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Previous studies have demonstrated statistically significant associations between disease and climate variations,

highlighting the potential for developing climate-based epidemic earlywarning systems. However, limitations to

such studies include failure to allow for non-climatic confounding factors, limited geographical/temporal resolution,

or lack of evaluation of predictive validity. Here, we consider such issues in the context of dengue fever in South East

Brazil, where dengue epidemics impact heavily on Brazilian public health services. A spatio-temporal generalised

linear mixed model (GLMM) is developed, including both climate and non-climate covariates. Overdispersion

and unobserved confounding factors are accounted for via a Negative Binomial formulation and inclusion of

both spatial and temporal random effects. Model parameters are estimated in a Bayesian framework to allow

full posterior predictive distributions for disease risk to be derived in time and space. Detailed probabilistic

forecasts can then be issued for any pre-defined ‘alert’ thresholds, allowing probabilistic early warnings for dengue

epidemics to be made. Using this approach with the criterion ‘greater than a 50% chance of exceeding 300 cases per

100,000 inhabitants’, successful epidemic alerts would have been issued for 81% of the 54 regions that experienced

epidemic dengue incidence rates in South East Brazil, during the major 2008 epidemic. Use of seasonal climate

forecasts in this model allows predictions to be made several months ahead of an impending epidemic. We argue

that the general modelling framework, described here in the context of dengue in Brazil, is potentially valuable in

similar applications, both outside of Brazil and for other climate-sensitive diseases. Copyrightc© 0000 John Wiley

& Sons, Ltd.
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1. Introduction

The transmission of many infectious diseases is often influenced by weatherand climate variability, particularly for those

spread by arthropod vectors such as malaria and dengue [1]. Some vector-borne diseases demonstrate seasonal patterns and

display inter-annual variability which can partly be explained by meteorological factors [2]. Therefore, climate information

could potentially be valuable in early warning systems for epidemic-prone diseases, to provide public health decision

makers and the general public with as much advance notice as possible about the likelihood of an epidemic. This would

allow the implementation of timely preventative measures. Such early warning systems require statistical and/or biological

models which incorporate the impact of climate variables on disease transmission. Due to time lags involved in the climate-

disease transmission system, lagged observed climate variables could provide some predictive lead for forecasting disease

epidemics. This lead time can be extended by using forecast climate in disease prediction models. This is a topic of

particular interest given the increasing international scientific effort being invested in refinement of seasonal forecasting

models, and on-line access to such predictions (e.g. http://eurobrisa.cptec.inpe.br/).

Recent epidemiological studies have demonstrated statistically significant associations between climate variations and

various infectious diseases (for a review see [3]), and have highlighted the potential for developing climate-based early

warning systems (e.g. [4]). However, developing statistical models basedon past empirical data that adequately capture

associations between climate-sensitive disease and climatic factors can be problematic. To measure how much variation

in disease risk can be attributed to climatic factors, non-climatic confounding factors must also be carefully considered

to avoid drawing misleading conclusions in estimating climate-disease associations. Some relevant information can be

obtained from census data and other routinely collected sources, but data on many localised confounding factors is scarce

on a scale suitable to address the needs of public health services. Therefore, statistical climate-disease models need to

make due allowance for latent structure relating to unobserved temporal and/or spatial confounding factors.

Another major barrier to developing such models is the relatively short lengthof available time series of good quality

disease data and the lack of spatial resolution at the sub-national level in such data sets. Epidemics are often sudden

and unexpected, and prevention and control strategies need to be accurately targeted in both time and space if they are

to stand a chance of being effective [5]. When sufficient space-time data is available, it is usually a mixture of multi-

scaled observations, differentially aggregated or averaged in time and space. This implies the need to allow for complex

correlation structures in the model formulation and possibly multi-level (hierarchical) structure. Further complications can

also arise when disease-climate relationships exhibit ‘threshold’ or ‘extreme’ dependencies, rather than average behaviour.

An important further requirement is the evaluation of statistical disease models. A proper assessment of predictive

performance is required along with an evaluation of the practical applicationof the model in a public health context.

The tendency of a disease forecasting system to issue false alarms (issuing an epidemic warning when no epidemic is

later observed) or to miss an epidemic can have serious consequences. Not only in terms of morbidity and mortality, but

also in terms of economic cost and the willingness of the public to rely on subsequent warnings [6]. In all cases, model

performance should be validated using out-of-sample data [5].

