust heteroclinic cycles.

Inflating a three-cell network. Next we consider what happens when
we inflate N3 to a four cell network.

Proposition 6.3. Up to equivalence there are two simple inflations of
N3 – see figure 27.

Proof. Denote the set of cells of N3 by A1,A2,A3 as in figure 16.
Provided we deny slaved subnetworks, there are a total of six four cell
networks that can be constructed by simple inflation of a cell in N3.
These determine two equivalence classes of networks. We indicate two
representative four cell networks H1,H2 in figure 27. The network H1

is a simple inflation of N3 at A1. The network H2 is a simple inflation
of N3 at A3 and is equivalent to either of the two networks we get if
we simply inflate N3 at A2. �

Following the notation of the above proof, the synchrony classes
{Ai1,Ai2}, i = 1, 3, both carry the network architecture N3 and there-
fore both synchrony classes support robust simple heteroclinic cycles.
Consequently, both network architectures H1,H2 support robust hete-
roclinic cycles. There remains the issue of whether these cycles can be
simple and/or asymptotically stable. It turns out that both network
architectures admit a rich synchrony class structure and new synchrony
classes are created through the process of inflation. We list all the non-
maximal synchrony classes of the networks H1 and H2 in table 1. Note



SYNCHRONY, HETEROCLINIC CYCLES AND INFLATION 47

H2

H1

A1

A2

A2

A11

A12

A3

A31

A32

Figure 27. Four cell transitive networks obtained by
inflating N3 at A1 and A3.

Synchrony classes that lift New synchrony classes

H1 {A11,A12,A2}, {A11,A12,A3}. {A11,A12}, {A11,A2},
{A12,A3}, {A11,A2‖A12,A3}.

H2 {A1,A2‖A31,A32}, {A1,A31,A32}. {A31,A32}, {A1,A31}.

Table 1. Synchrony classes for simple inflations of N3.

that we say a synchrony class ‘lifts’ if its existence can be directly in-
ferred from the corresponding class in N3 by identifying the new cells.
Otherwise we refer to the synchrony class as a ‘new class’.

The simple heteroclinic cycle that can occur in the coupled cell
systems with architecture N3 lifts to a heteroclinic cycle in H1 with
with connections in {A11,A12,A2} and {A11,A12,A3}. A straightfor-
ward computation shows that this heteroclinic cycle can be simple and
asymptotically stable. It is also easy to see that there exist hetero-
clinic cycles connecting equilibria on {A11,A12,A2} with connections
lying in {A11,A12} and {A11,A2}. Both simple and non-simple cycles
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exist (see also subsequent comments on the possibility of heteroclinic
networks in H1).

A1 A2

A32

A31

K
1

Figure 28. A simple inflation of N4 at A3.

Proposition 6.4. (Notation of figure 16.)

(1) There are no simple transitive inflations of N4 at A1.
(2) Up to equivalence, there is one simple transitive inflation of N4

at A3 — see figure 28.

Proof. Since A1 has no self-inputs and only one output, there are no
simple inflations of N4 at A1 (note remarks 3.14(2)).

Turning to the simple inflation of N4 at A3, the inputs of A31,A32

are uniquely determined. Since two inputs are received from the cell
A3, the only choice in the inflation is whether the output of A31 goes to
A1 or A2. We have shown the case when the output of A31 goes to A2.
It is easy to show that the two networks we obtain are isomorphic. �

Proposition 6.5. (Notation of figure 16.) Up to equivalence, there are
six simple inflations of N4 at A2. These are shown in figure 29.

Proof. The proof amounts to an enumeration of all the (transitive)
inflations of N4 at A2 followed by case by case checking of equivalences.
As far as checking inequivalence is concerned, it is enough that networks
have different synchrony classes and we give in table 2 a complete
list of all the synchrony classes of the four cell networks obtained by
simple inflation of N4. Observe that the inequivalence of all seven
networks, with the single exception of K3 and K4, is immediate from
the tabulation of synchrony classes. �
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Figure 29. Simple inflations of N4 at A2.

