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Abstract

Some invariant sets may attract a nearby set of initial conditions but nonetheless
repel a complementary nearby set of initial conditions. For a given invariant set X ⊂ R

n

with a basin of attraction N , we define a stability index σ(x) of a point x ∈ X that
characterizes the local extent of the basin. Let Bǫ denote a ball of radius ǫ about x.
If σ(x) > 0, then the measure of Bǫ \ N relative the measure of the ball is O(ǫ|σ(x)|),
while if σ(x) < 0, then the measure of Bǫ ∩N relative the measure of the ball is of this
order. We show that this index is constant along trajectories, and we relate this orbit
invariant to other notions of stability such as Milnor attraction, essential asymptotic
stability and asymptotic stability relative to a positive measure set. We adapt the
definition to local basins of attraction (i.e. where N is defined as the set of initial
conditions that are in the basin and whose trajectories remain local to X).

This stability index is particularly useful for discussing the stability of robust hete-
roclinic cycles, where several authors have studied the appearance of cusps of instability
near cycles that are Milnor attractors. We study simple (robust heteroclinic) cycles
in R

4 and show that the local stability indices (and hence local stability properties)
can be calculated in terms of the eigenvalues of the linearization of the vector field at
steady states on the cycle. In doing this, we extend previous results of Krupa and Mel-
bourne (1995,2004) and give criteria for simple heteroclinic cycles in R

4 to be Milnor
attractors.
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1 Introduction

For many choices of smooth vector field f : R
n → R

n, the system on x ∈ R
n

ẋ = f(x) (1)

has a small subset of R
n (an attractor) that attracts a large set of initial conditions; these

attractors are important for understanding the long term behaviour of trajectories of the
system. In this paper we explore the local attraction structure of invariant sets, while in
the latter part we focus on a particular class of examples - attracting heteroclinic cycles.
More precisely, an invariant set is asymptotically stable if it attracts all nearby points; many
systems are found to possess invariant sets that are not asymptotically stable, but that are
attractors in a weaker sense (e.g. in the sense of Milnor [20]).

Now consider ξ1, . . . , ξm to be hyperbolic equilibria of (1). A set of connecting trajectories
W u(ξj) ∩W

s(ξj+1) 6= ∅, j = 1, . . . ,m, ξm+1 = ξ1, is called a heteroclinic cycle between these
equilibria. It has been shown that heteroclinic cycles can be robust (persistent to small per-
turbations) if f is constrained to be symmetric with respect to certain group representations
[15, 4, 22], or if f is constrained to preserve certain invariant subspaces [15]. Heteroclinic
cycles that are not asymptotically stable may often be observed to be apparently stable in
computations. To explain this, weaker notions of stability for heteroclinic cycles sets were
introduced in [19, 17, 13] - they do not require attraction in a full neighbourhood of the in-
variant set; they may even be repelling in a region that is typically cusp-shaped in Poincaré
sections to the cycle. The papers [19, 17] define a heteroclinic cycle to be essentially asymp-
totically stable (e.a.s.) if it attracts almost all nearby trajectories, and they define it to be
almost completely unstable (a.c.u.), if it attracts almost no nearby trajectories. However, as
shown in [13] these definitions are not mutually exclusive. (Brannath [9] similarly discusses
e.a.s. using the notion of relative asymptotic stability from Ura [23].)

The paper is organized as follows: in Section 2 we discuss various definitions of stability,
and we relate them to the notion of Milnor attractor and the local geometry of the basin of
attraction. We introduce a stability index that characterizes the local geometry of the basin
of attraction. After proving some basic properties about this invariant of the dynamics,
we generalize to a local stability index that is the limit of stability indices of local basins of
attraction. In Section 3 we discuss the structure of heteroclinic cycles and describe the geom-
etry of local basins of attraction by way of the local stability index and (Poincaré) surfaces
of section. We show, under certain assumptions, that the stability index of a connecting
trajectory is the stability index on a surface of section.

Section 4 computes the stability indices for robust heteroclinic cycles in R
4; we employ

the classification of simple cycles in R
4 into Types A-C by Krupa and Melbourne in a

series of papers [16, 17, 18] and calculate the stability indices of the connections in terms
of eigenvalues of the linearization at equilibria in the cycle. Finally we discuss some of the
limitations and possible further uses of stability indices and related concepts in Section 5.
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2 Attractors and the stability index

Various definitions of attraction of invariant sets have been introduced [9, 17, 19, 23] to
describe sets that are not asymptotically stable but that are nevertheless attracting in some
sense. We review these notions and relate them to Milnor’s notion of a measure attractor
[20].

2.1 Notions of attraction for invariant sets

In this section we consider a smooth flow Φt(x) on R
n. Two very general notions of attraction

are the Milnor and weak attractors discussed in [20] and [6] respectively. For an invariant
set X ⊂ R

n we define the (global) basin of attraction of X to be

B(X) = {x ∈ R
n : ω(x) ⊂ X}

where ω(x) =
⋂

T>0 {Φt(x) : t > T} is the ω-limit of x. The following defines attraction
properties of X in terms of this basin. We use ℓ(·) to denote Lebesgue measure on R

n.

Definition 1 [6] We say a compact invariant set X is a weak attractor if ℓ(B(X)) > 0.
We say a compact invariant set X is a Milnor attractor if it is a weak attractor such that
for any proper subset Y ⊂ X that is compact and invariant we have

ℓ(B(X) \ B(Y )) > 0.

We do not assume transitivity of X (a dense orbit); indeed, the main examples we will
consider later on are heteroclinic cycles that are not transitive. Note that any weak attractor
contains a Milnor attractor [6, Lemma 3.2]. There are various examples of robust heteroclinic
cycles (e.g. [19, 9, 13]) that are Milnor attractors, even though they are not asymptotically
stable. Let d(·, ·) denote the Hausdorff distance between two sets, let

Bǫ(X) := {x ∈ R
n : d(x,X) < ǫ}

denote the ǫ-parallel body of X, and let Dc denote the complement of D in R
n.

Definition 2 [19] We say a compact invariant set X is essentially asymptotically stable
(e.a.s.), if there is a set D such that for any open neighbourhood U of X and any ǫ > 0 there
exists an open neighbourhood V ⊂ U of X such that:

(a) If x0 ∈ V ∩Dc then Φt(x0) ∈ U for all t > 0 and limt→∞ d(Φt(x0), X) = 0,

(b) ℓ(V ∩Dc)/ℓ(V ) > 1 − ǫ.

Intuitively, if X is e.a.s. one might expect that it attracts “almost all” nearby trajectories,
while [17] says X is almost completely unstable1 if it attracts “almost none” of them. How-
ever, these definitions do not formalise these intuitive categories very well; as highlighted in

1A flow-invariant set X is called almost completely unstable (a.c.u), if there is a set D and an open
neighbourhood U of X such that for some ǫ > 0 there exists an open neighbourhood V of X, V ⊂ U , such
that (a) for x0 ∈ V \ D there exists a t > 0 with Φt(x0) /∈ U ; and (b) ℓ(V ∩ Dc)/ℓ(V ) > 1 − ǫ.
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[13], they are not mutually exclusive and so may yield classifications that are not intuitively
helpful. Another useful definition is that of [23] which is used in [9]: for this we consider a
set N ⊂ R

n.

Definition 3 [23] We say a compact invariant set X with X ⊂ N is asymptotically stable,
relative to (a.s.r.t.) N if for every neighbourhood U of X there is a neighbourhood V of X
such that for all initial x ∈ V ∩N we have Φt(x) ∈ U for t > 0, and ω(x) ⊂ X.

In fact, Brannath [9] interestingly suggests that the authors of [19, 17] had the following
definition in mind for e.a.s., but we name it differently to distinguish from the original
definition in [19].

Definition 4 (Adapted from [9]) We say a compact invariant set X is predominantly asymp-
totically stable (p.a.s.) if there is an N such that X is asymptotically stable relative to N
and

lim
ǫ→0

ℓ(Bǫ(X) ∩N)

ℓ(Bǫ(X))
= 1.

We now give a result that relates these concepts of attraction.

Theorem 2.1 Suppose that X is a compact invariant set for a continuous flow Φt.

(a) X is p.a.s. ⇒ X is e.a.s.

(b) X is e.a.s. ⇒ X contains a Milnor attractor.

(c) X is e.a.s. ⇔ there is an N with ℓ(N ∩ A) > 0 for any neighbourhood A of X, such
that X is a.s.r.t. N .

Before proving this theorem, we give a useful lemma that will be used in the proof. For
any measurable set N we define the density of N at x to be

F (x) = lim
ǫ→0

ℓ(Bǫ(x) ∩N)

ℓ(Bǫ(x))

and recall that the Lebesgue Density Theorem [11] states that for ℓ-almost all x ∈ N we
have F (x) = 1. In such a case we say that x is a point of Lebesgue density for N .

Lemma 2.1 Suppose that N has positive measure and Y be any closed and bounded subset
of N with zero measure. Then for any ǫ > 0 one can find an open set V containing Y with

ℓ(V ∩N)/ℓ(V ) > 1 − ǫ.
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Proof: Although Y need not contain any points of Lebesgue density for N , there is at least
one point x ∈ N of Lebesgue density, and so we choose δ > 0 such that

ℓ(Bδ(x) ∩N)/ℓ(Bδ(x)) > 1 −
ǫ

2
.

Now let V = Bδ(x)∪Bη(Y ). Because of outer regularity of ℓ, η can be chosen small enough
to ensure that ℓ(Bη(Y )) is as small as desired, and hence the result holds. QED

With a slight modification of the argument, one can assume that V is connected and
open in the statement of the above Lemma; however it may be very far from being a ball in
terms of the relationship between diameter and volume of the set.

Proof: [of Theorem 2.1] For (a) suppose that X is p.a.s. and let N be a set for which X is
a.s.r.t.. By Definition 4, for any ǫ > 0 there exists a δ0 > 0 such that

ℓ(Bδ(X) ∩N)

ℓ(Bδ(X))
> 1 − ǫ

for all δ < δ0. In Definition 2 we set N = Dc and V = Bδ(X) (where δ is sufficiently small
so that Bδ(X) ⊂ U), and we prove that X is e.a.s.. For (b), note that this follows because
N = Dc is a subset of the basin of attraction of X and has positive measure as ℓ(V ∩N) > 0
for some set V . Hence it is a weak attractor, and contains a Milnor attractor [6]. Finally,
for case (c) suppose firstly that X is e.a.s., then it is stable relative to the set N = Dc and
ℓ(N ∩ A) > 0 for any neighbourhood A of X. The converse for (c) follows similarly, on
applying Lemma 2.1. QED

There are examples that show that, in general, converses of (a,b) do not hold; for a
counterexample to the converse of (a) we refer to [13] who present heteroclinic cycles that are,
in our terminology, e.a.s. but not p.a.s.. For a counterexample to the converse of (b), there
are “unstable attractors” [7], though only for a weaker assumption - that Φt is a semiflow.
These “unstable attractors” are Milnor attractors that have zero basin measures within a
small enough neighbourhood of the attractor. It is not clear whether the converse of (b) is
true for flows (possibly subject to some smoothness assumptions). Note that Theorem 2.1
is a generalization of comments already made in [9, p1369] which assume N to be an open
set. There are examples of heteroclinic cycles that are not asymptotically stable relative to
any open set, but that do seem to be asymptotically stable relative to a positive measure
“riddled” set [2].

2.2 Geometry of global basins: the stability index

We suggest that it is useful to distinguish between different local geometries for e.a.s. sets.
To this end, consider X an invariant set in R

n and let N = B(X) denote its (global) basin
of attraction; we assume that the flow Φt is smooth. Pick a point x ∈ X, define

Σǫ(x) =
ℓ(Bǫ(x) ∩N)

ℓ(Bǫ(x))
(2)
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Figure 1: Schematic diagram illustrating how the stability index σ(x) of a point x ∈ X
relates to the local geometry of the basin of attraction of X (shaded region). For σ(x) > 0,
the measure of points in a ball of radius r that are in the complement of the basin goes to
zero, relative the measure of the ball, as r|σ(x)|. For σ(x) < 0, this estimate applies to the
basin itself.

and note that 0 ≤ Σǫ(x) ≤ 1.

Definition 5 For a point x ∈ X we define the stability index of X at x to be

σ(x) := σ+(x) − σ−(x)

which exists when the following converge

σ−(x) := lim
ǫ→0

[
ln(Σǫ(x))

ln(ǫ)

]
, σ+(x) := lim

ǫ→0

[
ln(1 − Σǫ(x))

ln(ǫ)

]
.

We use the convention that σ−(x) = ∞ if there is an ǫ0 > 0 such that Σǫ(x) = 0 for all
ǫ < ǫ0, and σ+(x) = ∞ if Σǫ(x) = 1 for all ǫ < ǫ0. Note that σ±(x) ≥ 0 and so we can
assume that σ(x) ∈ [−∞,∞].

The stability index may not exist at certain points inX (an example is given in Section 5),
and may vary throughout X when it does exist. Figure 1 illustrates how the local geometry
of the basin relates to the sign of σ(x) for a point x ∈ X. Note that σ(x) = +∞ is
the “strongest” form of local stability while −∞ is the “weakest”. The following Lemma
characterizes some basic properties of the index:

Lemma 2.2 Suppose that σ(x) is defined for some x ∈ X ⊂ R
n; then the following hold:

(a) If one of σ±(x) converges to a positive value then the other converges to zero (i.e. only
one of σ+(x) and σ−(x) can be non-zero).

(b) If σ(x) = c > 0 then 1 − Σǫ(x) = O(ǫc) (and in particular Σǫ(x) → 1 as ǫ→ 0).
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(c) If σ(x) = −c < 0 then Σǫ(x) = O(ǫc) (and in particular Σǫ(x) → 0 as ǫ→ 0).

Proof: For (a) note that if σ−(x) > 0 then limǫ→0 Σǫ(x) = 0; this implies that 1 − Σǫ

converges to 1 as ǫ → 0 and so σ+(x) = 0. The other case is argued in a similar way. (b)
follows on noting by (a) that c = σ(x) = σ+(x) > 0 and σ−(x) = 0. Hence we have from the
definition of σ+(x) that 1 − Σǫ(x) = O(ǫc). A similar argument gives (c). QED

The main result in this section is the following; this can be generalized to cases where
σ(x) is measured relative to any measurable invariant set N .

Theorem 2.2 Suppose that N = B(X) is the basin of X for a measurable invariant set for
a C1-smooth flow Φt(x). Then for any x the index σ(x) is constant on trajectories, whenever
it is defined.