As an alternative to statistical models, mathematical process models are increasingly being applied to interpret and

predict the future incidence and control of infectious diseases (e.g. [7, 8, 9]). Whereas statistical models are driven by data

and use empirical (or ‘descriptive’) relationships between the disease and climate variables, process-based models use

largely deterministic differential equations to represent the dynamical evolution of the disease lifecycle and incorporate

climate influences as parameters. As process models are based on underlying physical and biological processes, some

have argued that they are potentially more powerful than their purely data driven, ‘descriptive’ statistical counterparts.

They can, for example, be applied to regions where reliable data is lacking,or to predict future disease behaviour based

on postulated climate scenarios. However, in practice such models are oftenlimited by a lack of full understanding of the

biological mechanisms involved, or omission of significant aspects of the vector or parasite lifecycle (due to the lack of

information in the literature) and also by the availability of data for model input and model validation [10]. Parameter
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settings are often selected according to a limited number of site specific field or laboratory studies which may not be

applicable to different regions.

Notwithstanding some of the potential theoretical advantages of process-based models, we argue that ‘descriptive’

statistical climate-disease models based on past empirical data provide a valuable, viable and effective approach to

developing practical epidemic early warning systems. Such models have the advantage of being able to incorporate a

sufficiently wide range of both climatic and non-climatic (confounding) explanatory variables [11] and make best use

of routinely available data. We also show that judicious use of sufficiently sophisticated modern statistical modelling

methods can address or reduce the various potential difficulties that may beassociated with developing such models, i.e.

unobserved confounding factors, complex correlation structures, proper evaluation of predictive power, etc.

We illustrate this in the context of developing an early warning system for dengue fever in South East Brazil. Brazil

is used as a case study to show how a well-specified statistical model can be developed, which is capable of providing

probabilistic forecasts and practically useful early warnings of future and geographically specific risk of dengue epidemics.

In the 21st century, Brazil became the country with the most reported cases of dengue fever in the world. More than three

million cases were reported from 2000 to 2005 [12], representing 78% ofall cases reported in the Americas and 61%

of all cases reported to the World Health Organization (WHO). Large areas of Brazil have highly favourable climate

for the proliferation ofAedes aegyptimosquitoes and dozens of metropoles with high human population densities living

in substandard conditions with deficient sanitation services [12]. Brazil also has some of the worlds best laboratory-

based surveillance capabilities for dengue/dengue haemorrhagic fever[13]. However, data from this surveillance system

is not routinely nor effectively exploited in any early warning system to predict epidemics. Therefore, Brazil serves as

an excellent ‘test bed’ for which to develop a climate-based early warningsystem for dengue epidemics. We focus our

analysis on the South East region of Brazil where dengue is most prevalent and there are a large number of densely

populated urban centres which could benefit from a climate informed dengue early warning system. This is also the region

of Brazil where previous work has reported climate influences to be significantly associated with observed spatio-temporal

variability in dengue risk (see [14]).

Although the specific model details and results in subsequent sections relateto our Brazilian case study on dengue,

we believe that the general methodological framework and considerationswe describe are more widely applicable, both

outside of Brazil and to climate sensitive diseases other than dengue.

2. Dengue

Dengue fever is currently one of the most important emerging tropical diseases in the world in terms of morbidity and

mortality [15, 16]. It is an acute mosquito-borne viral disease characterised by fever, headache, severe muscle and joint

pains (hence commonly referred to as ‘break-bone fever’), rash, nausea, and vomiting [17]. Most dengue infections do not

result in death, but a small portion develop into the more serious and potentiallydeadly illness dengue hemorrhagic fever/

dengue shock syndrome. This is characterized by spontaneous hemorrhage, increased permeability of the blood vessels

and circulatory failure, leading to shock. Fatality rates in untreated denguehemorrhagic fever/dengue shock syndrome can

be as high as 50% [18]. Global incidence of dengue has grown dramatically in recent decades and according to the WHO,

about two fifths of the world’s population are now at risk, with an estimated 50million dengue infections worldwide every

year. Dengue is caused by any of four closely related dengue virus strains or serotypes (DENV-1,2,3 and 4), belonging to

the family Flaviviridae [19]. Infection with one serotype provides life-longimmunity against further infection from that

same serotype but no protection against the other serotypes. In fact, it has been hypothesised that sequential infections

with other serotypes increases the risk of more severe manifestations including dengue hemorrhagic fever and dengue

shock syndrome [20].