Synchrony classes that lift New synchrony classes

K1 {A1,A2‖A31,Y32}, {A1,X31,A32} {A31,A32}, {A1,A32}.
K2 {A1,A21,A22}, {A1,A3‖A21,A22} {A21,Y22}, {A1,A21}, {A1,A22}.
K3 {A1,A21,A22}, {A1,A3‖A21,A22} {A21,A22}, {A1,A22}.
K4 {A1,A21,A22}, {A1,A3‖A21,A22} {A21,A22}, {A1,A22}.
K5 {A1,A21,A22}, {A1,A3‖A21,A22} {A21,A22}, {A1,A3}.
K6 {A1,A21,A21}, {A1,A3‖A21,A22} {A21,A22}.
K7 {A1,A21,A22}, {A1,A3‖A21,A22} {A21,A22}, {A1,A3},

{A1,A22}, {A1,A3,A22}.

Table 2. Synchrony classes for simple inflations of N4

at A2.

Remark 6.6. The network K7 of figure 29 is isomorphic to the network
H1 of figure 28. That is, K7 (and so H1) corresponds to an inflation of
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N3 and an inflation of N4. This suggests the possibility of the existence
of heteroclinic networks for coupled cell systems associated with K7. At
least for one-dimensional cell dynamics, the calculations of sections 5.2
and 5.3 suggest that for the network K7 there will be two crossing con-
figurations of connections for two of the three flow-invariant planes.
Having a connection in one of the planes, one of the vector field com-
ponents in each of the other two planes is determined. The remaining
components of the vector fields for the two other planes are the same,
which presents an obstruction to the construction of one of the other
two connections. We suspect that this obstruction may always occur
when considering networks with only two inputs and one-dimensional
dynamics.

Recall that for partitions Xj, j = 1, 2, X12 denotes the partition

{X i
1 ∩ Xj

2 |X
i
1 ∈ X1, X

j
2 ∈ X2}. Let r = r(X12) denote the number of

sets in the partition X12.

Theorem 6.7. Let N be a four cell transitive coupled cell network con-
sisting of identical cells with two asymmetric inputs. Suppose that there
exist partitions X1 = {X1

1 , X
2
1} and X2 = {X1

2 , X
2
2} defining synchrony

classes. If the coupled cell networks associated to the synchrony classes
defined by X1 and X2 correspond to two distinct two cell networks from
{N1,N

a
1 ,N2} (figure 26), then r = r(X12) = 3 and so the coupled cell

network associated to the synchrony class defined by X12 is equivalent
to one of the networks N3,N4.

Proof. By lemma 3.10 we have that r = r(X12) is three or four. Using
the transitivity of N , we show that r 6= 4. By contradiction, suppose
that r = 4 and so |Xj

i | = 2 for i, j = 1, 2. Denote the cells of N
by C1, . . . ,C4. Relabelling cells, we may assume that X1 defines the
synchrony class {C1,C2‖C3,C4} and X2 corresponds to the synchrony
class {C1,C3‖C2,C4}. We consider the case where the coupled cell
networks associated to the synchrony classes defined by X1 and X2 cor-
respond to the two cell networks N a

1 and N2 of figure 26, respectively.
(The other cases are addressed in a similar way.) Using the notation
of figure 26 for N a

1 , assume that the quotient N a
1 is determined from

by X1 by taking A1 ∈ {C1,C2} and A2 ∈ {C3,C4}. Note that the
cell A2 has only one output going to an input of the second type —
shown using a dashed connection in figure 26. Since N is transitive,
N has one dashed output from the output of the cell C3 to one of the
cells in {C1,C2} and has one dashed output going out from the cell
C4 to the other cell in {C1,C2}. Now the coupled cell network defined
by the synchrony class {C1,C3‖C2,C4} is N2 and N2 has no dashed
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outputs from one of the cells (the second cell in figure 26). Thus ei-
ther there are no dashed outputs from both of the cells C1,C3 or there
are no dashed outputs from both of the cells C2,C4. Either case is a
contradiction. �

Theorem 6.8. Let N be a four cell transitive coupled cell network
consisting of identical cells with two asymmetric inputs. Suppose that
there exist synchrony classes X1 = {X1

1 , X
2
1} and X2 = {X1

2 , X
2
2}. The

coupled cell networks associated to the synchrony classes defined by X1

and X2 correspond to two distinct two cell networks from {N1,N
a
1 ,N2}

(figure 26) if and only if the four cell network is equivalent to one of
the networks H1,H2,K1, . . . ,K7.