Proof: Fix x ∈ X such that σ(x) is defined, and pick any t > 0. Let φ(x) = Φt(x). Because
φ is a C1 diffeomorphism, one can find an η > 0 such that there is an L > 1 and an M > 1
with

1

L
< det(Dφ(y)) < L,

1

M
< ‖Dφ(y)‖ < M (3)

for all y ∈ Bη(x), where D denotes the derivative (Jacobian) of the map. We assume that
L,M are chosen so that the same inequalities are satisfied by Dφ−1 for z ∈ Bη(φ(x)). As a
consequence of this, one can find η′ with 0 < η′ < η such that

Bǫ/M(x) ⊂ φ−1(Bǫ(φ(x))) ⊂ BMǫ(x) (4)

for any ǫ < η′. Writing χN(y) as the indicator function for N and y ∈ Bη(x) we have

Λ = ℓ (Bǫ(φ(x)) ∩N) =

∫

y∈Bǫ(φ(x))

χN(y) dℓ(y)

=

∫

z∈φ−1(Bǫ(φ(x)))

χN(z) det(Dφ−1(z)) dℓ(z)

where in the last line we have substituted y = φ(z) and we have used the fact that N is
invariant, so that

χN(y) = 1 ⇔ χN(φ(y)) = 1. (5)

Hence, using (3,4),

1

L

∫

z∈Bǫ/M (x)

χN(z) dℓ(z) ≤
1

L

∫

z∈φ−1(Bǫ(φ(x))

χN(z) dℓ(z)

<

∫

z∈φ−1(Bǫ(φ(x)))

χN(z) det(Dφ−1(z)) dℓ(z) = Λ

< L

∫

z∈φ−1(Bǫ(φ(x)))

χN(z) dℓ(z)

≤ L

∫

z∈BǫM (x)

χN(z) dℓ(z)
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meaning that for all ǫ < η′ we have

1

L
ℓ(Bǫ/M(x) ∩N) < ℓ(Bǫ(φ(x)) ∩N) < Lℓ(BǫM(x) ∩N). (6)

This means that from (2), there is a K = LMn such that for all small enough ǫ we have

1

K
Σǫ/M(x) < Σǫ(φ(x)) < KΣǫM(x)

(we have used the property that ℓ(BMǫ(x)) = Mnℓ(Bǫ(x)) for any ǫ > 0 and x). Hence we
have [

ln ǫ− lnM

ln ǫ

]
ln(Σǫ/M(x))

ln(ǫ/M)
−

lnK

ln ǫ
=

ln(Σǫ/M(x))

ln ǫ
−

lnK

ln ǫ
=

ln
(

1
K

Σǫ/M(x)
)

ln ǫ

<
ln(Σǫ(φ(x)))

ln ǫ

<
ln (KΣǫM(x))

ln ǫ
=

ln(ΣǫM(x))

ln ǫ
+

lnK

ln ǫ

=

[
ln ǫ+ lnM

ln ǫ

]
ln(ΣǫM(x))

ln(ǫM)
+

lnK

ln ǫ

and taking the limits as ǫ→ 0 we have

σ−(x) ≤ σ−(φ(x)) ≤ σ−(x). (7)

A similar argument on substituting N by its complement gives σ+(x) = σ+(φ(x)) and hence
the value of σ(x) is constant along trajectories of Φt. QED

Note that this argument works for any C1-diffeomorphism φ for which N is invariant,
meaning the result can be used to show that σ(x) is invariant under C1-conjugation - it is an
invariant of the dynamics. Note also that although σ(x) is constant on a given trajectory, it
may depend on which trajectory is chosen.

The stability index can be used to determine e.a.s. and p.a.s. by the following theorem.
However, converses of the following theorem are not expected to be true in general as σ(x)
may be negative on a “lower dimensional” set of trajectories within X, or may not converge.

Theorem 2.3 Suppose that for all x ∈ X the stability index σ(x) ∈ [−∞,∞] is defined.

• If there is a point x ∈ X such that −∞ < σ(x) then X is essentially asymptotically
stable (e.a.s.), and contains a Milnor attractor.

• If there is a c > 0 such that c < σ(x) for all x ∈ X then X is predominantly asymp-
totically stable (p.a.s.).

Proof: (a) The fact that −∞ < σ(x) implies in particular that N = B(X) contains a set of
positive measure, and so by Theorem 2.1(c) it is e.a.s.. By the Theorem 2.1(b), X contains
a Milnor attractor. (b) Note that the basin of attraction N of X is such that for any δ,
Σǫ(x) > 1 − δ for all x, and some ǫ depending on x. By compactness of X one can choose
an ǫ small enough that ℓ(Bǫ(X) ∩N) ≥ (1 − δ)ℓ(Bǫ(X)), implying p.a.s. of X. QED

8



2.3 The local stability index

While Definition 5 considers the global basin of attraction, the stability index σ(x) can be
adapted to provide a useful concept from purely local properties of the attractor. We define
the δ-local basin of attraction to be the basin of attraction of X relative to Bδ(X); that is,

Bδ(X) := {x : ω(x) ⊂ X and Φt(x) ∈ Bδ(X) for all t > 0}. (8)

Note that Bδ(X) is forwards, but not necessarily backwards invariant under the flow. The
limit of the stability index for points relative to the δ-local basin as δ → 0 is called the local
stability index σloc(x) for X. More precisely, we define

Σǫ,δ(x) =
ℓ (Bǫ(x) ∩ Bδ(X))

ℓ(Bǫ(x))
(9)

and for a point x ∈ X we define the local stability index of X at x to be

σloc(x) := σloc,+(x) − σloc,−(x)

which exists when the following converge

σloc,−(x) := lim
δ→0

lim
ǫ→0

[
ln(Σǫ,δ(x))

ln(ǫ)

]
, σloc,+(x) := lim

δ→0
lim
ǫ→0

[
ln(1 − Σǫ,δ(x))

ln(ǫ)

]

with the same conventions as before. The definition works for discrete time systems as
well as continuous time, without further modification. Note that the local stability index is
computed for δ small and fixed before taking the limit as δ → 0.

One can weaken the assumptions in Theorem 2.2 to give the same conclusion; the critical
step is that if η < δ and we assume that Φs(y) ∈ Bη(X) for 0 < s < t then (5) still holds-
and by continuity of φ one can choose a small enough ǫ that x and φ(x) are guaranteed to
be in such a Bη(X).

2.4 Stability indices for sections to the flow

Suppose that Φt(x) has an attractor X ⊂ R
n and pick a point x ∈ X. Let S ⊂ R

n be a
smooth n−1-dimensional subspace containing x that is transverse to the flow at x. One can
relate the stability index σ(x) or σloc(x) to the stability index for the dynamics defined by
the return map F on S as follows.

Theorem 2.4 Suppose that X is invariant for a C1-smooth flow Φt(x) and that N is a
(local) basin for X. Suppose that S is a codimension one surface that is transverse to the
flow at x; then σ(x) can be computed relative to the intersection of N with S on substituting
Σǫ(x) by

Σǫ,S(x) =
ℓS(Bǫ(x) ∩N ∩ S)

ℓS(Bǫ(x) ∩ S)
.
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Proof: Let N = B(X); the argument for local basins will be similar. Note that N is
invariant implies that it is a union of trajectories. We consider local coordinates in R

n

near x that are the coordinates in S and time. Pick any small ǫ > 0; by simple geometric
arguments (i.e. you can always put a cylinder in a larger sphere, and a sphere in a larger
cylinder) there is a constant K > 1 such that

Bǫ/K(x) ⊂ (Bǫ(x) ∩ S) × [−ǫ, ǫ] ⊂ BǫK(x).

Using the product structure of Lebesgue measure we have

ℓ(Bǫ/K(x)) < 2ǫ× ℓS(Bǫ(x) ∩ S) < ℓ(BǫK(x))

with a similar inequality for ℓS(Bǫ(x) ∩N ∩ S). Hence

ℓ(Bǫ/K(x) ∩N)

ℓ(BǫK(x))
<
ℓS(Bǫ(x) ∩N ∩ S)

ℓS(Bǫ(x) ∩ S)
<
ℓ(BǫK(x) ∩N)

ℓ(Bǫ/K(x))

meaning that

Σǫ,S(x) =
ℓS(Bǫ(x) ∩N ∩ S)

ℓS(Bǫ(x) ∩ S)

and as before (for the flow) Σǫ(x) satisfies the inequalities

1

(2K)n
Σǫ/K(x) < Σǫ,S(x) < (2K)nΣǫK(x),

where we have used the fact that ℓ(BǫK(x)) = (2K)nℓ(Bǫ/K(x)). In particular, the scalings
of these quantities are the same as ǫ→ 0. QED

Theorem 2.4 implies, for example, that if there is a return map for the flow on S then the
stability index of trajectories for a flow can be computed by examining the stability index
for the intersection of the basin with a suitable surface of section.

3 Robust heteroclinic cycles

Suppose that Γ is a finite group acting orthogonally on R
n, and that f : R

n → R
n is a

Γ-equivariant vector field, i.e.

f(γx) = γf(x), for all γ ∈ Γ.

Let ξj, j = 1, . . . ,m, be hyperbolic equilibria for

ẋ = f(x)

with stable and unstable manifolds W s(ξj) and W u(ξj) respectively, and let sj = W u(ξj) ∩
W s(ξj+1) 6= ∅ be connections between ξj and ξj+1, where ξm+1 = ξ1; then the group orbit X
of the equilibria and the connections

X = clos ({γsj : j = 1, . . . ,m, γ ∈ Γ})
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is called a heteroclinic cycle. Recall that for a group Γ acting on R
n, the isotropy of the

point x ∈ R
n is the subgroup

Σx = {γ ∈ Γ : γx = x}

while for a subgroup Σ ⊂ Γ, a fixed-point subspace of Σ is the linear subspace

Fix(Σ) = {x ∈ R
n : σx = x for all σ ∈ Σ}.

In the absence of symmetry or other constraints, a vector field with a heteroclinic cycle
is structurally unstable, i.e. there are arbitrarily small perturbations of f to g, such that
the heteroclinic cycle does not exist for the vector field g. For symmetric vector fields,
heteroclinic cycles may be robust, as long as each connection is robust within some invariant
subspace and only symmetric perturbations are allowed [15].

3.1 Local structure: eigenspaces and simple cycles

A sufficient condition for a cycle X to be structurally stable (or robust), is that for all j there
exists a subspace Pj such that Pj = Fix(Σj) for some Σj ⊂ Γ, sj ⊂ Pj, ξj+1 is a sink in
Pj. Denote Lj = Pj ∩ Pj−1. We denote the isotropy subgroup of points in Lj \ {0} by Tj.
Note that X ⊖ Y , where Y is a linear subspaces of the inner product space X, denotes the
orthogonal complement to Y in X.

If X is a structurally stable heteroclinic cycle then the eigenvalues of (df)ξj
can be divided

into four classes:

• Eigenvalues with associated eigenvectors in Lj are called radial, the maximal real part
of radial eigenvalues being −rj.

• Eigenvalues with associated eigenvectors in Pj−1 ⊖ Lj are called contracting, the max-
imal real part of contracting eigenvalues being −cj.

• Eigenvalues with associated eigenvectors in Pj ⊖Lj are called expanding, the maximal
real part of expanding eigenvalues being ej.

• The remaining eigenvalues are called transverse, the maximal real part of transverse
eigenvalues being tj.

The heteroclinic cycle X ∈ R
4 \ {0} is called a simple robust heteroclinic cycle (in R

4)
[18] if for all j:

• All eigenvalues of (df)ξj
are distinct, dimPj = 2 and X intersects with each connected

component of Lj \ {0} in at most one point.

For simple cycles, Lj and the three remaining subspaces are one-dimensional, hence
there is a unique real eigenvalue of each type. Moreover, for simple cycles either Tj

∼= Z
2
2

and Σj
∼= Z2 for all j or Tj

∼= Z
3
2 and Σj

∼= Z
2
2 for all j (see Proposition 3.1 in [18]), and each

simple cycle is of one of three types discussed by [18].
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Definition 6 Suppose that X is a simple heteroclinic cycle that is robust for a vector field
in R

4 with a finite symmetry group. We say

• X is of Type A if Σj
∼= Z2 for all j.

• X is of Type B if there is a subspace Q of R
4 with dim(Q) = 3 such that Q = fix(Σ̃)

for some Σ̃ ⊂ Γ and X ⊂ Q.

• X is of Type C if it is neither of Type A nor of Type B.

The work of [18] goes on to differentiate between four varieties of Type B cycles (denoted
by B+

1 , B+
2 , B−

1 and B−
3 ) and three varieties of Type C cycles (denoted by C−

1 , C−
2 and C−

4 ),
depending on the number of equilibria involved in the cycle and action of the group Γ. In
Section 4 we examine the stability of cycles in R

4 using Poincaré maps, where the structure
of the maps depend on the type of cycle.

3.2 Local stability for heteroclinic cycles

For a heteroclinic cycle X comprised of one-dimensional connections sj, j = 1, . . . ,m (sj is
the connection from ξj−1 to ξj), its local attraction properties are described by the set of
stability indices of the trajectories

σ = (σ1, . . . , σm).

where
σj = σ(x)

for x an arbitrary point on sj. The following lemma will be useful later on:

Lemma 3.1 Let a simple heteroclinic cycle X be comprised of one-dimensional connections
and suppose that −∞ < σj for some j. Then X is a Milnor attractor.

Proof: This follows from the fact that −∞ < σj(x) implies that ℓ(B(X)) > 0 and so X is
a weak attractor. Since no invariant subset of the cycle can be a Milnor attractor, X must
itself be a Milnor attractor. QED

In what follows, we calculate local stability indices for different types of simple robust
heteroclinic cycles in R

4. Following [13, 18], to examine stability we construct a Poincaré
map in the vicinity of the cycle.

3.3 Stability indices for return maps

Section 3 gave definitions for radial, contracting, expanding and transverse eigenvalues of
the linearization (df)ξj

. Simple cycles in R
4 will possess a single eigenvalue of each type. Let

12



(ũ, ṽ, w̃, z̃) be local coordinates near ξj in the basis of the four associated eigenvectors, and
B̃δ̃(ξj) be a neighbourhood of ξj defined as

B̃δ̃(ξj) = {(ũ, ṽ, w̃, z̃) | max(|ũ|, |ṽ|, |w̃|, |z̃|) < δ̃}

where δ̃ is small, denote by (u, v, w, z) the scaled coordinates (u, v, w, z) = (ũ, ṽ, w̃, z̃)/δ̃. In
the (u, v) plane we will also employ plane polar coordinates (r, θ), u = r cos θ and v = r sin θ.
For a small δ̃, the vector field f can be linearly approximated in B̃δ̃(ξj). We assume that δ
in (8) is sufficiently small, so that

Bδ(ξj) ⊂ B̃δ̃(ξj) for all j.

In B̃δ̃(ξj) we consider the linearised system (1)

u̇ = −rju
v̇ = −cjv
ẇ = ejw
ż = tjz

(10)

This gives an accurate approximations of the nonlinear flow as long as the linear system has
no low order resonances.

The connection sj is tangent to the subspace u = v = z = 0. The heteroclinic connection
to ξj lies in Pj−1 where local coordinates are u and v. For

H
(out)
j = {(u, v, w, z) : |u|, |v|, |z| ≤ 1, w = 1},

H
(in)
j = {(r, θ, w, z) : r = 1, |w|, |z| ≤ 1}.

the first return map φj : H
(in)
j → H

(out)
j is defined near each equilibrium in H̃

(in)
j = Q

(in)
j ∩

H
(in)
j , where Q

(in)
j = {(z, w)| |z| < |w|tj/ej}2. For each connection we define connecting

diffeomorphisms ψj : H
(out)
j → H

(in)
j+1 and their compositions g̃j = ψj ◦ φj : H̃

(in)
j → H

(in)
j+1 .

The Poincaré map is the composition g̃ = g̃m ◦ . . . ◦ g̃1 : H
(in)
1 → H

(in)
1 .

As shown in [13, 16], at leading order the maps have the form3

φj(u, v, w, z) = (u|w|rj/ej , vwcj/ej , 1, z|w|−tj/ej) (11)

2Strictly speaking, the maps are defined for |z| < K(1 − δ)|w|tj/ej , where K is a constant and δ is small
[13]. For simplicity, we ignore K and δ, because for small z and w they do not enter into asymptotically
significant terms.

3The maps for negative w are defined as follows. Consider a neighbourhood of a point ξj . Two heteroclinic
connections enter this neighbourhood, ξj−1 → ξj and γ(in)ξj−1 → ξj , where γ(in) is any symmetry, satisfying
γ(in) ∈ Tj and γ(in) 6∈ Σj−1. Two heteroclinic connections exit the neighbourhood: ξj → ξj+1 and ξj →

γ(out)ξj+1, where γ(out) is a symmetry, satisfying γ(out) ∈ Tj and γ(out) 6∈ Σj . The local map φj : H
(in)
j →

H
(out)
j is defined only for w and v of particular signs, say w > 0 and v > 0. For w < 0, the local map acts to

H̃
(out)
j , where H̃

(out)
j = γ(out)H

(out)
j ; for v < 0, it is defined in γ(in)H

(in)
j . Due to existence of the symmetries

γ(in) and γ(out), we can consider φj for arbitrary w and v: by applying these symmetries the local map can
be defined for w and v of arbitrary signs.

13



and
ψj(u, v, w, z) = (1, θ0 + βju, αj1v + αj2z, αj3v + αj4z). (12)

For these maps only (w, z) coordinates are important [13, 16], and restricting to these coor-
dinates the map gj : R

2 → R
2 we have

gj(w, z) = (αj1w
cj/ej + αj2z|w|

−tj/ej , αj3w
cj/ej + αj4z|w|

−tj/ej). (13)

For cycles of Type A, generically αjk 6= 0 for all j = 1, . . . ,m, k = 1, 2, 3, 4. For cycles of
Type B, αj2 = αj3 = 0 and αj1αj4 6= 0. For cycles of Type C, αj1 = αj4 = 0 and αj2αj3 6= 0.