The vector responsible for major dengue epidemics is the domestic, containerbreedingAedes Aegyptimosquito [21].
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The resurgence of epidemic dengue fever and the emergence of dengue hemorrhagic fever in the last few decades have

been closely tied with population growth, urbanisation and air travel [22, 23]. Dengue incidence is usually associated

with warmer, more humid weather. Rainfall may influence dengue incidence through the filling of containers out in the

open (e.g. old tyres), which create potential breeding sites for the mosquito, while the subsequent cycle also depends on

temperature and humidity [24]. For a dengue epidemic to occur, a large number of mosquitoes are required along with

many people with no immunity to one of the four dengue serotypes and an opportunity for the two to interact. The many

potential drivers of dengue, both extrinsic, such as climate, and intrinsic,such as population immunity are often difficult

to disentangle. This presents a challenge for modelling of dengue risk in space and time.

Despite significant progress in vaccine development [25, 26], there is no tested and approved vaccine to protect against

dengue. Therefore, disease control and prevention have mainly focused on vector control activities and surveillance

[27, 12]. Although there is no specific treatment for dengue, appropriate medical care frequently saves the lives of

patients with the more serious dengue haemorrhagic fever. The current dengue surveillance system in Brazil relies on

observing early cases of dengue in December/January to estimate epidemic potential later in the austral summer (see

[14]). However, this provides neither quantitative estimates nor a long predictive lead time. The greater the lead time

available for forecasting disease risk, the greater the opportunity for effective disease risk intervention, such as preparing

health care services for increased numbers of dengue patients and educating populations to eliminate mosquito breeding

sites. As the lead time of a dengue prediction model could potentially be extendedby using climate, or even forecasts of

the climate, the development and evaluation of a climate informed dengue early warning system for Brazil is a worthwhile

endeavour.

3. Data

3.1. Dengue, demographic and cartographic data

Dengue fever data (counts of notified cases per calendar month) from January 2001 - December 2009 were obtained at

municipality level from DATASUS (http://dtr2004.saude.gov.br/sinanweb/novo/). The data set includes all notified dengue

cases from hospitals and clinic doctors from both the private and public health system. Individual data are locally entered

into the electronic information system and subsequently transmitted to state and national levels [27]. Cases are laboratory

confirmed where possible, or otherwise based on syndromic definition. A network of laboratories, capable of diagnosing

dengue infections, has been implemented in all Brazilian states. The network isresponsible for confirmation of cases to

support epidemiological surveillance [28]. However, this network is notaccessible to all municipalities within the states.

To address this issue, dengue counts were aggregated to the lower resolution microregion level, where a microregion

typically consists of one large city and several smaller municipalities (there are160 such defined microregions in South

East Brazil). This alleviates problems of misreporting due to variation in availability of health services/epidemiological

facilities at the municipality level.

The Brazilian Ministry of Health define yearly dengue incidence rates (DIR) as the number of new dengue cases per

100,000 inhabitants for a geographical area. In order to calculate incidence rates using the dengue count dataset described

above, yearly population estimates for Brazilian microregions from 2001-2009 were obtained from the Brazilian Institute

for Geography and Statistics (IBGE) (http://www.ibge.gov.br/). These estimates are based on the 2000 census and take into

account changing demographic components such as births, mortality and migration. Although the models in subsequent

sections are specified for counts of dengue cases, results in this paperare reported in terms of DIR for ease of interpretation.

Figure 1a shows the time series of DIR for the 2001-2009 period for SouthEast Brazil. Two major epidemics occurred

in the late austral summer of 2002 and 2008, while considerably fewer dengue cases were reported in 2004 and 2005.

Figure 1b illustrates the spatial distribution of DIR according to the three risk categories; high (more than 300 cases per

100,000), medium (between 100 and 300 cases per 100,000) and low incidence (less than 100 cases per 100,000).
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National cartographic data such as altitude and area were obtained from IBGE. Census data for microregions related to

levels of urbanisation were obtained from an aggregated database, SIDRA (http://www.sidra.ibge.gov.br) maintained by

IBGE and included variables such as the percentage of urban population, households with at least one bathroom, refuse

collection and water supply provided by a network.