Proof. By propositions 6.3—6.5, the networks H1,H2,K1, . . . , K7 give
a complete set (up to equivalence) of four cell transitive networks that
are inflations of the three cell networks N3, N4. On the other hand, the
network N3 can be obtained by inflating one of the two cell networks
N1 or N a

1 , and N4 can be obtained by inflating one of the two cell
networks N a

1 or N2 (recall figure 26).
If the coupled cell networks associated to the synchrony classes de-

fined by X1 and X2 correspond to distinct networks in {N1,N
a
1 ,N2},

then by theorem 6.7 the coupled cell network associated to the syn-
chrony class defined by X12 is a three cell network equivalent to N3 or
to N4. Thus, N is an inflation of N3 or N4 and so is equivalent to one
of the networks H1,H2,K1, . . . ,K7. �

Remark 6.9. Coupled cell systems corresponding to the network ar-
chitectures H1,H2,K1, . . . ,K7 all support robust simple heteroclinic
cycles.

6.2. More general inflations of a three identical cell network.

If p ≥ 3, there are no p-fold simple inflations of the three identical
cell network N3 since cells in N3 have two outputs and no self-inputs.
On the other hand, if we simply inflate N3 at A1 to get the four cell
network H1 then we can inflate H1 at A2 and so obtain a five cell
network with synchrony space {A11,A12‖A21,A22}. There are various
possibilities depending on whether or not {A11,A12} is synchrony class
(of course, if we inflate first at A1 and then at A2, {A21,A22} is always
a synchrony class). In figure 30, we show an example where {A11,A12}
and {A21,A22} are synchrony classes. If instead we had taken the A22-
output as input into A12, then {A11,A21} would not be a synchrony
class. Both architectures define the same invariant subspace supporting
a heteroclinic cycle.
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A12

A11

A22

A21

A3

Figure 30. Inflating N3 to a five cell network by a sim-
ple inflations at A1 and A2.

The situation is quite different for N4 (giving another proof that N3

and N4 are inequivalent). In this case there are many ways of inflating
to a transitive five cell network by replacing the middle cell by three
cells A21,A22,A23. We indicate one possibility in figure 31. Notice
that there are nine different ways of connecting the cells A21,A22,A23

to A1 and A3. There are a total of 27 ways of interconnecting the cells
A21,A22,A23. In all therefore there are 243 ways of inflating N4 at
A2 to a five cell network. Of course, many of the resulting networks
will be equivalent and not all are transitive. For the network shown in
figure 31, there are non-maximal synchrony classes: {A21,A22,A23},
{A1,A21,A22,A23}, {A1,A3‖A21,A22,A23}, and {A1,A21}. A simple
heteroclinic cycle for N4 lifts to a heteroclinic cycle with connections
in {A1,A21,A22,A23} and {A1,A3‖A21,A22,A23}. A straightforward
computation shows that this cycle can never be a simple (or attracting)
heteroclinic cycle.

If we carry out a sequence of simple inflations on N3 so as to arrive
at a transitive network which has r cells defining a synchrony class
corresponding to A1, s cells defining a synchrony class corresponding
to A2 and t cells defining a synchrony class corresponding to A3, then
we must have

r + s ≥ t, s + t ≥ r, t + r ≥ s.

This condition is forced by the transitivity requirement (in particular,
no slaved subnetworks). If we have equality, say r + s = t, then we
are blocked from simple inflation of any of the t cells associated to A3.
However, if r + s = t, then we must have s + t > r and t + r > s and
so we can always simply inflate one of the cells associated to A1 or A2.
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A1 A3

A21

A22

A23

Figure 31. A 3-fold simple inflation of N4 at A2.