Thus, for a point x = X ∩H
(in)
1 on the cycle X we have associated the map

g = gm ◦ gm−1 ◦ . . . ◦ g1 : R
2 → R

2. (14)

We will also use the notation gl,k = gl ◦ gl−1 ◦ . . . ◦ g1 ◦ g
k.

Similarly to the local stability index for a point x ∈ X (see Section 2.3), we define a
stability index σg for the map (14). Note that Bǫ is the ball of radius ǫ in R

n centered at 0,
and we define

Bg
δ := {x : x ∈ R

n, |gl,kx| < δ for all 0 ≤ l ≤ m− 1, k ≥ 0}, (15)

to be the δ-local basin of attraction of 0 in R
n for the map g (14). The local stability index

is defined to be
σg := σg

+ − σg
−

where

σg
− := lim

δ→0
lim
ǫ→0

[
ln(Σǫ,δ)

ln(ǫ)

]
, σg

+ := lim
δ→0

lim
ǫ→0

[
ln(1 − Σǫ,δ)

ln(ǫ)

]
,

with

Σǫ,δ =
ℓ(Bǫ(0) ∩ Bg

δ )

ℓ(Bǫ(0))
. (16)

Because of the asymptotic independence of the return map on two of the coordinates, we
can effectively reduce the computation of the stability index for heteroclinic cycles in R

4 to
a calculation on a section to the cycle in R

2.

Theorem 3.1 Let g : R
2 → R

2 (14) be the map associated with a point x = X ∩ H
(in)
1 ,

where X is a simple heteroclinic cycle in R
4. Then

σloc(x) = σg.

Proof: First, we prove that σloc(x) ≥ σg. Denote Q = [−ǫ, ǫ]2 × Bg
δ . If y ≡ (u, v, w, z) ∈

Bǫ(x)\Q, then there exist j and k, such that |gj,k(y)| > δ. For small δ, a trajectory near the
heteroclinic cycle is approximated by the maps φj (11) and ψj (12), where the coordinates
(w, z) are independent of (u, v). Hence, for the point (ũ, ṽ, w̃, z̃), which is the (k + 1)st

intersection of Φt(y) with H
(in)
j , we have |(w̃, z̃)| > δ/2. Hence y /∈ Bδ/2(X), and therefore

ℓ(Bǫ(x) ∩ Bδ/2(X)) < 4ǫ2ℓ(Bǫ ∩ Bg
δ ),

14



implying that σloc(x) ≥ σg.
Second, we prove that σloc(x) ≤ σg. If y ≡ (u, v, w, z) ∈ Bǫ(x) ∩ Q, then for any

intersection (1, θ1, w̃, z̃) (here we are using polar coordinates in the (u, v) plane, θ1 is the
difference between θ and θ0, the distance of the point from the cycle is denoted |(θ1, w̃, z̃)|)

of Φt(y) with H
(in)
j , |(w̃, z̃)| < 2δ holds true. Together with (11) and (12), it implies that in

any intersection θ1 < βδr, where β = max(maxj(βj), 1) and r = min(minj(rj/ej), 1). Thus,

we have proved that for any intersection ỹ of Φt(y) with H
(in)
j for any j we have

d(ỹ, X) = |(θ1, w̃, z̃)| < 2βδr. (17)

If a trajectory is close to the heteroclinic cycle, then there exist constants Kj such that
d(sj,Φt(x)) < Kjd(sj,ΦTj,k

(x)) in the interval T̃j−1,k < t < Tj,k. (Here Tj,k is the time when

Φt(x) crosses H
(in)
j and T̃j−1,k is the time when it crosses H

(out)
j−1 .) Denote K = βmaxj(Kj).

In the vicinity of ξj we can consider the system (10) using the approximated map f , hence
(17) is satisfied at the points of intersection, which implies that

d(Φt(y), X) < 2Kδr for all t > 0.

Hence y ∈ B2Kδr(X), and therefore

ℓ(Bǫ(x) ∩ B2Kδr(X)) > ǫ2ℓ(Bǫ ∩ Bg
δ ).

Since K > 0 and r > 0 do not depend on δ, this implies σloc(x) ≤ σg and therefore
σloc(x) = σg. QED

4 Stability indices for heteroclinic cycles in R
4

In this section the stability indices for the connections of simple robust heteroclinic cycles
in R

4 are calculated in terms of ratios of eigenvalues aj = cj/ej and bj = −tj/ej, 1 ≤ j ≤ m.
We do this relative to the classification of simple heteroclinic cycles in R

4 of Definition 6
and [18]. Here only statements of the main theorems and a sketch of the proof of the main
theorem for type A cycles are presented. The complete proofs are given in the Appendices.

Using the maps {gj , j = 1, . . . ,m} from the previous section, we define return maps on
sections to any of the connections

g(j) : H
(in)
j → H

(in)
j

to be g(j) = gj−1 ◦ . . . ◦ g1 ◦ gm ◦ . . . ◦ gj, let

σj = σj,+ − σj,−

and
σj,± = σg(j)

± ,

where σg
± are defined in Section 3.3. Note that in the previous section we used

g = g(1)

and that σj will effectively give the stability index for the connection that intersects H
(in)
j .
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Figure 2: Examples of sets (a) Q(r, ǫ), (b) Qz(f1(z), f2(z), ǫ) and (c) and Qw(f1(w), f2(w), ǫ)
used in the discussion of stability of Type A cycles. The sets are shaded.

4.1 Type A cycles

Consider the map g = gm ◦ . . . ◦ g1 : R
2 → R

2 where

gj(w, z) ≡ (gw
j (w, z), gz

j (w, z)) = (Ajw
aj +Bj|w|

bjz, Cjw
aj +Dj|w|

bjz). (18)

For generic cycles of Type A we can assume AjBjCjDj 6= 0 and AjDj 6= BjCj for all j.
Recall that gl,k = gl ◦ . . . ◦ g1 ◦ g

k.
Let us define

Q(r, ǫ) = {(w, z) : |(w, z)| < ǫ, |z| > |w|1+r, |w| > |z|1+r},

Qz(f1(z), f2(z), ǫ) = {(w, z) : |(w, z)| < ǫ, f1(z) < w < f2(z)},

Qw(f1(w), f2(w), ǫ) = {(w, z) : |(w, z)| < ǫ, f1(w) < z < f2(w)},

where we assume f1(z) = O(z1+r), f1(w) = O(w1+r), f1(z) − f2(z) = O(z1+r1), f1(w) −
f2(w) = O(w1+r1) for some r > 0 and r1 ≥ r. In line with the definitions, the areas of the
sets Qz(f1(z), f2(z), ǫ) and Qw(f1(w), f2(w), ǫ) are O(ǫr1+2). Examples of the sets Q(r, ǫ),
Qz(f1(z), f2(z), ǫ) and Qw(f1(w), f2(w), ǫ) are shown in Figure 2. By Theorem 4.1 below, if

the stability index satisfies σj > −∞, then either the complement to Bg
δ in Bǫ(0) ⊂ H

(in)
j is

empty, or it is the union of the sets Qz(f1(z), f2(z), ǫ), or the union of Qw(f1(w), f2(w), ǫ).
Whether it is the union of the sets Qz or Qw, depends on the difference between the con-
tracting and the transverse eigenvalues.

Examples of the sets Bg
δ are shown in Figure 3 for different signs of bj and aj − bj − 1. It

can be observed that the sets are invariant with respect to the symmetry (w, z) → (−w,−z).
This is so, because the linearised systems (10) evidently possess the symmetry, and the global
maps φj are symmetric (being linear).
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Figure 3: Examples of sets Bg
δ (shaded) for Type A cycles for the cases (a) b1 < 0, a1−b1 < 1

and (b) b1 > 0, a1 − b1 > 1.

For calculation of stability indices, we introduce the collection of functions {hl,j(y)} for
1 ≤ j ≤ m, l ≤ j, which are defined as follows4:

hj,j(y) = y,

hl,j(y) =





∞ if al − bl < 0
alhl+1,j(y) − al + 1

al − bl
if 0 < al − bl < 1

alhl+1,j(y) − bl if al − bl > 1

The next theorem is the main result for Type A cycles, namely it gives the stability indices
σj for the collection of maps gj related to Type A cycles. Recall that the coefficients aj and
bj of the map gj are related to the eigenvalues of linearisation of (1) near ξj as aj = cj/ej

and bj = −tj/ej. Recall, that cj > 0 and ej > 0 for all j, therefore aj > 0. Following [16],
we denote

ρj = min(aj, 1 + bj),

ρ = ρ1 · · · ρm, and note that generically the non-degeneracy conditions

aj 6= 1 + bj, bj 6= −1, ρ 6= 1 (19)

are satisfied. The Theorem below is stated and proved more precisely as Theorem A.1.

Theorem 4.1 For the collection of maps gj associated with a Type A cycle, the stability
indices are:

(a) If ρ > 1 and bj > 0 for all j then σj,+ = ∞ and σj,− = 0 for any j.

4If an index takes values 1, . . . ,m, then the index value modulo m is understood here and below. Note
that l in hl,j can take negative values.
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(b) If ρ > 1, bj > −1 for all j and bj < 0 for j = J1, . . . , JL then σj,− = 0 and σj,+ are:

σj,+ = min
s=J1,...,JL

hj̃,s

(
−

1

bs

)
− 1, where j̃ =

{
j, j ≤ s

j −m, j > s
.

(c) If ρ < 1 or there exists j such that bj < −1 then σj,+ = 0, σj,− = ∞ and the cycle is
not an attractor.

Proof: (a) Since ρ > 1, there exists a q > 0 such that

ρ̃ =
m∏

j=1

(ρj − q) > 1. (20)

By Lemma A.2, for sufficiently small ǫ

|gj(w, z)| < |(w, z)|ρj−q for any (w, z), |(w, z)| < ǫ. (21)

Consider (w, z) ∈ H
(in)
1 . Inequality (21) implies that for a given δ, we can find an ǫ > 0 such

that
|gj,k(w, z)| = |gj,1(w, z)||g

k(w, z)| < |gj,1(w, z)||(w, z)|
ρ̃k

< δ

for all 1 ≤ j ≤ m, k ≥ 0, and |(w, z)| < ǫ.

Therefore σ1,+ = ∞ and σ1,− = 0. The proof for j > 1 is similar.

(b) Consider s = Jl for some l, whereby −1 < bs < 0. For any small q > 0 and δ > 0 we
can find ǫ, such that

(w, z) ∈ Qs,s(ǫ)
def
= Qz(−|z|−1/bs+q, |z|−1/bs+q, ǫ)

implies
|gs(w, z)| > δ

and
(w, z) ∈ H(in)

s \ Q̃s,s(ǫ), where Q̃s,s(ǫ)
def
= Qz(−|z|−1/bs−q, |z|−1/bs−q, ǫ)

implies
|gs(w, z)| < δ.

For simplicity, we ignore small q and say that if

(w, z) ∈ Q̂s,s(ǫ)
def
= Qz(−|z|−1/bs , |z|−1/bs , ǫ),

then
|gs(w, z)| > δ,

and if
(w, z) ∈ H(in)

s \ Q̂s,s(ǫ),
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then
|gs(w, z)| < δ.

We also assume that ǫ is sufficiently small and all estimates for (w, z) required in all the
applied lemmas are satisfied.

Denote by Q̂s−1,s(ǫ) ⊂ H
(in)
s−1 the preimage of Q̂s,s(ǫ) under the map gs−1, and by Q̂j,s(ǫ) ⊂

H
(in)
j the preimage of Q̂s,s(ǫ) under gs ◦ gs−1 ◦ . . . ◦ gj. By construction of the sets Q̂j,s(ǫ),

1 ≤ j ≤ s, for any (w, z) ∈ Q̂j,s(ǫ) the inequality

|gs ◦ gs−1 ◦ . . . ◦ gj(w, z)| > δ

is valid.
The measure (area) of the set Q̂s,s(ǫ) can be estimated as

ℓ(Q̂s,s(ǫ)) = O(ǫ−1/bs+1) = O(ǫhs,s(−1/bs)+1).

By virtue of the definition of functions hl,j and due to Lemmas A.3 and A.4, the measure of

the set Q̂1,s(ǫ) is
ℓ(Q̂1,s(ǫ)) = O(ǫh1,s(−1/bs)+1).

(Here and below, the measure of an empty set Q̂j,s(ǫ) is supposed to be ǫ∞.)
Denote by Q̂1−m,s(ǫ) the preimage of the set Q̂1,s(ǫ) under a complete iteration g along the

cycle, and by Q̂1−km,s(ǫ) the preimage under k iterations. The measure of the set Q̂1−km,s(ǫ)
is

ℓ(Q̂1−km,s(ǫ)) = O(ǫh1−km,s(−1/bs)+1).

Since ρ > 1, by the same arguments as used in the proof of part (a), if (w, z) ∈ H
(in)
1 ∩Bǫ

does not belong to any Q̂1−km,s(ǫ) for all s = J1, . . . , JL and k ≥ 0, then

|gj,k(w, z)| < δ for all 1 ≤ j ≤ m and k ≥ 0.

By construction of the sets Q̂1−km,s(ǫ), if (w, z) ∈ Q̂1−km,s(ǫ), then

|gj,k(w, z)| > δ for some j and k.

By properties of the functions hl,j, the measure of the set Q̂1,s(ǫ) is larger than that of any

other set Q̂1−km,s(ǫ) for k > 0. Since

ℓ(∪1≤s≤Jl
Q̂1,s(ǫ)) = O(ǫmins h1,s(−1/bs)+1),

by definition of the stability index, for j = 1 the statement of the theorem, part (b), holds
true. For other j the proof is similar.

(c) Below we assume that δ and ǫ are sufficiently small, so that for |(w, z)| < max(δ, ǫ)
the conditions of all lemmas to be applied hold true.

We consider three following cases, which cover exhaustively all possibilities:
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• Suppose ρ < 1 and bj > −1 for all j. Since ρ < 1, there exists a q > 0 such that

ρ̃ =
m∏

j=1

(ρj + q) < 1. (22)

By Corollary A.1(b), there exists r such that if (w, z) ∈ Q(r, δ) then

|gl,k(w, z)| > δ (23)

for some l and k. Consequently, if (w, z) ∈ (gK)−1Q(r, δ) for some K > 0, then the
inequality (23) is satisfied for k ≡ k+K. The complement to Q(r, δ) in Bδ is the union
of the sets Q̃z = Qz(|z|

1+r,−|z|1+r, δ) and Q̃w = Qw(|w|1+r,−|w|1+r, δ). Corollaries A.2
and A.3 imply existence of the limit sets

Qlim
z = lim

k→∞
(gk)−1Q̃z 6= ∅ and Qlim

w = lim
k→∞

(gk)−1Q̃w 6= ∅,

and by Lemmas A.3 and A.4, (23) is satisfied for (w, z) ∈ Qlim
z ∩ Qlim

w for some l and
k. Therefore, σ1,− = ∞.

• Suppose that bs < −1 for some s, and also at least one of the inequalities, ρ > 1, or
at − bt < 0 for some t, is satisfied. Let the set Q̂s,s(ǫ) be defined as in the proof of part
(b). Denote by Rs,s(ǫ) the complement to the set Q̂s,s(ǫ) in Bǫ, and by R1−km,s(ǫ) the
preimage of Rs,s(ǫ) under gs ◦ gs−1 ◦ . . . ◦ g1g

k. By the arguments of the proof of part
(b), the measure of the set R1−km,s(ǫ) is

ℓ(R1−km,s(ǫ)) = O(ǫh1−km,s(−bs)+1).

By properties of the functions hl,j, limk→∞ h1−km,s(−bs) = ∞, and therefore σ1,− = ∞.

• Suppose ρ < 1, at − bt > 0 for all t, and bs < −1 for some s. Let the sets R1−km,s(ǫ)
be defined as in the previous paragraph. Since ρ < 1 and at − bt > 0 for all t, the
sets do not vanish in the limit k → ∞. By Corollaries A.2 and A.3, the limit set
Rlim = limk→∞R1−km,s(ǫ) does exist, and by Lemmas A.3 and A.4, inequality (23) is
satisfied for all (w, z) ∈ Rlim for some l and k. Therefore, σ1,− = ∞.