3.2. Climate data

Observed gridded (2.5◦ × 2.5◦ latitude-longitude grid) average monthly rate of precipitation data were obtained from

the Global Precipitation Climatology Project (GPCP) [29]. The dataset is a combination of gauge observations with

satellite estimates from 1979 to present. Reanalysis gridded (2.5◦ × 2.5◦ latitude-longitude grid) monthly mean surface air

temperature data were obtained from the NCEP/NCAR Reanalysis. The NCEP/NCAR Reanalysis project uses a state-of-

the-art analysis/forecast system to perform data assimilation using past data from 1948 to the present [30]. Precipitation

and temperature data from both the GPCP combined rain gauge-satellite dataset and the reanalysis project were extracted

for the period 2000-2009 and will be referred to as ‘observed’ climate variables in the remainder of this paper.

A time series of the Oceanic Niño Index (ONI), defined as the 3-month running mean of sea surface temperature (SST)

anomalies in the Niño 3.4 region (120◦W-170◦W and 5◦S- 5◦N), based on the 1971-2000 base period, was obtained

from the NOAA Climate Prediction Center (CPC) (http://www.cpc.noaa.gov/products/analysismonitoring/ensostuff/

ensoyears.shtml). Warm (El Niño) and cold (La Nĩna) episodes of the El Niño Southern Oscillation (see [31]) are based

on a threshold of±0.5◦C for the ONI. During the study period of interest the following episodes were observed: weak

La Niña (2000-01), moderate El Niño (2002-03), weak El Niño (2004-05 and 2006-07), moderate La Niña (2007-08) and

strong El Nĩno (2009-10).

The multi-sourced spatio-temporal datasets were collated using the statistical computing software R [32]. Data at

the microregion level (i.e. dengue, demographic and cartographic data) and gridded climate data were reconciled by

assigning a grid point to each microregion on the basis of the shortest Euclidean distance between microregion centroid

and neighbouring grid points.

It should be noted that the nature and availability of both the dengue and the climate data for Brazil, means that the

data set is collated at the relatively coarse spatial resolution of the microregion. Therefore, the model formulated in

subsequent sections will not be able to capture sub-microregion variations in dengue which are likely influenced by

localised meteorological conditions. Rather, the aim in this paper is to identify large scale variations in dengue that could

be attributed to seasonal variations in temperature and precipitation which are, in part, driven by the El Nĩno Southern

Oscillation. That said, the ability to provide early warnings of epidemics at the microregion level remains valuable from

the point of view of public health decision making and intervention.

4. Model formulation and estimation

Several studies have reported associations between spatial (e.g. [33]) and temporal (e.g. [34, 35]) patterns of dengue and

climate. However, these reported associations are not entirely consistent,possibly reflecting the complexity of climatic

effects on transmission, and/or the presence of non-climatic confoundingfactors. Few studies have included non-climatic

factors that can affect dengue transmission such as measures of socioeconomic deprivation or levels of urbanisation (e.g.

[34, 36, 37]). Many studies do not account for seasonality in the model(e.g. [38, 39]) which can result in misleading

inference about dengue-climate relationships. Some models include climate related explanatory variables with multiple

possible time lags (e.g. [40]), which can lead to overfitting [11]. Most studies have not tested models on out-of-sample data

(e.g. [41]). In addition, appropriate response distributions for countdata have not always been employed for modelling

dengue cases (e.g. [42]). Otherwise, little allowance has been made for extra-Poisson variation (overdispersion), which is

commonly encountered when modelling disease counts and requires attention inmodel fitting [43].
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The model developed in this paper responds to the various points raised above, and refines and extends the model

used by the authors [14] in a previous study of dengue risk in Brazil andmodels used in other studies (e.g. [44] in

spatio-temporal analysis of the relationship between annual malaria incidence and selected climate covariates at a district

level in Zimbabwe from 1988-1999). The basic modelling framework is a negative binomial (see [45, 46]) generalised

linear mixed model (GLMM), where for each spatial location or microregion,s = (1, . . . , 160), and monthly time index,

t = (1, . . . , 108), the count of dengue cases,yst, follows a negative binomial distribution with unknown scale parameter,

κ, and meanµst = estρst. Here est is the expected number of cases, a known offset (based upon the population of

microregions at timet multiplied by the global dengue rate for the whole data set). Then,ρst is the unknown relative risk

for microregions at timet. A suitable specification for the log relative risk,log ρst, was then sought via a linear predictor

involving climate covariates, non-climate confounding factors, and appropriate spatial and temporal random effects as

discussed below.