On the other hand, for N4, we are never blocked from making simple
(or p-fold) inflations on cells arising from the cell A2. Following the
previous notation, the constraints on simple inflation are

r ≤ t, t ≤ r + s

and we get blocked from making simple inflation on cells arising from
A1 if r = t and on simple inflation on cells arising from A3 if t = r + s.
The fact that the constraints on the two three cell networks are different
provides yet another demonstration that the networks are inequivalent.

Remark 6.10. The necessary conditions given above are special cases of
a more general conjecture that has recently been proved by Agarwal.
Suppose the network N has cells {C1, · · · ,Ck}. Denote the adjacency
matrix of N by A (section 2.2). Then there exists a transitive inflation
Π : M→N of N with nj = #Π−1(Cj), 1 ≤ j ≤ k, if and only if
A(n1, · · · , nk) ≥ (n1, · · · , nk). We refer to [4] for details of the proof
and examples.

7. Heteroclinic cycles for general networks of

identical cells

The coupled cell networks N3 and N4 are (up to equivalence) the
only three identical cell, two asymmetric input coupled cell networks
supporting robust simple heteroclinic cycles. We now give sufficient
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conditions for the existence of robust heteroclinic cycles in a general n
identical cell network with two inputs.

Theorem 7.1. Let N be a transitive coupled cell network consisting of
identical cells with two (asymmetric) inputs. Suppose that there exist
synchrony classes X1 = {X1

1 , X
2
1} and X2 = {X1

2 , X
2
2}. If r = r(X12) =

3, then the coupled cell network associated to the synchrony class de-
fined by X12 is equivalent to one of the networks N3,N4. In particular,
the network architecture N supports robust heteroclinic cycles.

Proof. Since r = 3, we may relabel the partitions so that X1
1 ⊂ X1

2

and X2
1 ⊃ X2

2 . Set A = X1
2 ∩ X2

1 , B = X1
1 , and C = X2

2 . The
network associated to X12 can be identified with a coupled cell network
M with three identical cells A,B,C corresponding respectively to the
partition sets A,B,C. Since A,B ⊂ X1

2 , {A,B} is a synchrony class
of M, and since A,C ⊂ X2

1 , {A,C} is a synchrony class of M. It
follows from section 5 that up to equivalence the only three identical
cell two asymmetric input coupled cell networks that have two or more
non-maximal synchrony classes are N3 and N4 (in particular, {B,C}
cannot be a synchrony class). �

Next we give a sufficient condition that denies the existence of robust
heteroclinic cycles of a certain type (although it does not guarantee that
there are no heteroclinic cycles of other types).

Theorem 7.2. Let N be a transitive coupled cell network consisting
of identical cells with two (asymmetric) inputs. Suppose that there
exist synchrony classes X1 = {X1

1 , X
2
1} and X2 = {X1

2 , X
2
2} and r =

r(X12) = 4. Then the network architecture N cannot support robust
simple heteroclinic cycles with hyperbolic saddle points on the maximal
synchrony subspace with one-dimensional unstable manifold contained
in either of the synchrony subspaces defined by X1 or X2.

Proof. Set A = X1
1 ∩X1

2 , B = X1
1 ∩X2

2 , C = X2
1 ∩X2

1 and D = X2
1 ∩X2

2 .
The network associated to X12 can be identified with a coupled cell
network M with four cells A,B,C,D corresponding respectively to the
partition sets A,B,C,D. Since A,B ⊂ X1

1 , C,D ⊂ X2
1 , {A,B‖C,D}

is a synchrony class of M. Denote the corresponding partition by Y1.
Since A,C ⊂ X1

2 , B,D ⊂ X2
2 , {A,C‖B,D} is a synchrony class of M.

Denote the corresponding partition by Y2. We have that r(Y12) = 4.
The result now follows from theorem 6.7. �

Remark 7.3. Let N be a transitive coupled cell network consisting of
identical cells with two (asymmetric) inputs. The coupled cell systems
corresponding to the network N can support robust simple hetero-
clinic cycles with hyperbolic saddle points on the maximal synchrony
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subspace with one-dimensional unstable manifold contained in two-
dimensional synchrony subspaces S1 and S2 if and only there exist
synchrony classes X1 = {X1

1 , X
2
1} and X2 = {X1

2 , X
2
2} defining the

synchrony subspaces S1 = ∆ (X1) and S2 = ∆ (X2) and such that
r = r(X12) = 3.