The proof for σj,−, j > 1, is similar. QED

4.2 Type B and C cycles

Examples of sets Bg
δ for Type B and C cycles are shown in Figure 4. The sets are invariant

with respect to the symmetries (w, z) → (−w, z) and (w, z) → (w,−z), because the linearised
systems (10) evidently possess these symmetries, and the global maps φj are symmetric due
to linearity and invariance of the subspaces (w, 0) and (0, z). Therefore, we consider in this
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Figure 4: Examples of sets Bg
δ (shaded) for Type B or C cycles.

subsection only positive values of w and z; components of Bg
δ in other three quadrants are

obtained on applying the symmetries.
As noted in [18], the maps gj : H

(in)
j → H

(in)
j+1 related to the cycles of Types B and C

asymptotically to the lowest order have the form (Ewaj , Fwbjz) and (Ewbjz, Fwaj), respec-
tively. In the new coordinates (ζ, η), ζ = ln z and η = lnw, the maps gj are linear:

gj(ζ, η) = Mj

(
ζ
η

)
+

(
lnE
lnF

)
,

where the transition matrices of the maps are

Mj =

(
aj 0
bj 1

)
and Mj =

(
bj 1
aj 0

)

for cycles of Types B and C, respectively. In the definition of stability indices, asymptotically
small z and w (and therefore asymptotically large negative ζ and η) are assumed. Hence,
we ignore finite lnE and lnF .

Recall that the coefficients aj and bj of the matrices are related to the eigenvalues of
linearisation of (1) near ξj as aj = cj/ej and bj = −tj/ej. For the map g = gm ◦ . . . ◦ g1 the
transition matrix is M = M(g) = Mm · · ·M1. We introduce the notation: Mj,k and M (j)

denote transition matrices for the maps gj,k and g(j), respectively; M (l,j) = Ml · · ·Mj; λ
j
1,

λj
2, v

j
1 = (vj

11, v
j
12) and v

j
2 = (vj

21, v
j
22) denote eigenvalues and associated eigenvectors of the

matrix M (j), respectively. If the eigenvalues are real, λj
1 ≥ λj

2 is assumed. (Generically the
eigenvalues are different.)

A necessary condition for (w, z) to belong to Bg
δ (see Subsection 3.3) is that gk(w, z) is

bounded for all k. To leading order, the map g : (ζ, η) → (ζ, η) is described by the transition
matrix M(g). Due to linearity of the map, in the new coordinates the condition that the
iterates (ζk, ηk)

t = Mk(ζ, η)t are bounded by an S < 0 (i.e., ζn < S and ηn < S, or, in the
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original coordinates, w < eS and z < eS) generically is equivalent to limk→∞Mk(ζ, η)t =
(−∞,−∞)t.

We denote

U−∞(M) = {(x, y) : x ≤ 0, y ≤ 0, lim
n→∞

Mn(x, y)t = (−∞,−∞)t}.

Evidently, U−∞(M) = ∅ implies Bg
δ = ∅. The conditions for U−∞(M) 6= ∅ are given in

Lemma B.1 in terms of eigenvalues and eigenvectors of matrix M . They are:

(i) the eigenvalues are real;

(ii) λ1 > 1;

(iii) λ1 > |λ2|;

(iv) v11v12 > 0.

In terms of entries of a 2×2 matrix M = (aij) (where we assume a11 > a22) the conditions
are (Lemma B.2):

(i)
(a11 − a22)

2

4
+ a12a21 ≥ 0 (24)

(ii) max

(
a11 + a22

2
, a11 + a22 − a11a22 + a12a21

)
> 1 (25)

(iii)
a11 + a22

2
> 0 (26)

(iv) a21 > 0. (27)

For calculation of stability indices we introduce the sets UR = {(ζ, η) | max(ζ, η) < R}
and

UR(α1, β1, q1;α2, β2, q2) =
{(ζ, η) ∈ UR : (α1 + q1)ζ + (β1 + q1)η < 0, (α2 + q2)ζ + (β2 + q2)η < 0},

where R < 0. If all entries of the matrices Mj, 1 ≤ j ≤ m, are non-negative, the stability
indices of the related map can be calculated using the following Theorem which is stated
and proved as Theorem B.1.

Theorem 4.2 Let g be a map related to simple heteroclinic cycle of Types B or C and Mj,
1 ≤ j ≤ m, its transition matrices. Suppose that for all j, 1 ≤ j ≤ m, all entries of the
matrices are non-negative. Then:

(a) If the transition matrix M = Mm · · ·M1 satisfies condition (ii) (see (25)), then σj,+ =
∞ and σj,− = 0 for all j and moreover the cycle is asymptotically stable.

(b) Otherwise, σj,+ = 0 and σj,− = ∞ for all j and the cycle is not an attractor.
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For calculation of stability indices of matrices with negative entries we introduce the
following functions

f+(α, β) =





∞, α ≥ 0, β ≥ 0,

0, α ≤ 0, β ≤ 0,

−
β

α
− 1, α < 0, β > 0,

β

α
< −1,

0, α < 0, β > 0,
β

α
> −1,

−
α

β
− 1, α > 0, β < 0,

α

β
< −1,

0, α > 0, β < 0,
α

β
> −1

,

f−(α, β) = f+(−α,−β) and

f index(α, β) = f+(α, β) − f−(α, β)

and prove in the following theorem that the set Bδ(g) in Ĥ
(in)
1 (and similarly for Ĥ

(in)
j with

j > 1) in the (ζ, η) coordinates is UR(α1, β1, 0;α2, β2, 0). We denote the latter set in original
coordinates (w, z) as

ŨR(α1, β1, 0;α2, β2, 0)

and then by Definition 5

σ = lim
R→−∞

ln(ℓ(ŨR \ ŨR(α1, β1, 0;α2, β2, 0))) − ln(ℓ(ŨR(α1, β1, 0;α2, β2, 0)))

ln(ℓ(ŨR))

= min(f index(α1, β1), f
index(α2, β2)).

The Theorem below is stated and proved as Theorem B.2.

Theorem 4.3 Let X be a simple heteroclinic cycle of Type B or C and Mj, 1 ≤ j ≤ m the
associated transition matrices. We denote by j = j1, . . . jL the indices, for which some of the
entries of Mj are negative; they are all non-negative for all remaining j.

(a) If for at least one of j = jl + 1 the matrix M (j) does not satisfy conditions (i)-(iv) of
Lemma B.2, then the cycle is repelling and σj = −∞ for all j.

(b) If the matrices M (j) satisfy conditions (i)-(iv) of Lemma B.2 for all j = jl + 1, then
there exist numbers (αj

1, β
j
1, α

j
2, β

j
2), 1 ≤ j ≤ m, such that

(i) U0(α
j
1, β

j
1, 0;αj

2, β
j
2, 0) 6= ∅, 1 ≤ j ≤ m.
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(ii) For any S < 0 and q > 0 there exists R < 0 such that

M (l,j)(M (j))k(UR(αj
1, β

j
1,−q;α

j
2, β

j
2,−q)) ⊂ US for all l, 1 ≤ l ≤ m, k ≥ 0,

(iii)

lim
k→∞

(M (l,j))(M (j))k(ζ, η)t = (−∞,−∞) for all (ζ, η) ∈ U0(α
j
1, β

j
1, 0;αj

2, β
j
2, 0).

(iv)

U0(α
j
1, β

j
1, 0;αj

2, β
j
2, 0) = U−∞(M (j)) ∩

⋂

1≤l≤L

(M (jl,j))−1U0 ∩
⋂

1≤l≤L

(M (jl+m,j))−1U0.

(v) If λ2 ≥ 0 then

U0(α
j
1, β

j
1, 0;αj

2, β
j
2, 0) = U−∞(M (j)) ∩

⋂

1≤l≤L

(M (jl,j))−1U0.

and the cycle is a Milnor attractor.

Note that
(M (j,s))−1U0 ∩ U0 = U0(α

(j,s)
11 , α

(j,s)
12 , 0;α

(j,s)
21 , α

(j,s)
22 , 0),

where α(j,s) are entries of the matrix M (j,s).
Theorems 4.1-4.3 imply the following Corollary:

Corollary 4.1 For simple heteroclinic cycles in R
4, σj = −∞ for some j if and only if

σj = −∞ for all j.

4.2.1 Calculation of stability indices for Type B cycles

Types B+
1 and B−

1 The cycles of Types B+
1 and B−

1 have transition matrices

M =

(
a 0
b 1

)
.

Corollary B.1 implies that if a < 1 or b < 0, then the cycles are not attractors and the
stability index is −∞, otherwise they are attracting and the stability index is ∞.

Types B+
2 For cycles of Type B+

2 the product of transition matrices is

M1M2 =

(
a1a2 0

b1a2 + b2 1

)

with eigenvalues a1a2 and 1, and the associated eigenvectors (a1a2 − 1, b1a2 + b2) and (0, 1),
respectively (for M2M1, simply swap the indices 1 and 2 in the expressions to obtain the
corresponding eigenvectors).

Theorems 4.2 and 4.3 imply to obtain the following classification:
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• If b1 < 0 and b2 < 0, then the cycle is not an attractor and all stability indices are
−∞.

• Suppose b1 > 0 and b2 > 0.

– If a1a2 < 1, then the cycle is not an attractor and the stability indices are −∞.

– If a1a2 > 1, then the cycle is locally attracting and the stability indices are ∞.

• Suppose b1 < 0 and b2 > 0.

– If a1a2 < 1 or b1a2 + b2 < 0, then the cycle is not an attractor and the stability
indices are −∞.

– If a1a2 > 1 and b1a2 + b2 > 0, then the stability indices are σ1 = f index(b1, 1) and
σ2 = ∞.

Type B−
3 For cycles of Type B−

3 the product of transition matrices is

M3M2M1 =

(
a1a2a3 0

b3a1a2 + b2a1 + b1 1

)
.

Its eigenvalues are a1a2a3 and 1 with associated eigenvectors

(a1a2a3 − 1, b3a1a2 + b2a1 + b1), (0, 1).

(For M2M1M3 and M1M3M2, the quantities are obtained by cyclic permutation of the in-
dices.) Theorems 4.2 and 4.3 imply obtain the following classification:

• If b1 < 0, b2 < 0 and b3 < 0, then the cycle is not an attractor and the stability indices
are all −∞.

• Suppose b1 > 0, b2 > 0 and b3 > 0.

– If a1a2a3 < 1, then the cycle is not an attractor and the stability indices are −∞.

– If a1a2a3 > 1, then the cycle is locally attracting and the stability indices are ∞.

• Suppose b1 < 0, b2 > 0 and b3 > 0.

– If a1a2a3 < 1 or b1a2a3 + b3a2 + b2 < 0, then the cycle not an attractor and the
stability indices are −∞.

– If a1a2a3 > 1 and b1a2a3 + b3a2 + b2 > 0, then the stability indices are σ1 =
f index(b1, 1), σ2 = ∞ and σ3 = f index(b3 + b1a3, 1).

• Suppose b1 < 0, b2 < 0 and b3 > 0.

– If a1a2a3 < 1 or b2a1a3 + b1a3 + b3 < 0 or b1a2a3 + a2b3 + b2 < 0, then the cycle is
not an attractor and the stability indices are −∞.

– If a1a2a3 > 1, b2a1a3 + b1a3 + b3 > 0 and b1a2a3 + a2b3 + b2 > 0, then the
stability indices are σ1 = min(f index(b1, 1), f index(b1 + b2a1, 1)), σ2 = f index(b2, 1)
and σ3 = f index(b3 + b1a3, 1).
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4.2.2 Calculation of stability indices for Type C cycles

Type C−
1 Cycles of Type C−

1 have a transition matrix of the form

M =

(
b 1
a 0

)
.

Corollary B.1 implies that the cycle is attracting and the stability index is ∞ whenever b ≥ 0
and a+ b > 1; otherwise it is not an attractor and the stability index is −∞.

Type C−
2 The product of transition matrices for cycles of Type C−

2 is

M1M2 =

(
b1b2 + a2 b1
a1b2 a1

)
.

Denote by λ1 and λ2 eigenvalues of the matrix M1M2 (which will be the same as those for
M2M1).

Theorems 4.2 and 4.3 imply the following:

• If b1 < 0 and b2 < 0, then the cycle is not an attractor and the stability indices are
−∞.

• Suppose that b1 > 0 and b2 > 0.

– If
max(b1b2 + a2 + a1, 2(b1b2 + a2 + a1 − a1a2)) < 2

then the cycle is not an attractor and the stability indices are −∞.

– Otherwise the cycle is locally attracting and the stability indices are ∞.

• Suppose b1 < 0 and b2 > 0.

– If
(b1b2 + a2 − a1)

2 − 4a1b1b2 < 0,

or
max(b1b2 + a2 + a1, 2(b1b2 + a2 + a1 − a1a2)) < 2,

or
b1b2 − a1 + a2 < 0,

then the cycle is not an attractor and the stability indices are −∞.

– If none of the listed conditions are satisfied, the stability indices are

σ1 = f index(
b1b2 + a1 − λ2

b2
, 1) and σ2 = f index(

λ2 − b1b2 − a2

b1
,−1). (28)
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Type C−
4 The transition matrix for cycles of Type C−

4 is

M ≡M4,1 ≡M4M3M2M1 =(
(b1b2 + a1)(b3b4 + a3) + b1a2b4 (b3b4 + a3)b2 + b4a2

a4b3(b1b2 + a1) + a2a4b1 a4b2b3 + a2a4

)

Denote by λ1 and λ2 eigenvalues and by v
4,1
1 and v

4,1
2 the associated eigenvectors of the

matrix. The trace and determinant are:

tr(M) = b1b2b3b4 + b1b2a3 + b3b4a1 + b1b4a2 + a4b2b3 + a1a3 + a2a4, det(M) = a1a2a3a4.

Theorems 4.2 and 4.3 imply the following:

• If bj < 0 for all j, then the cycle is not an attractor and the stability indices are −∞.

• Suppose that bj > 0 for all j.

– If
max (trM, 2 trM − 2 detM) < 2, (29)

then the cycle is not an attractor and the stability indices are −∞.

– Otherwise the cycle is locally attracting and the stability indices are ∞.

• Suppose that b1 < 0 and bj > 0 for 2 ≤ j ≤ 4.

– If (29) holds, or
(trM)2 − 4 detM < 0 (30)

or
v1,2

11 v
1,2
12 < 0 (31)

then the cycle is not an attractor and the stability indices are −∞.

– If none of the listed conditions are satisfied, the stability indices are

σj = f index(vj+3,j
22 /hj+3,j,−vj+3,j

21 /hj+3,j) where

hj+3,j = vj+3,j
11 vj+3,j

22 − vj+3,j
12 vj+3,j

21 and vj+3,j
11 > 0, vj+3,j

12 > 0.

(vj+3,j
11 > 0 and vj+3,j

12 > 0 can be assumed, because (31) implies that vj+3,j
11 vj+3,j

12 >
0 for all j).

• Suppose that b1 < 0, b2 < 0, b3 > 0 and b4 > 0.

– If (29), or (30), or (31), or
v2,3

11 v
2,3
12 < 0, (32)

holds then the cycle is not an attractor and the stability indices are −∞.
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– If none of the listed conditions are satisfied then the stability indices are

σ1 = min(f index(v4,1
22 /h

4,1,−v4,1
21 /h

4,1), f index(b1b2 + a1, b2), f
index(b1, 1)),

σ2 = min(f index(v1,2
22 /h

1,2,−v1,2
21 /h

1,2), f index(b2, 1)),

σ3 = min(f index(v2,3
22 /h

2,3,−v2,3
21 /h

2,3), f index(b1b3b4 + b1a3 + b3a4, b1b4 + a4)),

σ4 = min(f index(v3,4
22 /h

3,4,−v3,4
21 /h

3,4),

f index(b1b4 + a4, b1), f
index(b1b2b4 + b2a4 + a1b4, b1b2 + a1)).

• Suppose that b1 < 0, b2 > 0, b3 < 0 and b4 > 0.

– If (29), or (30), or (31), or
v3,4

11 v
3,4
12 < 0, (33)

holds then the cycle is not an attractor and the stability indices are −∞.

– If none of the listed conditions are satisfied then the stability indices are

σj = f index(vj+3,j
22 /hj+3,j,−vj+3,j

21 /hj+3,j).