A series of models of varying complexity, using different subsets of variables, were tested in arriving at a final

specification for the form of the linear predictor forlog ρst. These extensive exploratory analyses included the use of formal

model selection algorithms based on the ‘Akaike Information Criterion’ (AIC), supplemented by graphical analyses of

fitted values and residuals, examination of model fit with and without climate information, and consideration of the range

of other routine model diagnostics. We do not report that model selection process in detail here, but simply comment on

some of the issues that were encountered in the process and how we decided to resolve them.

First, considering pure time dependence, we included potential terms int and powers oft into the linear predictor to

allow for any global temporal trend in DIR over the 108 month period covered by the data (years 2001-2009). These were

not found to be significant during this period in the presence of the other variables considered. However, DIR does have a

marked annual cycle in South East Brazil which peaks in March. To allow for this, an autocorrelated monthly effect was

included in the model as a categorical variable for montht′(t), wheret′(·) denotes an indicator function which assigns a

month marker to the time indext (t′(t) = 1, . . . , 12). For convenience, August was set as the reference level (t′(t) = 1),

since DIR for this month is generally the lowest, so for September,t′(t) = 2 and so on. We allowed for the annual cycle

in this way because it is a more flexible approach than imposing a parametric sinusoidal form which, whilst it may be

mathematically convenient, has little epidemiological justification.

Second, previous studies on DIR in Brazil (see [47] for further details) have shown dengue to be significantly associated

with a number of climate factors such as temperature, precipitation and the ONI (an ENSO index), with time lagged

values of these variables. For example, Figure 2 shows scatter plots of precipitation/temperature/ONI and DIR for every

month (2001-2009) and microregion in South East Brazil. There is a weak positive association between precipitation and

dengue incidence (Fig. 2a) and temperature and dengue incidence (Fig.2b). Further, there is a slight negative relationship

between ONI and DIR (relationship consistent at lags ranging from 2 months to 6 months previous, Fig. 2c). We included

all of these influences as potential explanatory variables in the linear predictor for log ρst. Precipitation and temperature

covariates lag 1-3 were all found to be statistically significant and these time lags are consistent with previous findings

(e.g. [41, 48, 40, 49]). Rather than selecting a particular lag, or including all three lag separately, which could result in

over-fitting, these variables were combined into 3-month average precipitation and temperature variables, over the three

months preceding the dengue month of interest. This is equivalent to a two monthlag when considering the mid point of

the three-month average. As our model is intended to be used as an early warning system, this aligns with the fact that

temperature and precipitation would in practice be obtained from seasonal climate forecasting systems which are typically

issued as seasonal (e.g. December–February average) rather thanmonthly forecasts. The ONI lagged 2 months and 6

months prior to the dengue month of interest (or 4 months prior to the averagedtemperature and precipitation effects)

were both favoured by AIC model selection. ONI with lag 6 months prior to the dengue month of interest was selected

for inclusion into the model as this provides increased lead time which could be advantageous for a dengue early warning

system.

Third, in regard to non-climate factors we included a range of cartographic, demographic and socioeconomic variables
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related to the urban environment (see Section 3). Altitude and population density proved to be most important in line

with previous findings on DIR in Brazil (see [47] for further details). Altitude was found to have a significant negative

association with dengue relative risk while population density was positively associated, as might be intuitively expected.

Fourth, models to predict vector-borne disease have often included autoregressive time series terms (e.g. [50, 51, 40]),

based on the idea that current incidence can be partly explained by pastvalues. Clearly, autoregressive terms with one

or two month lag offer little, if any, advance warning of an impending epidemic, since, in practice the collation of such

data may not be feasible in advance of the time period for which the forecastis valid. However, the number of dengue

cases observed several months previously might indicate the presence of increased mosquito populations or the circulation

of a new dengue serotype to which the human population is not immune. A laggeddengue relative risk term could then

act as a surrogate for unobserved and unmeasured spatio-temporal confounding factors in the model. Accordingly, the

variablezst = log(yst−3

est−3

), the log ratio of observed to expected dengue cases, i.e. the log standardised morbidity ratio

(SMR), lagged by 3 months, was tested in the model. This lag was selected as a compromise between the longest lag

plausible to provide predictive skill and the shortest lag possible to allow enough time to provide an early warning of a

dengue epidemic. For example, a dengue prediction for March would be based on the dengue risk reported in the previous

December. As the inclusion of an autoregressive term causes the first 3observations in each microregion to be lost, the

model was fitted to the data set for the period April 2001- December 2009 (105 months).