Example 7.4. Following the proof of theorem 7.2, it is natural to ask
whether if S1 = {A,B‖C,D} and S2 = {A,C‖B,D} are synchrony
subspaces it is possible for there to be a network architecture with these
synchrony subspaces which supports robust simple heteroclinic cycles
with connections in S1,S2 and equilibria in the maximal synchrony sub-
space? (We assume four cells.) We give a simple construction based
on inflation (see [4]). In this case we allow some symmetric inputs.

We start with a 2 cell unidirectional network with cells having two
symmetric inputs (see figure 32). We inflate M at C1 and C2; replacing

C1 C2M

Figure 32. Unidirectional network M, symmetric inputs.

C1 by A,C and C2 by B,D. There is more than one way to do this
(see [10, 4]); we use the network architecture M1 shown in figure 33.

M1

C

BA

D {A,C||B,D}

{A,B||C,D}

Synchrony Subspaces

Figure 33. Inflating M to a 4 cell network M1.

It is easy to check that M1 has synchrony subspaces {A,B‖C,D}
and {A,C‖B,D}. For 1-dimensional cell dynamics both synchrony
subspaces are of codimension 2. Computing the eigenvalues of the lin-
earization of a model vector field f at an equilibrium p on the maximal
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synchrony subspace, there is a double eigenvalue and if the unstable
manifold of f restricted to {A,B‖C,D} is one-dimensional, then the
unstable manifold of p must be at least 2-dimensional. Hence there
can be no simple heteroclinic cycles connecting points on the maxi-
mal synchrony subspace (it does not help to take asymmetric inputs).
However, if we add a new input type and define the architecture M2

shown in figure 34, then M2 supports robust attracting simple hete-
roclinic cycles. On account of the codimension of synchrony subspaces
being bigger than one, there is the possibility of switching between
connections, even though there are no complex eigenvalues.

M2
{A,C||B,D} 

{A,B||C,D}    

Synchrony Subspaces
BA

C D

Figure 34. The network architecture M2 supporting
robust heteroclinic cycles.

7.1. A network with six identical cells. As an illustration and ap-
plication of some of our results, we investigate the possibility of robust
heteroclinic cycles for coupled cell systems modelling the coupled cell
network L shown in figure 35 and considered in [21]. We keep the same
notation that was used in [21]: we emphasize that the cells are identi-
cal with asymmetric inputs. Later we exploit the A,B,C notation to
describe what happens in this example when we allow for more than
one class of cell.

One may verify that L has seven non-maximal synchrony classes

S1 = {A1,A2‖B1,B2,C1,C2}, S2 = {B1,B2‖A1,A2,C1,C2},

S3 = {A1,A2‖B1,B2‖C1,C2}, S4 = {B1,B2‖A2,C1,C2},

S5 = {B1,B2‖C1,C2}, S6 = {B1,B2}, S7 = {C1,C2}.

(If we assume symmetric inputs, then S8 = {A1,A2‖B1,C1‖B2,C2}
is also a synchrony class and L has a Z2-symmetry generated by the
cell permutation A1 ↔ A2, B1 ↔ C1, B2 ↔ C2, see [21] for more de-
tails. Note that this shows that theorem 3.8 fails if we allow symmetric
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L
A

A

B

B

1

2

1

2

C

C

1

2

Figure 35. The six identical cell network L with asym-
metric inputs.

inputs: take X1 to be the partition defined by S8 and X2 the partition
defined by S1.)