• Suppose that b1 < 0, b2 < 0, b3 < 0 and b4 > 0.

– If at least one of (29)-(33) is satisfied, then the cycle is not an attractor and the
stability indices are −∞.

– If none of the listed conditions are satisfied, the stability indices are

σ1 = min(f index(v4,1
22 /h

4,1,−v4,1
21 /h

4,1), f index(b1, 1), f index(b1b2 + a1, b2),

f index(b1b2b3 + a1b3 + b1a2, b2b3 + a2)),

σ2 = min(f index(v1,2
22 /h

1,2,−v1,2
21 /h

1,2), f index(b2b3 + a2, b3), f
index(b2, 1)),

σ3 = min(f index(v2,3
22 /h

2,3,−v2,3
21 /h

2,3), f index(b1b3b4+b1a3+b3a4, b1b4+a4), f
index(b3, 1)),

σ4 = min(f index(v3,4
22 /h

3,4,−v3,4
21 /h

3,4), f index(b1b4+a4, b1), f
index(b1b4a2+a2a4, b1a2)).

4.3 Comparison with earlier results

Asymptotic stability of heteroclinic cycles has been previously examined in a number of
papers. Type A heteroclinic cycles were considered by Krupa and Melbourne [16, 17]. In
the first paper [16], cycles with negative transverse eigenvalues were investigated and the
condition ρ > 1 was found to be necessary and sufficient for asymptotic stability of cycles.
In the second paper [17] it was shown that cycles with some positive transverse eigenvalues
are essentially asymptotically stable, if and only if ρ > 1 and the condition tj > −1 is
satisfied for all j. This result is a special cases of our Theorem 4.1. The stability of Types
B and C cycles with positive transverse eigenvalues was studied in [18]. The conditions for
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asymptotic stability presented in this paper are equivalent to ours as given in subsections
4.2.1 and 4.2.2 for the special cases bj > 0.

A cycle of Type C−
2 with one positive and one negative transverse eigenvalues was

considered in [21]. Conditions (12)-(14) in [21], under which the set of points satisfying
limk→∞ gk(w, z) = (0, 0) is non-empty, are equivalent to our conditions that σ1 > −∞ for
b1 < 0 and b2 > 0. Existence of the set U0(α

j
1, β

j
1, 0;αj

2, β
j
2, 0) was also noted in [21]. It was

termed Σ̂β+ and was defined by the condition z > wβ+ , which we express as β+ζ − η < 0.
This inequality implies that the stability index σ1 is equal to f index(β+,−1). Substituting
in it β+ defined in the beginning of [21, Theorem 3.2], we obtain the value σ2 given in (28)
(subject to the appropriate change of indices of tj and cj).

5 Discussion

Although it is natural to investigate cusp-like basins of attraction for heteroclinic cycles,
to our knowledge this is the first paper to identify the algebraic order of the cusp as being
an invariant of the dynamics — we use the stability index σ(x) to characterize the local
geometry of basins of attraction near invariant sets X in general, and heteroclinic cycles in
particular. This quantity might be especially useful in describing the local structure of a
range of invariant sets, for example, for riddled and intermingled basins of attraction [1, 6].

In the latter part of the paper we have calculated how the stability indices depend on
the cycle structure and eigenvalues for simple (robust heteroclinic) cycles in R

4. Clearly,
transition matrices can be used to study the stability of simple cycles in higher-dimensional
systems or for more complex cycles; however, we expect such a classification to be so complex
that the results can hardly be enlightening — and so we have not attempted this.

Our approach should give some insight into the structure of heteroclinic networks [3, 8]
and heteroclinic switching [5, 10, 12, 13, 14]. For some cycles (of Type A where at least
one difference between transverse and contracting eigenvalues is negative, or of Type B
where at most one transverse eigenvalue is positive) we find one of the stability indices
to be ∞. Consequently, if a heteroclinic network involves such a cycle, no switching is
possible for perturbations on that particular connecting trajectory (almost all trajectories
that are near a connection where σ = ∞ will stay near the cycle for all t > 0). Some of
the results in this paper may be extended to general robust heteroclinic cycles; it seems
plausible that Corollary 4.1 holds for simple heteroclinic cycles in R

n where all connections
are one-dimensional manifolds, because for such cycles the Poincaré map along the cycle
becomes linear after the same change of coordinates. It should also be possible to extend to
cases of compact but not finite symmetry, though again this is likely to be quite involved
owing to the complexity of heteroclinic cycles between relative equilibria.

Finally, we emphasise that there is no a priori reason why the limits in the definition of
the stability index exist. We give below an example where the stability index can be shown
not to converge. This is probably not a generic situation though; the example below is
highly degenerate, and the generic conditions for the cycles in R

4, as detailed in the previous
section, all result in computable stability indices.
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An example where σ+ and σ− do not exist. We consider a (non-invertible) map
M : [0,∞) → [0,∞) with X = {0} and consider its basin of attraction N = B(X). Define a
sequence ǫk = exp(−2k) and

M(y) =





(ǫ2k−1(y − ǫ2k+2) − ǫ2k(y − ǫ2k+1))/(ǫ2k+1 − ǫ2k+2), if ǫ2k+2 < |y| ≤ ǫ2k+1

0, if ǫ2k+1 < |y| ≤ ǫ2k

0, if y = 0
.

Then

Σǫ2k
>
ǫ2k − ǫ2k+1

ǫ2k

= 1 − ǫ2k,

whereas
Σǫ2k+1

<
ǫ2k+2

ǫ2k+1

= ǫ2k+1.

Hence, ln(Σǫ2k
)/ ln(ǫ2k) < ln(1− ǫ2k)/ ln(ǫ2k) and ln(Σǫ2k+1

)/ ln(ǫ2k+1) > 1, and therefore the
limit defining σ−(0) does not exist; it can similarly be shown that σ+(0) does not exist. This
example can clearly be extended to a continuous map M . Although it is not easy to see how
to extend to a map that is differentiable at y = 0 with the same properties, it may well be
possible to produce a smooth example in dimension two or more.

Other global measures of stability The stability index σ(x) describes the local geome-
try of the basin of attraction of an invariant set X. One can define global and local stability
numbers of a flow invariant set X as follows:

nglob(X) = lim
ǫ→0

ℓ(Bǫ(X) ∩ B(X))

ℓ(Bǫ(X))
,

nloc(X) = lim
δ→0

lim
ǫ→0

ℓ(Bǫ(X) ∩ Bδ(X))

ℓ(Bǫ(X))

where Bδ is defined as in (8). Clearly, from the definition one can verify that 0 ≤ nglob(X) ≤
1, 0 ≤ nloc(X) ≤ 1, and nglob(X) = 1 if and only if X is p.a.s. for a local basin of attraction.
Note however that stability number is not an invariant of the dynamics; we believe that
only the classification into whether n(X) = 0, 0 < n(X) < 1 or n(X) = 1 and scaling
properties will be invariant under smooth conjugation. For a heteroclinic cycle comprised of
one-dimensional connections, the stability number can be related to its stability indices by
the following:

nglob(X) =

∑
σj>0 ℓ

1(sj)∑
ℓ1(sj)

.

where ℓ1(sj) is the length of the connection sj.
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A Type A cycles

In this Appendix we present a proof of the main theorem for calculation of stability indices
for Type A cycles. Consider the map g = gm ◦ . . . ◦ g1 : R

2 → R
2, where5

gj(w, z) ≡ (gw
j (w, z), gz

j (w, z)) = (Ajw
a1j |z|a2j +Bj|w|

b1jzb2j , Cjw
a1j |z|a2j +Dj|w|

b1jzb2j).
(34)

For generic cycles of Type A, AjBjCjDj 6= 0 and AjDj 6= BjCj holds true for all j. In
the first two lemmas in this appendix we assume that a1j + a2j < b1j + b2j. No generality

5By virtue of (13), a2j = 0 and b2j = 1. However, the first two lemmas in this Appendix are proved for
arbitrary aij and bij .
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is lost, because the expression (18) for the map gj(w, z) is invariant under the transforma-
tion (Aj, Bj, Cj, Dj; a1j, a2j, b1j, b2j;w, z) → (Bj, Aj, Dj, Cj; b2j, b1j, a2j, a1j; z, w). Recall that
gl,k = gl ◦ . . . ◦ g1 ◦ g

k.
Let us define

Q(r, ǫ) = {(w, z) : |(w, z)| < ǫ, |z| > |w|1+r, |w| > |z|1+r},

Qz(f1(z), f2(z), ǫ) = {(w, z) : |(w, z)| < ǫ, f1(z) < w < f2(z)},

Qw(f1(w), f2(w), ǫ) = {(w, z) : |(w, z)| < ǫ, f1(w) < z < f2(w)},

where we assume f1(z) = O(z1+r), f1(w) = O(w1+r), f1(z) − f2(z) = O(z1+r1), f1(w) −
f2(w) = O(w1+r1) for some r > 0 and r1 ≥ r.

We start the study of stability by proving a few lemmas about properties of the maps gj.

Lemma A.1 Suppose a1j + a2j > 0. For any q > 0 and r > 0 satisfying

(1 − r)(b1j − a1j) + b2j − a2j > 0, b1j − a1j + (1 − r)(b2j − a2j) > 0, a1j + a2j − q > 0

and

r < min

(∣∣∣∣
q

2a1j

∣∣∣∣ ,
∣∣∣∣
q

2a2j

∣∣∣∣
)

(35)

there exists an ǫj > 0, such that

gj(Q(r, ǫj)) ⊂ Q(r, ǫ
a1j+a2j−q
j ), (36)

|gj(w, z)| < |(w, z)|a1j+a2j−q for any (w, z) ∈ Q(r, ǫj) (37)

and
|gj(w, z)| > |(w, z)|a1j+a2j+q for any (w, z) ∈ Q(r, ǫj). (38)

Proof: At least one of the coefficients, a1j or a2j, is positive. Assume a1j > 0. The inequality
a1j +a2j < b1j − b2j implies b1j −a1j + b2j −a2j > 0 and hence at least one of two differences,
b1j − a1j or b2j − a2j, is positive. For the sake of definiteness we assume without loss of
generality that b1j − a1j > 0. Set ǫj < 1 satisfying the following inequalities:

ǫ
(1−r)(b1j−a1j)+b2j−a2j

j < min

(∣∣∣∣
Aj

2Bj

∣∣∣∣ ,
∣∣∣∣
Cj

2Dj

∣∣∣∣
)

(39)

ǫ
q/2
j |(3Aj/2, 3Cj/2)| < 1, (40)

ǫ
r(a1j+a2j−q)
j <

∣∣∣∣
Aj

3Cj

∣∣∣∣ and (41)

ǫ
q/2
j K < |(Aj/2, Cj/2)|, (42)

where6 K = 2a+b+q+1.

6Here, and below, we use the norm |(w, z)| = (w2 + z2)1/2. If a different norm is employed, the proofs
remain similar but some constants will be modified.
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Assume that
(w, z) ∈ Q(r, ǫj) (43)

and re-write (18) as

gj(w, z) = wa1j |z|a2j(Aj +Bjw
b1j−a1jzb2j−a2j , Cj +Djw

b1j−a1jzb2j−a2j).

Due to (39),

|wb1j−a1jzb2j−a2j | < |z|(b1j−a1j)/(1+r)+b2j−a2j < ǫ
(1−r)(b1j−a1j)+b2j−a2j

j < min

(∣∣∣∣
Aj

2Bj

∣∣∣∣ ,
∣∣∣∣
Cj

2Dj

∣∣∣∣
)
.

(44)
Therefore, due to (35), (40) and (43)

|gj(w, z)| < |wa1jza2j(3Aj/2, 3Cj/2)| < |z|a1j/(1+r)+a2j |(3Aj/2, 3Cj/2)|

< |(w, z)|a1j(1−r)+a2j−q/2ǫ
q/2
j |(3Aj/2, 3Cj/2)| < |(w, z)|a1j+a2j−q.

(45)

Thus, (37) is proved.
The inequalities (44), (41) and (45) imply that for any q > 0 and r > 0 the ǫj can be

chosen so that ∣∣∣∣
gw

j (w, z)

gz
j (w, z)

∣∣∣∣ >
∣∣∣∣
Aj

3Cj

∣∣∣∣ > ǫ
r(a1j+a2j−q)
j > |gz

j (w, z)|
r.

Hence
|gw

j (w, z)| > |gz
j (w, z)|

1+r,

and similarly
|gz

j (w, z)| > |gw
j (w, z)|1+r.

Therefore (36) holds because of (45).
Combining (44), (43), (35) and (42) we obtain

|gj(w, z)| > |wa1jza2j(Aj/2, Cj/2)| > |z|a1j(1+r)+a2j |(Aj/2, Cj/2)|

> |z|a1j(1+r)+a2j+q/2ǫ
−q/2
j |(Aj/2, Cj/2)| > K|z|a1j+a2j+q.

(46)

Assume that a2j < 0. Estimates (44), (43), (35) and (42) imply that

|gj(w, z)| > |wa1jza2j(Aj/2, Cj/2)| > |w|a1j+a2j/(1+r)|(Aj/2, Cj/2)|

> |w|a1j+a2j(1−r)|(Aj/2, Cj/2)| > |w|a1j+a2j(1−r)+q/2ǫ
−q/2
j |(Aj/2, Cj/2)|

> K|w|a1j+a2j+q.

(47)

If a2j > 0 then

|gj(w, z)| > |w|a1j+a2j(1+r)|(Aj/2, Cj/2)| > K|w|a1j+a2j+q.

Thus,

|gj(w, z)| >
1

2
K(|z|a1j+a2j+q + |w|a1j+a2j+q) > |(w, z)|a1j+a2j+q.

QED
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Corollary A.1 Suppose that the conditions of Lemma A.1 are satisfied for r > 0, q > 0
and for all 1 ≤ j ≤ m

(a) If
∏

1≤j≤m(a1j + a2j − q) > 1 then for any δ > 0 there exists an ǫ > 0 such that
|gl,k(w, z)| < δ for all (w, z) ∈ Q(r, ǫ) and for any 1 ≤ l ≤ m and k ≥ 0.

(b) Denote δ0 = min1≤j≤m ǫj. If
∏

1≤j≤m(a1j + a2j + q) < 1 then for any δ < δ0 and any
(w, z) ∈ Q(r, δ) there exist l and k such that |gl,k(w, z)| > δ.

Lemma A.2 Suppose a1j, a2j, b1j, b2j ≥ 0. For any q > 0 there exists an ǫ > 0 such that

|gj(w, z)| < |(w, z)|a1j+a2j−q for any (w, z) with |(w, z)| < ǫ. (48)

Proof: Let ǫ < min((|Aj| + |Cj| + |Bj| + |Dj|)
−1/q, 1). Thus, for such (w, z) we have

|gj(w, z)| < (|Aj| + |Cj|)|w
a1jza2j | + (|Bj| + |Dj|)|w

b1jzb2j |
< (|Aj| + |Cj| + |Bj| + |Dj|)|(w, z)|

a1j+a2j < |(w, z)|a1j+a2j−q.

QED

The following lemmas and the main theorem of this subsection consider the special case
relevant to Type A cycles, where the maps gj(w, z) have a2j = 0 and b2j = 1, i.e. they
simplify to

gj(w, z) = (Ajw
aj +Bj|w|

bjz, Cjw
aj +Dj|w|

bjz) (49)

(we set a1j ≡ aj, b1j ≡ bj and do not assume necessarily that aj < bj + 1).

Lemma A.3 Suppose aj − bj > 1.