Finally, unobserved confounding factors such as population immunity, quality of health care services, and local health

interventions are very likely present and important. The inclusion of unstructured random effects in the linear predictor of

dengue relative risk can help to account for such unknown or unobserved confounding factors in the disease system. At

the same time it is appropriate to include some additional structured random effects into the model to allow for temporal

and/or spatial correlation [52]. Such random effects introduce an extra source of variability (a latent effect) into the model

which can assist in modelling overdispersion in addition to the single scale parameter in the negative binomial model.

Additionally, spatially structured random effects allow for correlated heterogeneity between microregions. A spatial

dependency structure can be imposed by assuming a prior distribution for the spatial effects which takes the neighbourhood

structure of the area under consideration into account. Prior information which allows for local geographical dependence

causes the relative risks in an area to be shrunk towards a local mean, according to the relative risks in neighbouring areas

[53]. A typical choice for a spatially structured prior is a conditional intrinsic Gaussian autoregressive model (CAR) (see

[54]).

Taking all of the above into account, the final model to emerge from the modelselection process comprised a

combination of non-climate covariates, lagged climate variables and dengue risk, and spatially and temporally structured

and unstructured random effects. The model was formulated as a Bayesian GLMM as follows:
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yst|φs, υs, ωt′(t) ∼ NegBin(µst = estρst, κ), s = 1, . . . , 160, t = 1, . . . , 105

log(µst) = log(est) + log(ρst) = log(est) + α +
3∑

j=1

βjxjst +
2∑

j=1

γjwjst + δzst + φs + υs + ωt′(t)

α ∼ U(−∞,+∞)

βj ∼ N(0, 106), j = 1, . . . , 3

γj ∼ N(0, 106), j = 1, 2

δ ∼ N(0, 106)

φs ∼ N(0, σ2
φ)

υs|υj 6=s ∼ CAR(σ2
υ)

ω1 = 0, ωt′(t)|ωt′(t)−1 ∼ N(ωt′(t)−1, σ
2
ω), t′(t) = 2, . . . , 12

τφ = 1/σ2
φ ∼ Ga(0.5, 0.0005)

τυ = 1/σ2
υ ∼ Ga(0.5, 0.0005)

τω = 1/σ2
ω ∼ Ga(0.5, 0.0005)

κ ∼ Ga(0.5, 0.0005).

The variables,xjst, (j = 1, . . . , 3) represent the selected climate influences: precipitation (j = 1) and temperature (j = 2)

averaged over the previous three months (equivalent to a two month lag), and the ONI four months previous to the local

climate variables (j = 3). The variableswjst are: altitude (j = 1) and population density (j = 2). Variablezst is the log

dengue SMR three months previously. Spatial random effects are composed of spatially unstructuredφs and structured

componentsυs. The spatially unstructured random effects,φs, are assigned independent diffuse Gaussian exchangeable

priors and the structured random effects,υs, are assigned a Gaussian CAR prior. As the formulation of the CAR used

here is improper, we follow the usual practice of applying a ‘sum to zero’ constraint toυs, s = 1, . . . , 160, and assigning

a uniform flat prior to the model interceptα (see [55] for more details). A first order autoregressive month effect ωt′(t) is

included with month 1 (August) set to zero (ω1 = 0) and subsequent months following a random walk or first difference

prior [56] in which each effect is derived from the immediately preceding effect. Independent diffuse Gaussian priors

(mean 0, precision1 × 10−6 ) were taken for the fixed effectsβj (j = 1, . . . , 3), γj (j = 1, 2) andδ. A gamma prior was

used for the scale parameterκ. Following [57], weakly informative independent gamma hyperpriors with shape parameter

ζ = 0.5 and inverse scale parameterη = 0.0005 were used for the precisions (τφ = 1/σ2
φ, τυ = 1/σ2

υ, τω = 1/σ2
ω) of the

hyperpriors for the spatial and temporal random effects.