If we take the two set partitions Xi defined by Si, i = 1, 2, then
r(X12) = 3 and theorem 7.1 applies. The synchrony class defined by X12

is S3 and it is easy to check that the coupled cell network P obtained
by restricting to S3 is equivalent to N3 — see figures 36, 16 and note
the equivalence with N3 is defined by a permutation of cells A and
C. The network P has synchrony classes {A,C} and {B,C} and

A B C

P

Figure 36. The network P on S3.

so coupled cell systems modelling L can support heteroclinic cycles
between pairs of equilibria lying in the maximal synchrony class S =
S(F) and with connections in S2 and S1. Assume 1-dimensional cell
dynamics modelled by an ordinary differential equation defined by f =
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f(x, y, z) : R
3→R. Take coordinates (a1, a2, b1, b2, c1, c2) on the phase

space R
6. The linearization Jf (p) of the differential equation at an

equilibrium p ∈ S = ∆(R6) is given by

(7.12) J(p) =















α 0 β 0 0 γ
0 α 0 β γ 0
γ 0 α 0 β 0
γ 0 0 α β 0
0 γ β 0 α 0
0 γ β 0 0 α















,

where α = ∂f

∂x
(p), β = ∂f

∂y
(p), γ = ∂f

∂z
(p). Assume βγ 6= 0 and set

ρ = −β

γ
. In table 3 we list the eigenvalues of J(p) and indicate which

synchrony classes(s) contain the corresponding eigenspaces.

Eigenvalue Multiplicity Simplicity Eigenspace

α + β + γ 1 Simple S(L)

α 3 Not simple {(ρt, u, ρ−1u, ρ−1t, t, u) | (t, u) ∈ R
2}

α − β 1 Simple ⊂ {B1,B2‖A1,A2,C1,C2}
α − γ 1 Simple ⊂ {A1,A2‖B1,B2,C1,C2}

Table 3. Eigenspace data for J(p).

Since we can choose α, β, γ so that α, α + β + γ < 0 and γ < α < β
or β < α < γ there are no local obstructions to choosing f so that
the unstable manifold of p is 1-dimensional and lies in either S1 =
{A1,A2‖B1,B2,C1,C2} or S2 = {B1,B2‖A1,A2,C1,C2}. Since we
have previously shown there are no global obstructions to constructing
a simple heteroclinic cycle for the coupled cell systems associated to the
network N3, the network architecture L can support simple heteroclinic
cycles with connections in S1,S2.

This is not the only type of simple heteroclinic cycle supported by
the network architecture L. We claim there exist coupled systems that
support a simple attracting heteroclinic cycle between two equilibria
on the synchrony subspace S5 = {B1,B2‖C1,C2} with connections
in S6 = {B1,B2} and S7 = {C1,C2}. Unlike the previous cycle, the
existence of this cycle cannot be deduced from the existence of a cycle
on a synchrony subspace as S6 and S7 are not contained in a synchrony
subspace. We give a few details of the computations that show it is
possible to choose 1-dimensional cell dynamics for which there exists a
simple heteroclinic cycle. As usual this breaks into a local computation
and a verification that there are no global obstructions for the existence
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of 1-dimensional connections. We sketch below the local computations
needed for this.

Assume one-dimensional cell dynamics and an equilibrium at p =
(a1, a2, b, b, c, c) ∈ S5. Let f = f(x, y, z) : R

3→R model the dynamics
and suppose

∂f

∂x
(a1; b, c) = α1,

∂f

∂y
(a1; b, c) = β1,

∂f

∂z
(a1; b, c) = γ1

∂f

∂x
(a2; b, c) = α2,

∂f

∂y
(a2; b, c) = β2,

∂f

∂z
(a2; b, c) = γ2

∂f

∂x
(b; c, a1) = α3,

∂f

∂y
(b; c, a1) = β3,

∂f

∂z
(b; c, a1) = γ3

∂f

∂x
(c; b, a2) = α4,

∂f

∂y
(c; b, a2) = β4,

∂f

∂z
(c; b, a2) = γ4.

The linearization of the vector field determined by f at p is

(7.13) J(p) =















α1 0 β1 0 0 γ1

0 α2 0 β2 γ2 0
γ3 0 α3 0 β3 0
γ3 0 0 α3 β3 0
0 γ4 β4 0 α4 0
0 γ4 β4 0 0 α4















.

Noting that S5 is J(p)-invariant, the matrix of J(p)|S5 = JBC is

(7.14) JBC =









α1 0 β1 γ1

0 α2 β2 γ2

γ3 0 α3 β3

0 γ4 β4 α4









.