(a) For any q > 0, f1(z), f2(z), p̃ and p, such that p̃ > p > 1 and

f ′
1(z) = O(zp−1), f1(z) − f2(z) = O(zp̃), as z → 0 (50)

there exist f̃1(w), f̃2(w) and ǫj > 0 such that

f̃ ′
1(w) = O(waj−bj−1), f̃1(w) − f̃2(w) = O(waj p̃−bj) for w → 0,

and
gj(Qw(f̃1(w), f̃2(w), ǫj)) ⊂ Qz(f1(z), f2(z), ǫ

aj−q
j ),

gj(Qw(f̃1(w), f̃2(w), ǫj)) ⊃ Qz(f1(z), f2(z), ǫ
aj+q
j ),

|gj(w, z)| < |(w, z)|aj−q, |gj(w, z)| > |(w, z)|aj+q

for all (w, z) ∈ Qw(f̃1(w), f̃2(w), ǫj).
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(b) For any q > 0, f1(w), f2(w), p̃ and p, such that p̃ > p > 1 and

f ′
1(w) = O(wp−1), f1(w) − f2(w) = O(wp̃), as w → 0, (51)

there exist f̃1(w), f̃2(w) and ǫj > 0 such that

f̃ ′
1(w) = O(waj−bj−1), f̃1(w) − f̃2(w) = O(waj p̃−bj) as w → 0,

and
gj(Qw(f̃1(w), f̃2(w), ǫj)) ⊂ Qw(f1(w), f2(w), ǫ

aj−q
j ),

gj(Qw(f̃1(w), f̃2(w), ǫj)) ⊃ Qw(f1(w), f2(w), ǫ
aj+q
j ),

|gj(w, z)| < |(w, z)|aj−q, |gj(w, z)| > |(w, z)|aj+q

for all (w, z) ∈ Qw(f̃1(w), f̃2(w), ǫj).

Proof: (a) Let f̃1,2(w) be respectively the solutions of

Ajw
aj +Bj|w|

bj f̃1(w) = f1(Cjw
aj +Dj|w|

bj f̃1(w)) (52)

and
Ajw

aj +Bj|w|
bj f̃2(w) = f2(Cjw

aj +Dj|w|
bj f̃2(w)). (53)

The functions f̃1,2(w) are defined for any small w and due to (50)

f̃1,2(w) = −
Aj

Bj

waj−bj + O(wajp−bj). (54)

Substitution of w ≡ w + δw into (52) implies

Aj(w+δw)aj +Bj|(w+δw)|bj f̃1(w+δw) = f1(Cj(w+δw)aj +Dj|(w+δw)|bj f̃1(w+δw)). (55)

Subtracting now (52) from (55), dividing the result by δw and taking the limit δw → 0, we
obtain that

f̃ ′
1(w) = −

Aj(aj − bj)

Bj

waj−bj−1 + O(wajp−bj−1).

Subtraction of (53) from (52) yields

Bj|w|
bj(f̃1(w) − f̃2(w)) = f1(Cjw

aj +Dj|w|
bj f̃1(w)) − f1(Cjw

aj +Dj|w|
bj f̃2(w))+

f1(Cjw
aj +Dj|w|

bj f̃2(w)) − f2(Cjw
aj +Dj|w|

bj f̃2(w)).
(56)

Because of (50) and (54)

f1(Cjw
aj +Dj|w|

bj f̃1(w)) − f1(Cjw
aj +Dj|w|

bj f̃2(w))

≈ f ′
1((Cj −

DjAj

Bj

)waj)Dj|w|
bj(f̃1(w) − f̃2(w)) = O(waj(p−1)+bj)(f̃1(w) − f̃2(w))

(57)
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and
f1(Cjw

aj +Dj|w|
bj f̃2(w)) − f2(Cjw

aj +Dj|w|
bj f̃2(w)) = O(waj p̃).

Hence (56) takes the form

Bjw
bj(f̃1(w) − f̃2(w)) = O(waj(p−1)+bj)(f̃1(w) − f̃2(w)) + O(waj p̃).

Since p > 1 and aj > 1, the first term in the r.h.s. of this expression is asymptotically
smaller than the l.h.s. and it can be ignored. Thus,

f̃1(w) − f̃2(w) = O(waj p̃−bj).

The asymptotic relation (54) implies that there exist ǫ̃ and K such that

∣∣∣∣z +
Aj

Bj

waj−bj

∣∣∣∣ < K|wajp−bj |

for (w, z) ∈ Qw(f̃1(w), f̃2(w), ǫ̃). Suppose that ǫj satisfies

ǫj < min(ǫ̃, 1), ǫqj

(
|Cj| +

∣∣∣∣
AjDj

Bj

∣∣∣∣+ (|Bj| + |Dj|)K

)
< 1,

Kǫ
aj(p−1)
j < min

(
1

2

∣∣∣∣
Cj

Dj

−
Aj

Bj

∣∣∣∣ ,
∣∣∣∣
Aj

Bj

∣∣∣∣
)
,

ǫ−q
j

∣∣∣∣Cj −
DjAj

Bj

∣∣∣∣ > 4, ǫ
aj−bj−1
j <

∣∣∣∣
Bj

Aj

∣∣∣∣ .

Then
|gj(w, z)| = |waj(Aj +Bjw

bj−ajz, Cj +Djw
bj−ajz)|

< |w|aj(|Cj| + |AjDj

Bj
| + (|Bj| + |Dj|)K) < |(w, z)|aj−q

and

|gj(w, z)| > |waj(Cj +Djw
bj−ajz)| > |w|aj

1

2

∣∣∣∣Cj −
DjAj

Bj

∣∣∣∣ > 2|w|aj+q > |(w, z)|aj+q.

From (52) and (53), the proof of part (a) is complete.
(b) Set f̃1,2(w) to be respectively the solutions of

Cjw
aj +Dj|w|

bj f̃1(w) = f1(Ajw
aj +Bj|w|

bj f̃1(w))

and
Cjw

aj +Dj|w|
bj f̃2(w) = f2(Ajw

aj +Bj|w|
bj f̃2(w)).

The remainder of the proof is similar to case (a). QED
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Corollary A.2 Lemma A.3 implies that the maps fl → f̃l are monotonic in the following
sense:

(a) Let f0 be such that f1(z) < f0(z) < f2(z) for all |z| < ǫ
aj−q
j . Define f̃0(w) by analogy

with f̃1,2(w) in part (a) of that lemma.

If f̃1(w) > f̃2(w), then f̃1(w) > f̃0(w) > f̃2(w),

If f̃1(w) < f̃2(w), then f̃1(w) < f̃0(w) < f̃2(w)

for all |w| < ǫj.

(b) Let f0 be such that f1(w) < f0(w) < f2(w) for all |w| < ǫ
aj−q
j . Define f̃0(w) by analogy

with f̃1,2(w) in part (b) of that lemma.

If f̃1(w) > f̃2(w), then f̃1(w) > f̃0(w) > f̃2(w),

If f̃1(w) < f̃2(w), then f̃1(w) < f̃0(w) < f̃2(w)

for all |w| < ǫj.

Lemma A.4 Suppose that 0 < aj − bj < 1.

(a) For any q > 0, f1(z), f2(z), p̃ and p, such that p̃ > p > 1 and

f ′
1(z) = O(zp−1), f1(z) − f2(z) = O(zp̃), as z → 0, (58)

there exist f̃1(z), f̃2(z) and ǫj > 0 such that

f̃ ′
1(z) = O(z1/(aj−bj)−1), f̃1(z) − f̃2(z) = O(w(aj p̃−aj+1)/(aj−bj)) for z → 0,

and
gj(Qz(f̃1(z), f̃2(z), ǫj)) ⊂ Qz(f1(z), f2(z), ǫ

aj/(aj−bj)−q
j ),

gj(Qz(f̃1(z), f̃2(z), ǫj)) ⊃ Qz(f1(z), f2(z), ǫ
aj/(aj−bj)+q
j ),

|gj(w, z)| < |(w, z)|aj/(aj−bj)−q, |gj(w, z)| > |(w, z)|aj/(aj−bj)+q,

for all (w, z) ∈ Qz(f̃1(z), f̃2(z), ǫj).

(b) For any q > 0, f1(w), f2(w), p̃ and p, such that p̃ > p > 1 and

f ′
1(w) = O(wp−1), f1(w) − f2(w) = O(wp̃), as w → 0, (59)

there exist f̃1(z), f̃2(z) and ǫj > 0 such that

f̃ ′
1(z) = O(z1/(aj−bj)−1), f̃1(z) − f̃2(z) = O(z(aj p̃−aj+1)/(aj−bj)) for z → 0,

and
gj(Qz(f̃1(z), f̃2(z), ǫj) ⊂ Qw(f1(w), f2(w), ǫ

aj/(aj−bj)−q
j ),

gj(Qz(f̃1(z), f̃2(z), ǫj) ⊃ Qw(f1(w), f2(w), ǫ
aj/(aj−bj)+q
j ),

|gj(w, z)| < |(w, z)|aj/(aj−bj)−q, |gj(w, z)| > |(w, z)|aj/(aj−bj)+q,

for all (w, z) ∈ Qz(f̃1(z), f̃2(z), ǫj).
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Proof: (a) Let f̃1,2(z) be solutions of

Aj f̃
aj

1 (z) +Bj|f̃1|
bj(z)z = f1(Cj f̃

aj

1 (z) +Dj|f̃1|
bj(z)z) (60)

and
Aj f̃

aj

2 (z) +Bj|f̃2|
bj(z)z = f2(Cj f̃

aj

2 (z) +Dj|f̃2|
bj(z)z). (61)

The functions f̃1,2(z) are defined for any small z. Note that

f̃1,2(z) = −

(
Bj

Aj

)1/(aj−bj)

z1/(aj−bj) + O(z(ajp−aj+1)/(aj−bj)). (62)

We substitute z → z + δz into (60), subtract (60) from the obtained equation, divide the
result by δz and take the limit δz → 0. Since

f
aj

1 (z+δz)−f
aj

1 (z) = f
aj

1 (z)

(
1 +

f1(z + δz) − f1(z)

f1(z)

)aj

−f
aj

1 (z) ≈ ajf
aj−1
1 (f1(z+δz)−f1(z)),

and similar estimate holds true for bj, we obtain that

f̃ ′
1(z) = −

1

(aj − bj)

(
Bj

Aj

)1/(aj−bj)

z1/(aj−bj)−1 + O(z(ajp−aj+1)/(aj−bj)−1). (63)

Subtracting (61) from (60) we obtain

Aj(f̃
aj

1 − f̃
aj

2 ) +Bjz(|f̃1|
bj − |f̃2|

bj) = (64)

f1(Cj f̃
aj

1 +Dj|f̃1|
bjz)− f2(Cj f̃

aj

1 +Dj|f̃1|
bjz)+ f2(Cj f̃

aj

1 +Dj|f̃1|
bjz)− f2(Cj f̃

aj

2 +Dj|f̃2|
bjz).

Since
f̃

aj

1 − f̃
aj

2 = (f̃1 − f̃2)O(z(aj−1)/(aj−bj)),

z(|f̃1|
bj − |f̃2|

bj) = (f̃1 − f̃2)O(z(aj−1)/(aj−bj)),

f1(Cj f̃
aj

1 +Dj|f̃1|
bjz) − f2(Cj f̃

aj

1 +Dj|f̃1|
bjz) = O(zp̃aj/(aj−bj))

and
f2(Cj f̃

aj

1 +Dj|f̃1|
bjz) − f2(Cj f̃

aj

2 +Dj|f̃2|
bjz) = (f̃1 − f̃2)O(z(paj−1)/(aj−bj)),

(64) implies that
f̃1(z) − f̃2(z) = O(z(p̃aj−aj+1)/(aj−bj)).

Due to (62) there exist ǫ̃ and K such that
∣∣∣∣z +

Aj

Bj

waj−bj

∣∣∣∣ < K|z|(ajp−bj)/(aj−bj) for (w, z) ∈ Qw(f̃1(z), f̃2(z), ǫ̃).

Suppose that ǫj satisfies

ǫj < min(ǫ̃, 1), ǫqj

∣∣∣∣
2Bj

Aj

∣∣∣∣
aj/(aj−bj)(

|Cj| +

∣∣∣∣
AjDj

Bj

∣∣∣∣+ (|Bj| + |Dj|)K

)
< 1,
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Kǫ
aj(p−1)/(aj−bj)
j < min

(
1

2

∣∣∣∣
Cj

Dj

−
Aj

Bj

∣∣∣∣ ,
∣∣∣∣
Aj

Bj

∣∣∣∣
)
,

ǫ−q
j

1

4

∣∣∣∣
Bj

2Aj

∣∣∣∣
aj/(aj−bj)

∣∣∣∣Cj −
DjAj

Bj

∣∣∣∣ > 1 and ǫ
1/(aj−bj)−1
j <

(
Bj

Aj

)1/(aj−bj)

.

Then

|gj(w, z)| = |waj(Aj +Bjw
bj−ajz, Cj +Djw

bj−ajz)|

<

∣∣∣∣
2Bj

Aj

∣∣∣∣
aj/(aj−bj)

|z|aj/(aj−bj)

(
|Cj| +

∣∣∣∣
AjDj

Bj

∣∣∣∣+ (|Bj| + |Dj|)K

)

< |(w, z)|aj/(aj−bj)−q

(65)

and

|gj(w, z)| > |waj(Cj +Djw
bj−ajz)|

> |w|aj
1

2

∣∣∣∣Cj −
DjAj

Bj

∣∣∣∣
> 2|z|aj/(aj−bj)+q > |(w, z)|aj/(aj−bj)+q.

(66)

Hence part (a) is proved. The proof for the part (b) is similar. QED

Corollary A.3 Lemma A.4 implies that the maps fl → f̃l are monotonic in the following
sense:

(a) Let f0 be such that f1(z) < f0(z) < f2(z) for all |z| < ǫ
aj/(aj−bj)−q
j . Define f̃0(z) by

analogy with f̃1,2(z) in part (a) of that lemma.

If f̃1(z) > f̃2(z), then f̃1(z) > f̃0(z) > f̃2(z),

If f̃1(z) < f̃2(z), then f̃1(z) < f̃0(z) < f̃2(z).

for all |z| < ǫj.

(b) Let f0 be such that f1(w) < f0(w) < f2(w) for all |w| < ǫ
aj/(aj−bj)−q
j . Define f̃0(z) by

analogy with f̃1,2(z) in part (b) of that lemma.

If f̃1(z) > f̃2(z), then f̃1(z) > f̃0(z) > f̃2(z),

If f̃1(z) < f̃2(z), then f̃1(z) < f̃0(z) < f̃2(z).

for all |z| < ǫj.

Lemma A.5 Suppose aj > 0 and aj − bj < 0. Then for any ǫ0 > 0 and r > 0 there exists
an ǫ > 0 such that

gj(w, z) ∈ Q(r, ǫ0) for any (w, z) with |(w, z)| < ǫ.
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Proof: Let ǫ satisfy

ǫbj−aj+1 < min

(∣∣∣∣
Aj

2Bj

∣∣∣∣ ,
∣∣∣∣
Cj

2Dj

∣∣∣∣
)
,

ǫaj |(3Aj/2, 3Cj/2)| < ǫ0

and

ǫraj < min

(∣∣∣∣∣
Cj

2

(
3Aj

2

)−1−r
∣∣∣∣∣ ,
∣∣∣∣∣
Aj

2

(
3Cj

2

)−1−r
∣∣∣∣∣

)
.

Therefore, if |(w, z)| < ǫ then

|gj(w, z)| = |waj ||(Aj +Bjw
bj−ajz, Cj +Djw

bj−ajz)| < ǫaj |(3Aj/2, 3Cj/2)| < ǫ0,

|gw
j (w, z)|1+r/|gz

j (w, z)| < |wraj |
|3Aj/2|

1+r

|Cj/2|
< 1

and similarly
|gz

j (w, z)|
1+r/|gw

j (w, z)| < 1.

QED

Lemma A.6 For any q̃ > 0 there exists an ǫj > 0 such that

|gj(w, z)| < |(w, z)|βj where βj = min(aj/2, |bj|q̃/2, |1 + bj|/2),

for all (w, z) ∈ Bǫj
\ Q̃1, where

Q̃1 =

{
∅ if bj > 0
Qz(−|z|−1/bj−q̃, |z|−1/bj−q̃, ǫj) if bj < 0.

Proof: If

(|Aj| + |Cj|)ǫ
aj/2
j < 1/2, (|Bj| + |Dj|)ǫ

|bj |q̃/2
j < 1/2, (|Bj| + |Dj|)ǫ

|1+bj |/2
j < 1/2

then one can verify that

|gj(w, z)| < (|Aj| + |Cj|)|w|
aj + (|Bj| + |Dj|)|w

bjz| < |(w, z)|βj .