The Bayesian model was fitted via MCMC sampling using R in conjunction with WinBUGS software [58] and the

R2WinBUGS package [59] (see Supporting Material for model code). Two parallel MCMC chains were generated,

each of length 25,000 with a burn-in of 20,000 and thinning of 10 to obtain 1000 samples from the joint posterior

distribution. The fixed explanatory variables were standardised to zero mean and unit variance to aid MCMC convergence.

MCMC samples from the ‘log-posterior’, i.e, samples from the logarithm of thejoint posterior distribution of all model

parameters, evaluated at each MCMC iteration can be inspected to give an indication of convergence, since the joint

posterior distribution is a global summary of all model parameters. This confirmed satisfactory convergence of the overall

model (see Fig 3). To check convergence of the individual parameter estimates, the potential scale reductionR̂ (see [60]

for details) was calculated (see Table 1, Note: values below 1.1 are considered to be acceptable in most cases, [61]).

Posterior mean parameter estimates are summarised in Table 1. For all parameters (except for population density), the

95% credible interval does not contain zero. This table also includes posterior means for the hyperparameters, relating

to the precisions for both spatially structured and unstructured random effects. Figure 4 shows the parameter estimates
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and 95% credible intervals for the ‘autocorrelated’ month factorωt′(t) in the model. Note that calendar montht′(t) = 1

(August) is set as the reference level i.e. its effect is aliased in the model interceptα.

Figure 5a compares observed DIR and fitted posterior mean DIR for all 160 microregions for the 105 month time

period (April 2001 - December 2009). Despite the large variability, the superimposed scatter-plot smoother indicates

strong overall positive association between observed and model fit DIR. Figure 5b shows the temporal evolution of the

fitted posterior mean DIR compared to observed DIR for South East Brazilas a whole. The model is able to correctly

detect the inter-annual variability over the time period. The model captures well the magnitude of the DIR in the peak

season (February-April (FMA) in 2001, 2006, 2007 and 2008. However, the model underestimated the DIR in 2002 and

overestimated in 2004 and 2009, for example.

Figure 6 shows the decomposition of the dengue relative risk across the South East into the climate components

(exp(β1x1st + β2x2st + β3x3t), see Fig 6a) and the dengue risk three months previous (exp(δzst), see Fig 6b). This

allows us to identify the relative contribution of the spatio-temporal covariatesin the model and their spatio-inter-annual

variability for the peak dengue season February - April (FMA) in 2005 (a non-epidemic year, row 1) and 2008 (an epidemic

year, row 2). The spatial distribution of the model fit DIR (including all data, parameter estimates and random effects) and

observed DIR are shown in Figure 6c and d respectively.

5. Predictions for dengue epidemics

In order to quantify the predictive benefit of the model and to ensure the efficacy of the modelling framework to public

health decision makers, it is important to assess how well the developed modelcan predict future and also geographically

specific dengue epidemics. For that purpose, the model was fitted to data from April 2001 - December 2007 and posterior

predictive distributions [62] were then derived for dengue counts forthe out-of-sample data from January 2008 –December

2009.

The current monitoring system in Brazil relies on observing an increase inearly cases around 3 months prior to the

onset of the peak dengue season. To test if the spatio-temporal model developed in the previous section performs better

than current practice, that model is compared to a simple model which essentially reflects current dengue surveillance in

Brazil i.e.:

yst ∼ NegBin(µst, κ)

log µst = log est + α + δzst,

with the expected number of casesest as the model offset and the variablezst = log(yst−3

est−3

) being the log of the ratio

of observed to expected cases lagged by 3 months, as previously defined. We will refer to this as the current surveillance

model (CSM). Note that this is a sub-model of the GLMM specified the previous section.

The out-of-sample posterior predictions for January 2008 - December 2009 from the GLMM and CSM were compared

with observations for each of the 160 microregions in South East Brazil. Figure 7 shows the spatial distribution of observed

and predicted DIR using both models for the FMA season 2008–2009. Although the GLMM has a tendency to over predict

DIR in certain areas, the model is better able to capture instances of very high DIR across the South East region. In general

the CSM predicts low to medium DIR for most of the region even when high DIR isobserved. Despite some false alarms

(i.e. high DIR predicted when low DIR observed), there are more instances where the GLMM successfully detected high

DIR compared to the CSM (e.g. east coast 2008, Fig. 7.1a, b and c). Overall, the CSM fails to capture the observed DIR

behaviour across the region.