We have similar expressions for JB = J(p)|S5 and JC = J(p)|S6. For
a simple cycle, we require that all eigenvalues of JBC(p) are strictly
negative. Since S6 ⊃ S5 and both spaces are J(p)-invariant, we see
that the eigenvalue of JB with eigenline transverse to S5 must be α4.
This is because the sum of the eigenvalues of JBC(p) is α1+α2+α3+α4,
while the sum of the eigenvalues of JB is α1 + α2 + α3 + 2α4. Similarly
the eigenvalue of JC with eigenline transverse to S5 must be α3. Hence
for a simple cycle with saddle at p we must have

α3α4 < 0,

and all eigenvalues of JBC strictly negative. It is not hard to choose the
αi, βi, γi to achieve this. For example, if we take α1 = α2 = α4 = −1,
α3 = 1, and β1, γ1, γ3 = 0, then the characteristic equation of JBC is of
the form (1+λ)(λ3 +λ2 +Aλ+B) where we can choose A,B freely (in
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terms of β2, β3, β4, γ2, γ4). It is easy to check that we can choose A,B
so that the equation has all four roots negative.

7.2. Coexisting cycles and attracting heteroclinic networks. It
is clear that both heteroclinic cycles described above can coexist in a
coupled cell systems modelling the network L. Moreover, we can also
arrange that both cycles are asymptotically attracting (without going
into any detail, this amounts to the contracting eigenvalues dominating
the expanding eigenvalues at the saddle points). It is likely that there
are robust heteroclinic networks supported by the network architec-
ture L. We describe one possible scenario (we have not checked all of
the eigenvalue conditions on linearizations at equilibria). It is consis-
tent with the invariant subspace structure that there are connections
contained in S6 from a saddle on S5 to a saddle on S2 which in turn
connects to saddle on S1. The latter saddle can connect via a robust
1-dimensional connection in S3 to a second saddle on S1 which can then
connect to a second saddle on S2 which then connects within S6 to a
second saddle on S5 which in turn connects by a robust 1-dimensional
connection in S7 back to the original saddle on S5. In Appendix A we
briefly discuss the case of symmetric inputs for this network.

7.3. Multiple cell classes. Instead of assuming identical cells in L,
suppose that there are three cell classes A, B, C. Denote the cor-
responding network by L1. The maximal synchrony subspace for L1

will be S3 = {A1,A2‖B1,B2‖C1,C2} and the non-maximal synchrony
classes will be S5, S6, S7. Exactly as for L, there exist coupled cell sys-
tems associated to L1 which support robust simple heteroclinic cycles
with equilibria on S5 and connections in S6 and S7. In particular, it is
not necessary to have three identical cells for there to be robust simple
heteroclinic cycles. If we define L2 by taking two cell classes A and
B = C, then the maximal synchrony subspace will be S1 and S3 will be
a non-maximal synchrony class. As before L2 supports robust simple
heteroclinic cycles with equilibria on S5 and connections in S6 and S7.
Finally, if we take two cell classes A = C and B to define the network
L3, then S2 will be the maximal synchrony class and S3, . . . ,S7 will
all be synchrony classes. As before, the network L3 supports robust
simple heteroclinic cycles. The networks L1, L2, L3 do not support
a robust simple cycle with connections lying in S1 and S2. This is
simply because if we break the identical cell structure we change the
maximal synchrony class and one or other of S1 and S2 ceases to be a
synchrony class. There remains the problem of describing bifurcations
of this heteroclinic cycle when we break the identical cell structure.
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8. Discussion

A crucial aspect in the area of coupled cell networks is to character-
ize how dynamics of the underlying coupled cell systems depends on
the network architecture. One fundamental property of coupled cells
is that the network structure forces the existence of subspaces that
are flow-invariant under the associated coupled cell systems – the syn-
chrony subspaces. These should have an important role in the kinds
of dynamics that can occur, and a significant step in understanding
the dynamics forced by the network architecture is the classification of
these patterns of synchrony. In [9] there is work in progress towards
this classification.