QED

Lemma A.7 For any q̃ > 0, r > 0 and ǫ > 0 there exists an ǫj > 0 such that

gj(w, z) ∈ Q(r, ǫ) for all (w, z) ∈ Bǫj
\ (Q̃1 ∪ Q̃2 ∪ Q̃3),
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where Q̃1 is defined in Lemma A.6,

Q̃2 =





∅ if aj − bj < 0

Qz(−(
Bj

Aj
)α1zα1 − |z|α2 ,−(

Bj

Aj
)α1zα1 + |z|α2 , ǫj) if 0 < aj − bj < 1

Qw(−Aj

Bj
wα3 − |w|α4 ,−Aj

Bj
wα3 + |w|α4 , ǫj) if aj − bj > 1

,

Q̃3 =





∅ if aj − bj < 0

Qz(−(
Dj

Cj
)α1
zα1 − |z|α2 ,−(

Dj

Cj
)α1zα1 + |z|α2 , ǫj) if 0 < aj − bj < 1

Qw(
Cj

Dj
wα3 − |w|α4 ,

Cj

Dj
wα3 + |w|α4 , ǫj) if aj − bj > 1

,

and

α1 =
1

aj − bj
, α2 =

aj(r + 1) − 2aj + 2

2(aj − bj)
, α3 = aj − bj, α4 =

aj(r + 1)

2
− bj.

Proof: We start with the proof of existence of ǫw such that in the case aj − bj > 1 the
condition

(w, z) ∈ Bǫw \ (Q̃1 ∪ Q̃2 ∪ Q̃3)

implies that
|gw

j (w, z)| > |gz
j (w, z)|

1+r. (67)

If |Ajw
aj +Bj|w|

bjz| < |Ajw
aj/2| then

|gw
j (w, z)| > |Bjw

aj(r+1)/2| and |gz
j (w, z)| < (|Cj| + |3AjDj/Bj|)|w|

aj .

For |waj(r+1)/2| < |Bj|(|Cj| + |3AjDj/Bj|)
−r−1 the inequality (67) holds true.

If |Ajw
aj +Bj|w|

bjz| > |Ajw
aj/2| then

|gw
j (w, z)| > min(|Aj/2|, |Bj/3|) max(|waj |, |wbjz|)

and
|gz

j (w, z)| < 2 max(|Cj|, |Dj|) max(|waj |, |wbjz|).

Hence if
|(w, z)|rβj < min(|Aj/2|, |Bj/3|)(2 max(|Cj|, |Dj|))

−r−1,

where βj is defined in Lemma A.6, then (67) holds.
The proof of existence of ǫz such that |gz

j (w, z)| > |gw
j (w, z)|1+r is similar. Denote by

ǫ̃j the ǫj from Lemma A.6. Then ǫj = min(ǫw, ǫz, ǫ̃j), by the definition of the set Q(r, ǫ),
satisfies the the condition of the lemma. For the case 0 < aj − bj < 1 the proof is similar
and is not presented, for the case aj − bj < 0 the statement of the Lemma follows from
Lemma A.5. QED
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Let the collection of functions {hl,j(y)} for 1 ≤ j ≤ m, l ≤ j, be defined as follows7:

hj,j(y) = y,

hl,j(y) =





∞ if al − bl < 0
alhl+1,j(y) − al + 1

al − bl
if 0 < al − bl < 1

alhl+1,j(y) − bl if al − bl > 1

This collection has the following properties:

(a)
hl,j(y0 + y1) = hl,j(y0) + al,jy1,

where al,j =
∏

l≤s<j max(as, as/(as − bs)) is defined for l ≤ j.

(b) If there exist J such that aJ − bJ < 0, then hl,j(y) = ∞ for l ≤ J .

(c) If aj−m,j > 1, then hl−m,j(y) > hl,j(y) for any y ≥ 1.

(d) If aj−m,j > 1, then liml→−∞ hl,j(y) = ∞ for any y ≥ 1.

The next theorem gives the main result for Type A cycles, namely it gives the stability
indices σj for the collection of maps gj related to Type A cycles. The coefficients aj and bj
of the map gj are related to the eigenvalues of linearisation of (1) near ξj as aj = cj/ej and
bj = −tj/ej. Recall, that cj > 0 and ej > 0 for all j and therefore aj > 0. Following [16], we
denote

ρj = min(aj, 1 + bj),

ρ = ρ1 · · · ρm, and note that generically the non-degeneracy conditions (19) apply.

Theorem A.1 (reproduces Theorem 4.1) For the collection of maps gj associated with a
Type A cycle, the stability indices are:

(a) If ρ > 1 and bj > 0 for all j then σj,+ = ∞ and σj,− = 0 for any j.

(b) If ρ > 1, bj > −1 for all j and bj < 0 for j = J1, . . . , JL then σj,− = 0 and σj,+ are:

σj,+ = min
s=J1,...,JL

hj,s

(
−

1

bs

)
− 1.

(c) If ρ < 1 or there exists j such that bj < −1 then σj,+ = 0, σj,− = ∞ and the cycle is
not an attractor.

7If an index takes values 1, . . . ,m, then the index value modulo m is understood here and below.
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Proof: (a) Since ρ > 1, there exists a q > 0 such that

m∏

j=1

(ρj − q) > 1. (68)

By Lemma A.2, for any j there exist ǫj such that

|gj(w, z)| < |(w, z)|ρj−q for any (w, z) with |(w, z)| < ǫj. (69)

For a given δ, choose an ǫ > 0 satisfying

ǫρ1,j < min(δ, ǫj, 1) and ρ1,j =

j∏

s=1

(ρs − q), for all 1 ≤ j ≤ m. (70)

Consider (w, z) ∈ H
(in)
1 . If |(w, z)| < ǫ, then (69) and (70) imply that |gj,0(w, z)| < δ. Due

to (68), |g(w, z)| < ǫ and hence |gj,k(w, z)| < δ for all 0 ≤ j ≤ m − 1, k ≥ 0. Therefore
σ1,+ = ∞ and σ1,− = 0. The proof for j > 1 is similar.

(b) First, let us prove that

σ1,+ < h1,s

(
−

1

bs

)
− 1 + q̃1, (71)

where q̃1 is any small number and s = Jl for some l. Denote q1 = q̃1/a1,s. Assume that q
satisfies (68). Define the sets Qj,s(ǫj) by the following rule:

Qs,s(ǫs) = Qz(−|z|−1/bs+q1 , |z|−1/bs+q1 , ǫs).

For a given Qj+1,s(ǫj+1) the set Qj,s(ǫj) is

Qj,s(ǫj) =





∅ if aj − bj < 0

Qz(f̃1(z), f̃2(z), ǫj), ǫj = ǫ
(aj−bj)/(aj−(aj−bj)q)
j+1 if 0 < aj − bj < 1

Qw(f̃1(w), f̃2(w), ǫj), ǫj = ǫ
1/(aj−q)
j+1 if aj − bj > 1,

(72)

where f̃1 and f̃2 are the functions defined in Lemmas A.3 and A.4. Denote by ǫ̃j the ǫj from

Lemmas A.3 and A.4 and set ǫ0 = minj ǫ̃
1/â1,j

j , where âl,j =
∏

l≤s<j(max(as, as/(as−bs))−q).

Examples of the sets Qj,s(ǫs) are shown in Figure 5.

For any δ > 0 we can find an ǫ̂ > 0 such that

|gs(w, z)| > δ for all (w, z) ∈ Qz(−|z|−1/bs+q1 , |z|−1/bs+q1 , ǫ̂).

Hence, if ǫ < min(ǫ0, ǫ̂
1/â(1,s)) then

|gs ◦ . . . ◦ g1(w, z)| > δ for all (w, z) ∈ Q1,s(ǫ).
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z z z

w w w

(a) (b) (c)

Figure 5: Examples of the sets (a) Qs,s(ǫs), (b) Qs−1,s(ǫs−1) for Cs−1Ds−1 < 0 and 0 <
as−1 − bs−1 < 1 and (c) Qs−2,s(ǫs−2), for As−2Bs−2 < 0 and as−2 − bs−2 > 1.

Since
ℓ(Q1,s(ǫ)) = O(ǫh1,s(−1/bs+q1)+1),

and h1,s(1/bs + q1) − h1,s(1/bs) = q̃1 the inequality (71) is proved.
Second, we prove that

σ1,+ > h1,J̃(−1/bJ̃) − 1 − q̃1, (73)

where q̃1 is any small number, q1 = q̃1/a1,J̃ , and J̃ is the value of Jl where

min
1≤l≤L

(h1,Jl
(−1/bJl

))

is achieved. Assume that q satisfies (68) and r and q satisfy the conditions of Lemma A.1
for all j. Set

Qs,s(ǫs) = Qz(−|z|−1/bs−q1 , |z|−1/bs−q1 , ǫs) for s = 1, . . . , Jl,

Q1,1
l (ǫ1) = Q̃l where Q̃, l = 2, 3, and ǫ1 are defined in Lemma A.7 for j = 1. The sets Qj,s

and Q̃j,1
l , l = 2, 3, are defined by (72). Denote

y0 =





∞ if a1 − b1 < 0
(a1(r + 1)/2 − a1 + 1)/(a1 − b1) if 0 < a1 − b1 < 1
a1(r + 1)/2 − b1 if a1 − b1 > 1.

Since y0 > 1, by property (d) of the functions hl,j(y), there exists k > 0 such that h1−mk,1(y0) >
h1,J̃(−1/bJ̃). Hence by Lemmas A.6 and A.7,

if (w, z) ∈ Bǫ \ ((∪0≤s≤k, 1≤l≤LQ
1−sm,Jl) ∪ Q̃1−km,1

2 ∪ Q̃1−km,1
3 ) then gk(w, z) ∈ Q(r, ǫ̃),

where ǫkβ < ǫ̃, β =
∏

1≤j≤m βj. Since

ℓ(Q1,J̃(ǫ)) = O(ǫh1,J̃ (−1/bJ̃−q1)+1),

45



ℓ(Q̃1−km,1
2,3 (ǫ)) = O(ǫh1−mk,1(y0)+1) = o(ǫh1,J̃ (−1/bJ̃−q1)+1)

and

ℓ(Q1−sm,K(ǫ)) = O(ǫh1−sm,K(−1/bK−q1)+1) = o(ǫh1,J̃ (−1/bJ̃−q1)+1) if s 6= 0, K 6= J̃

by Corollary A.1, part (b) is proved.

(c) Let r and q3 be such that the conditions of Lemma A.1 are satisfied for all j where
bj > −1. For all j where bj < −1 assume that r also satisfies

bj + r < −1. (74)

Let Q̃2 and Q̃3 be defined as in Lemma A.7 for j = 1. By the same arguments employed
in that lemma, for sufficiently small δ, if (w, z) ∈ Bδ \ (Q̃2 ∪ Q̃3) then either g1(w, z) > δ
or g1(w, z) ∈ Q(r, δ). In the latter case, if all bj > −1 then gl,k(w, z) > δ (for small enough
δ) for some l and k due to Corollary A.1(b). If there exist bj < −1 then gj,1(w, z) > δ
for small δ due to (74). Therefore, gl,k(w, z) > δ for some l and k for all (w, z), such that

(w, z) ∈ Bδ \ (Q̃2 ∪ Q̃3).

We now consider (w, z) /∈ Bδ \ (Q̃2 ∪ Q̃3). There are two (generically) mutually exclusive
cases:

• Suppose that at least one of the inequalities,
∏

1≤j≤m aj > 1 or at − bt < 0 for some t,

is satisfied. Denote Q1,1
2,3 = Q̃2,3 and define the sets Q1−l,1

2,3 and y0 in the same way as
in the proof of the part (b). Since limk→∞ h1−km,1(y0) = ∞, σ1,− is arbitrary large.

• Suppose that
∏

1≤j≤m aj < 1 and at − bt > 0 for all t. There exist q2 > 0 such that∏
1≤j≤m(aj + q2) < 1. By Corollaries A.2 and A.3 there exist limits as k → ∞ of fl

bounding Q1−km+j,1
2,3 (ǫ) for some ǫ < ǫ̃. Hence, finite values of ǫj can be found such that

Lemmas A.3 and A.4 hold true for Q1−km+j,1
2,3 for any k > 0. For any δ < minj(ǫj), by

Lemmas A.3 and A.4 the following is satisfied

|gj(w, z)| > (w, z)aj+q2 for all (w, z) ∈ Qj−km,1
2,3 (δ). (75)

Take any (w0, z0), |(w0, z0)| = α < δ. There exists k > 0 such that αkâ1,m > δ, where
âl,j =

∏
l≤s<j(as + q2). Hence, due to (75), if |gl,s(w0, z0)| < δ for all 1 ≤ l ≤ m and

s < k, and |gk(w0, z0)| < δ then gk(w0, z0) ∈ Bδ \ (Q̃2 ∪ Q̃3).

QED

B Types B and C cycles

In this section we present proofs of Theorems and Lemmas employed for calculation of sta-
bility indices of Types B and C cycles. To leading order, the maps gj : H

(in)
j → H

(in)
j+1
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associated with the cycles of Types B and C reduce to gj(w, z) = (Ewaj , Fwbjz) and
gj(w, z) = (Ewbjz, Fwaj), respectively. As noted in Section 4.2, it suffices to consider only
positive values of w and z. In the coordinates (ζ, η), ζ = ln z and η = lnw, the maps gj take
the form:

gj(ζ, η) = Mj

(
ζ
η

)
.

(In what follows, the constants E and F are ignored, see discussion in Section 4.2.) The
transition matrices of the maps are

Mj =

(
aj 0
bj 1

)
and Mj =

(
bj 1
aj 0

)

for cycles of Types B and C, respectively. Recall that the coefficients aj and bj of the map
gj are related to the eigenvalues of linearisation of (1) near ξj as aj = cj/ej and bj = −tj/ej.
As in Appendix A, the stability indices are calculated in terms of exponents of the maps gj,
aj and bj. For the map g = gm◦ . . .◦g1 the transition matrix is M = M(g) = Mm · · ·M1. We
introduce the notation: Mj,k and M (j) denote transition matrices for the maps gj,k and g(j),
respectively; M (l,j) = Ml · · ·Mj; λ

j
1, λ

j
2, v

j
1 = (vj

11, v
j
12) and v

j
2 = (vj

21, v
j
22) denote eigenvalues

and associated eigenvectors of the matrix M (j), respectively. If the eigenvalues are real,
λj

1 ≥ λj
2 is assumed.

B.1 The set U−∞(M)

A necessary condition for (w, z) to belong to Bg
δ (see Subsection 3.3) is that gk(w, z) is

bounded for all k by a small δ > 0. Since gk(w, z) is bounded, in the new coordinates
(ζ, η) = (lnw, ln z) the iterates (ζk, ηk) = gk(ζ, η) are bounded from above: ζk < S and
ηk < S for some large in absolute value negative S. Due to linearity of g, this generically
implies that limk→∞ gk(ζ, η) = (−∞,−∞).

We denote

U−∞(M) = {(x, y) : x ≤ 0, y ≤ 0, lim
n→∞

Mn(x, y)t = (−∞,−∞)t}.

Lemma B.1 The dependence of U−∞(M) on eigenvalues and eigenvectors is as follows:

(i) If the λi are complex, then U−∞(M) = ∅.

(ii) If the λi are real and λ1 ≤ 1 or |λ2| > λ1, then U−∞(M) = ∅;

(iii) If the λi are real and v11v12 < 0, then U−∞(M) = ∅;

(iv) If the λi are real, λ1 > 1, v11v12 > 0 and v21v22 ≤ 0, then

U−∞(M) = {(x, y) : x ≤ 0, y ≤ 0};
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(v) If the λi are real, λ1 > 1, v11v12 > 0 (whereby we assume v11 > 0 and v12 > 0), and
v21v22 > 0, then

U−∞(M) = {(x, y) : x ≤ 0, y ≤ 0, (v11v22 − v12v21)
−1(v22x− v21y) < 0};

(vi) If the λi are real, λ1 > 1, v11v12 = 0 and λ2 ≤ 1, then U−∞(M) = ∅;

(vii) If the λi are real, λ1 > 1, v11v12 = 0, λ2 > 1 and v21v22 ≤ 0, then U−∞(M) = {(x, y) :
x ≤ 0, y ≤ 0};

(viii) If the λi are real, λ1 > 1, v11v12 = 0 (whereby we assume v11 ≥ 0 and v12 ≥ 0), λ2 > 1
and v21v22 > 0, then

U−∞(M) = {(x, y) : x ≤ 0, y ≤ 0, (v11v22 − v12v11)
−1(v22x− v21y) < 0}.

Proof: Let the eigenvalues be complex conjugate, λ1,2 = se±iφ. Then

Mn(αv1 + βv2) = sn(v1(α cosnφ− β sinnφ) + v2(α sinnφ+ β cosnφ)) =

sn(cosnφ(αv11 + βv21) + sinnφ(−βv11 + αv21), cosnφ(αv12 + βv22) + sinnφ(−βv12 + αv22)).

Because the eigenvalues are complex, φ 6= kπ. Hence for any N0 > 0 there exists N > N0

such that
xn ≡ sn(cosnφ(αv11 + βv21) + sinnφ(−βv11 + αv21)) > 0.

This proves part (i).
If the eigenvalues are real and distinct, the map Mn in the basis comprised of the eigen-

vectors v1 and v2, (x, y) = h1v1 + h2v2, takes the form

Mn(h1, h2) ≡

(
h

(n)
1

h
(n)
2

)
= λn

1h1

(
v11

v12

)
+ λn

2h2

(
v21

v22

)
. (76)

If |λ1| ≤ 1 and |λ2| ≤ 1 (recall that λ2 < λ1), then for any (h1, h2), (76) has a finite limit as
n→ ∞. If |λ2| > λ1, then λ2 < 0 and hence in (76) the sign of hn

j (j = 1, 2) (76) alternates
for odd and even n, if n is large enough. Part (ii) is proved.

Assume that λ1 > 1 and |λ2| < λ1. If v11v12 6= 0, to leading order h
(n)
1 = λn

1h1v11 and

h
(n)
2 = λn

1h1v12 for n → ∞. Thus, if the signs of v11 and v12 are different, then the limits of

h
(n)
1 and h

(n)
2 have different signs, and (iii) is proved. If v11v12 > 0 (and assuming without

any loss of generality that they are positive), the limits of h
(n)
j , j = 1, 2, are −∞ in the

points (x, y) such that h1 < 0. h1 is negative for any x < 0 and y < 0, if v21v22 ≤ 0, which
proves part (iv). If v21v22 > 0, then the set of (x, y) for which h1 < 0 satisfies the inequality
(v11v22 − v12v11)

−1(v22x− v21y) < 0, and so part (v) is proved.

Assume that v12 = 0; if λ2 ≤ 1, in (76) the limit of h
(n)
2 for n → ∞ is either +∞ or it

does not exist. Thus, part (vi) is proved. The proofs of statements (vii) and (viii) are similar
to the proofs of (iv) and (v) and are omitted. QED

Lemma B.1 can be used to give the dependence of U−∞(M) on the matrix entries,
M = (aij), i, j = 1, 2.
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Lemma B.2 Let λ1 and λ2 (λ1 > λ2, if they are real; generically λ1 6= λ2 ) be the eigenvalues
of the matrix M = (aij), a11 > a22, and v1 and v2 be the associated eigenvectors. Then

(a) (i) the eigenvalues are real if and only if

(a11 − a22)
2

4
+ a12a21 ≥ 0 (77)

(ii) λ1 > 1 if and only if

max

(
a11 + a22

2
, a11 + a22 − a11a22 + a12a21

)
> 1 (78)

(iii) λ1 > |λ2| if and only if
a11 + a22

2
> 0 (79)

(iv) v11v12 > 0 if and only if
a21 > 0. (80)

(b) If λj, j = 1, 2, are real, then a12v22 = (λ2 − a11)v21 and λ2 − a11 < 0.

Proof: The eigenvalues of the matrix M can be expressed as

λ1,2 =
a11 + a22

2
±

√(
a11 − a22

2

)2

+ a12a21.

Statements (a)(i)-(iv) follow from examination of this formula and on noting that the eigen-
vector v1 satisfies a21v11 + a22v12 = λ1v12. If the eigenvalues are real, then λ2 − a11 < 0 and
v2 satisfies a11v21 + a12v22 = λ2v11, which proves statement (b). QED

Corollary B.1 Assume that entries of a matrix M satisfy the conditions (i)-(iv) of Lemma
B.2. Then U−∞(M) = {(x, y) : x ≤ 0, y ≤ 0, (λ2 − a11)x − a12y > 0} for a12 < 0, and
U−∞(M) = {(x, y) : x ≤ 0, y ≤ 0} for a12 ≥ 0.

B.2 Maps and neighbourhoods

The condition w2+z2 < ǫ in (ζ, η) coordinates is equivalent to the condition8 max(ζ, η) < R,
where R < 0; small ǫ corresponds to large |R|. In this subsection we examine how R-
neigbourhoods of (−∞,−∞) are transformed by linear maps.

Let M be an invertible linear map M : R
2 → R

2. Define

UR = {(ζ, η) | max(ζ, η) < R}

8In other words, instead of |(w, z)| = (w2 + z2)1/2, an equivalent norm |(w, z)| = max(|w|, |z|) can be
employed.
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and

UR(α1, β1, q1;α2, β2, q2) =
{(ζ, η) ∈ UR : (α1 + q1)ζ + (β1 + q1)η < 0, (α2 + q2)ζ + (β2 + q2)η < 0},

where R < 0.

Lemma B.3 For any S < 0 and q > 0 there exists R < 0 such that

M(UR ∩M−1U0(1, 0,−q; 0, 1,−q)) ⊂ US. (81)

Proof: We split the neighbourhood in two parts

U0(1, 0,−q; 0, 1,−q) = V1 ∪ V2,

where V1 = U0(1, 0,−q; 0, 1,−q) ∩ US and V2 = U0(1, 0,−q; 0, 1,−q) \ US and denote

R̃ = min{ζ, η : (ζ, η) ∈M−1V2}.

R̃ is finite, since V2 is bounded and M invertible. The inclusion (81) takes place for any
R < R̃, because

M(UR ∩M−1U0(1, 0,−q; 0, 1,−q)) ∩ V2 = ∅

due to R < R̃. QED

Note, that if (ζ, η) ∈ UR \M−1U0, then max(ζ̃ , η̃) ≥ 0, where (ζ̃ , η̃) = M(ζ, η).

Lemma B.4 Denote Ũ = U0(α1, β1,−q1;α2, β2,−q2). Suppose Ũ ⊆ U−∞(M) 6= ∅ and

(v11, v12) ∈ Ũ .

(i) If λ2 ≥ 0, then Mk(Ũ) ⊂ Ũ for any k > 0;

(ii) M2k(Ũ) ⊂ Ũ for any k > 0.

Proof: (i) If (x, y) ∈ Ũ , then α(x, y) ∈ Ũ for any α > 0. If (x, y) ∈ Ũ is represented

as (x, y) = αv1 + βv2, then, due to convexity of Ũ , αv1 + β̃v2 ∈ Ũ for any |β̃|, such that
|β̃| ≤ |β| and β̃β ≥ 0.

For any (x, y) = αv1 + βv2 ∈ Ũ the identity

Mk(x, y) = λk
1(αv1 + βλk

2/λ
k
1v2) (82)

holds. Since λ1 > λ2 > 0, due to the arguments above, Mk(x, y) ∈ Ũ .
(ii) If k is even, the identity (82) implies the statement for negative λ2 as well. QED
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Lemma B.5 Consider the set

U−∞(M) = U0(α1, β1, 0;α2, β2, 0).

For any q1 > 0, q2 > 0 and S < 0 there exists an R < 0 such that

(i) If λ2 ≥ 0, then MkUR(α1, β1,−q1;α2, β2,−q2) ⊂ US for any k > 0;

(ii) M2kUR(α1, β1,−q1;α2, β2,−q2) ⊂ US for any k > 0.

Proof: (i) Consider a set W̃ comprised of two line segments, one segment being x = −1, y =

[−1, 0] and the other one y = −1, x = [−1, 0]. Denote W = W̃ ∩ Ū0(α1, β1,−q1;α2, β2,−q2).
The iterates (xk, yk) = Mk(x0, y0)

t are bounded from above for any (x0, y0) ∈ W by some

Q̃ < 0, because W ⊂ U−∞(M). Due to compactness of W , the bounds for the iterates are
uniform for all (x0, y0) ∈ W by some Q < 0. Since the maps Mk are linear, max(xk, yk) < Q
for a given (x0, y0) implies (x̃k, ỹk) < αQ for (x̃0, ỹ0) = α(x0, y0). Part (i) is thus proved for
R = −S/Q.

Statement (ii) is a consequence of Lemma B.4 (ii). QED

B.3 Main theorems

In this subsection we prove two theorems on stability indices for maps related to heteroclinic
cycles of Types B or C, employing the Lemmas proved in Sections B.1 and B.2.

Theorem B.1 (reproduces Theorem 4.2) Let g be a map related to simple heteroclinic cycle
of Types B or C and Mj, 1 ≤ j ≤ m, its transition matrices. Suppose that for all j,
1 ≤ j ≤ m, all entries of the matrices are non-negative. Then:

(a) If the transition matrix M = Mm · · ·M1 satisfies condition (a)(ii) of Lemma B.2, then
σj,+ = ∞ and σj,− = 0 for all j and therefore the cycle is asymptotically stable.

(b) Otherwise, σj,+ = 0 and σj,− = ∞ for all j and the cycle is not an attractor.

Proof: (a) Suppose that the matrix M ≡M (1) satisfies condition (a)(ii) of Lemma B.2. For

a map M (j) : H
(in)
j → H

(in)
j , the condition can be expressed as

max
(
tr
(
M (j)

)
, 2 tr

(
M (j)

)
− 2 det

(
M (j)

))
> 2. (83)

Hence if the condition is satisfied by M (j) for any one value of j, it is satisfied for all
1 ≤ j ≤ m. Any M (j) have non-negative entries, as it is a product of matrices with non-
negative entries. Therefore, M (j) satisfies conditions (i) and (iii) of part (a) the Lemma.
Due to the assumptions λ1 > λ2 and a11 > a22, the condition (iv) is satisfied. Hence
U−∞(M (j)) = R

2
− for all j.
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Consider the images of the lines α(−1 + q,−q) and β(−q,−1 + q), where 0 < q < 1,
α ∈ R+ and β ∈ R+, under the mappings M j,1 or M j,1M . Since all entries of the matrices
M j,1 and M j,1M are non-negative, the images take the form α(−r1,−r2) for ri > 0 and
α ∈ R+. Thus, for any positive q < 1 there exists a qj > 0, such that

M j,1U0(1, 0,−q; 0, 1,−q) ⊂ U0(1, 0,−qj; 0, 1,−qj)

and
M j,1MU0(1, 0,−q; 0, 1,−q) ⊂ U0(1, 0,−qj; 0, 1,−qj).

Apply Lemma B.3 to mappingsM j,1 andM j,1M , setting any S < 0 and q = qj. According
to the Lemma, we can find Sj, such that

M j,1USj
(1, 0,−q; 0, 1,−q) ⊂ US and M j,1MUSj

(1, 0,−q; 0, 1,−q) ⊂ US. (84)

Denote
S̃ = min

j
Sj.

By Lemmas B.4 and B.5 (where Lemma B.5 is applied for S = S̃), there exists R such
that

M2kUR(1, 0,−q; 0, 1,−q) ⊂ US̃(1, 0,−q; 0, 1,−q) for all k ≥ 0.

Thus, (84) implies
Mj,kUR(1, 0,−q; 0, 1,−q) ⊂ US for all k ≥ 0.

Hence, σ1,+ > 1/q− 1 for any q, which implies σ1,+ = ∞ and σ1,− = 0. The proof holds true
for j > 1 as well, and therefore part (a) is proved.

For part (b), if the matrix M ≡ M (1) does not satisfy the condition (ii) of the Lemma,
by Lemma B.1 the set U−∞(M) is empty, σ1,+ = 0 and σ1,− = ∞. Since condition (83) is
satisfied or not satisfied by all M (j) simultaneously, σj,+ = 0 and σj,− = ∞ for all 1 ≥ j ≥ m.
QED

Theorem B.2 (reproduces Theorem 4.3). Let X be a simple heteroclinic cycle of Types B
or C and Mj, 1 ≤ j ≤ m the associated transition matrices. We denote by j = j1, . . . jL the
indices, for which some of the entries of Mj are negative; they are all non-negative for all
remaining j.

(a) If at least for one of j = jl + 1 the matrix M (j) does not satisfy conditions (i)-(iv) of
Lemma B.2, then the cycle is repelling and σj = −∞ for all j.

(b) If the matrices M (j) satisfy conditions (i)-(iv) of Lemma B.2 for all j = jl + 1, then
there exist numbers (αj

1, β
j
1, α

j
2, β

j
2), 1 ≤ j ≤ m, such that

(i) U0(α
j
1, β

j
1, 0;αj

2, β
j
2, 0) 6= ∅, 1 ≤ j ≤ m.
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(ii) For any S < 0 and q > 0 there exists R < 0 such that

M (l,j)(M (j))k(UR(αj
1, β

j
1,−q;α

j
2, β

j
2,−q)) ⊂ US for all l, 1 ≤ l < m, k ≥ 0.

(iii)

lim
k→∞

(M (l,j)(M (j))k(ζ, η)) = (−∞,−∞), for all (ζ, η) ∈ U0(α
j
1, β

j
1, 0;αj

2, β
j
2, 0).

(iv)

U0(α
j
1, β

j
1, 0;αj

2, β
j
2, 0) = U−∞(M (j))∩

(
⋂

1≤l≤L

(M (jl,j))−1U0

)
∩

(
⋂

1≤l≤L

(M (jl+m,j))−1U0

)
.

(v) If λ2 ≥ 0 then

U0(α
j
1, β

j
1, 0;αj

2, β
j
2, 0) = U−∞(M (j)) ∩

(
⋂

1≤l≤L

(M (jl,j))−1U0

)
.

The cycle is a Milnor attractor.

Proof: For (a), as noted in the proof of Theorem 4.2, the matrices M (j) will simultaneously
satisfy, or not satisfy, conditions (i)-(iii) of Lemma B.2 for all j. Suppose the condition (iv)
is not satisfied for some j = J . For any s, the iterates (M (J))kM (J,s)(x, y) on increasing k

become aligned with (vJ
11, v

J
12), see (76). Since vJ

11v
J
12 ≤ 0, the iterates escape from US ⊂ Ĥ

(in)
J

for any S < 0 for a sufficiently large k. Hence part (a) is proved.
For (b) suppose that, for jl +1 the matrix M (jl+1) satisfies conditions (iv) of Lemma B.2.

The matrices Mj, jl +1 ≤ j ≤ jl+1 −1, have positive entries, vj = Mj−1 . . .Mjl+2Mjl+1v
jl+1,

therefore v
(jl+1)
11 v

(jl+1)
12 > 0 implies v

(j)
11 v

(j)
12 > 0 for any j, jl + 2 ≤ j ≤ jl+1. Hence, it suffices

to check condition (iv) for j = jl + 1, 1 ≤ l ≤ L.
Denote

Ũj = U−∞(M (j)) ∩

(
⋂

1≤l≤L

(M (jl,j))−1U0

)
∩

(
⋂

1≤l≤L

(M (jl+m,j))−1U0

)

The set is non-empty, because it includes a neighbourhood of the point (vj
11, v

j
12) on the

plane (since this point belongs to all sets in the intersection). Since all the sets are of the
type U0(α1, β1, 0;α2, β2, 0), the intersection is also of the required type U0(α

j
1, β

j
1, 0;αj

2, β
j
2, 0).

Consider Ũ = Ũ1.
Due to Lemma B.4 and definition of the set Ũ ,

Mj,kŨ ⊂ U−∞(M (j)) for all 1 ≤ j ≤ m, k ≥ 0.
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By the same arguments as employed in the proof of Theorem 4.2, this inclusion implies that
for any q > 0 and S < 0 there exists R < 0, such that

Mj,kUR(α1
1, β

1
1 ,−q;α

1
2, β

1
2 ,−q) ⊂ US for all 1 ≤ j ≤ m, k ≥ 0,

and therefore −∞ < σ1. The proof for σj with j > 1 is similar. Finally, by Theorem 2.3, X
is a Milnor attractor, since the inequality −∞ < σj is satisfied for all j. QED
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