An important question that we address in this paper is the existence
of (robust) heteroclinic cycles in non-symmetric coupled cell systems
forced by these synchrony spaces. We mention the setting of sym-
metric dynamical systems, where the natural flow invariant subspaces
correspond to fixed-point subspaces and heteroclinic behaviour occurs
in a robust manner. One of the novelties of our work is that small
and simple asymmetric networks with one- or two-dimensional cell dy-
namics can support robust heteroclinic phenomena, and we give three
ODE examples of such cycles in quite different dynamical settings. We
have emphasized the case of relatively small but nontrivial networks of
identical cells, usually with asymmetric inputs and modelled by ODEs.

The second novelty of our results is the contribution to the design
theory of coupled cell networks with prescribed dynamical behaviour.
Using the technique of inflation (an inverse process to that of forming
a quotient network) we show how it is possible to construct network
architectures supporting robust simple heteroclinic cycles and hetero-
clinic networks in a systematic way. Although our focus is on cells
with asymmetric inputs, it is interesting to consider cells whose inputs
are all of the same type. The latter should include types of network
examined by other authors, for example [8, 27].

We feel that very natural problems are to identify natural families of
networks that possess common dynamical features (such as robust hete-
roclinic cycles and heteroclinic networks), and to explore ways in which
one can combine small networks with “known” dynamics (“motifs”) so
as to construct larger networks with specific dynamical properties.

One particular result from our investigation is that dynamics does
not depend on the precise network architecture; it only depends on the
structure up to dynamical equivalence. In many cases, it is possible
to work with either input or output equivalence and we refer to [5, 6]
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where the relations between input and output equivalence and dynam-
ical equivalence are investigated and shown to be equivalent in many
contexts. However, it still remains to find effective ways of determining
equivalence for large networks of coupled oscillators or networks with
a more hierarchical and heterogenous structure. We would expect that
various forms of equivalence (dynamical, input and output) are likely
to play an important role in clarifying and organizing the design of
larger networks.

Finally, in this work we have restricted to cases where the network is
transitive and one cannot split off autonomous systems that may force
other parts of the system (that is, we assume there are no slaved net-
works). There are some results on the decomposition of non-transitive
networks, for example [21], and the question of two forcing subsystems
with robust heteroclinic attractors is likely to be of particular inter-
est and could be approached with [15]. Other directions of particular
interest to investigate using our framework are symbolic and measure
dynamics [3] as well as bifurcation from synchrony [24, 11] and ‘forced
symmetry breaking’ from symmetric to asymmetric inputs. There are
also many outstanding questions about bifurcation from heteroclinic
cycles and dynamics near heteroclinic networks, in particular switch-
ing [7, 35] and we believe the methods in the paper should be useful in
approaching these problems.

Appendix A. Bifurcation from symmetric inputs

Suppose the network L of section 7.1 has symmetric inputs. The net-
work defined by restriction to the synchrony class S3 is D3-equivariant,
where D3 is the dihedral group of order 6 (isomorphic to the symmet-
ric group S3). If we assume dynamics given by ordinary differential
equations then dynamics on S3 are given by

x′
A = f(xA;xB,xC),(A.15)

x′
B = f(xB;xA,xC),(A.16)

x′
C = f(xC ;xA,xB).(A.17)

where f(x;u,v) is symmetric in u,v. Any D3-symmetric solution
to these equations determines a (synchronous) solution lying in the
maximal synchrony class. In general, an asymmetric solution of the
equations determines a solution lying in S3. One way of obtaining
such a solution is via a D3-equivariant Hopf bifurcation from a D3-
symmetric equilibrium of the equations (A.15,A.16,A.17). This solu-
tion will determine three pairs of hyperbolic periodic solutions for the
coupled cell systems corresponding to the network L, each differing
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by a phase which is a multiple of 2π/3 [25]. That is, each of the cell
pairs {A1,A2}, {B1,B2}, {C1,C2} will oscillate synchronously with
the same frequency but each pair will be ±2π/3 out of phase with the
other pairs (see [28, §5] for another example of this type that depends
on an interesting variation of the Hopf bifurcation argument). Now
suppose we allow inputs to be asymmetric. As we break symmetry of
inputs, the triple of hyperbolic periodic solutions for the coupled cell
systems corresponding to the network L will persist except that the
phase differences will now only be approximately ±2π/3.
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