In general, dengue warnings are most useful at the microregion level, toallow local governments to make decisions on

resource allocation. With this in mind, it is useful to select some key large microregions in SE Brazil for further inspection.
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Belo Horizonte (population of 4,932,777) and Rio de Janeiro (population of11,554,872) were chosen as they contain the

capital cities of the states of Minas Gerais and Rio de Janeiro, respectively. As S̃ao Paulo experienced comparatively

low DIR during the out-of-sample period, another large microregion in that state was selected: São Jose dos Campos

(population of 1,381,846). In Figure 8, observed DIR, the mean of the posterior predictive distribution and 95% credible

intervals, calculated using the2.5% and97.5% quantiles of the posterior predictive distribution, are presented for these

three microregions; Belo Horizonte, Rio de Janeiro and São Jose dos Campos. In general, the GLMM better captured the

temporal behaviour of DIR than the CSM. The GLMM was also able to predictthat the dengue season for Belo Horizonte

was equally high in 2009 as in 2008 (see Fig. 8.1a). For microregions Rio deJaneiro and S̃ao Jose dos Campos the

GLMM over-predicted the 2009 season but again better captured the temporal behaviour in dengue than the CSM (see

Fig. 8.1b, 8.2b, 8.1c and 8.2c).

The GLMM and CSM can be used to predict the probability of dengue exceeding a pre-defined epidemic threshold

in each microregion. As the posterior predictive distribution can be obtainedfor each microregion (rather than a point

estimate), the probability of exceeding an epidemic threshold can be calculated. The decision to trigger an alert can

be based on the probability of exceeding the threshold being greater than aspecified alert level, (e.g. a probability of

exceedance greater than 50%). As an example, the event of dengue incidence exceeding 300 cases per 100,000 inhabitants

(DIR> 300; high incidence threshold defined by the National Dengue Control Programme in Brazil) is considered. In

March 2008, a serious epidemic occurred across parts of Brazil, that originated in Rio de Janeiro. As a further illustration

of the weakness of the CSM as a prediction tool, it is interesting to note that the posterior predictive probability of

DIR> 300, obtained from the CSM is less that 50% for all microregions during the major epidemic in FMA, 2008. On

the other hand, the GLMM highlights 44 microregions as having more than a 50%chance of DIR> 300 (note that 54

microregions experienced DIR> 300). For example, in Rio de Janeiro, the CSM gave a probability of exceeding 300 cases

per 100,000 inhabitants of0.37 whereas for the GLMM, the probability of exceedance was 0.75 (see Fig.9).

Although the GLMM produces a considerable number of false alarms compared to the CSM, it is capable of detecting

elevated levels of DIR which is important for an early warning system to help direct the allocation of resources to cope with

area-specific dengue epidemics. We conclude that the GLMM is an improvement to current practice and that the inclusion

of climate information and observed and unobserved confounding factors improves the performance of the model. The

remainder of the paper focuses on the usefulness of the developed model to public health decision makers.

6. Probability decision thresholds

One way to evaluate probabilistic forecasts of any event is to consider the set of deterministic binary forecasts obtained

by choosing a range of probability decision thresholds [63]. The ability ofthe GLMM to predict dengue epidemics across

South East Brazil during the 2008 epidemic (FMA season) can be assessed by comparing observed DIR for the 3-

month season FMA 2008 with model predictions with varying probability decisionthresholds. During this season, 54

of the 160 microregions in South East Brazil experienced an ‘epidemic’ (DIR> 300). A 2 × 2 contingency table then

provides information on the overall predictive skill of the warning system given a specific threshold. For example, given

a probability decision threshold of 60%, the proportion correct (PC), defined as the proportion of the 160 microregions

for which the prediction correctly anticipated the subsequent epidemic or non-epidemic,(a + d)/(a + b + c + d), was

76%. The hit rate (HR); the proportion of epidemics that were correctly predicted (a/(a + c), also known as sensitivity),

was 57%. Conversely, the false alarm rate (FAR); the proportion of epidemics thatwere predicted but did not occur

(b/(b + d), also known as 1-specificity), was12% (see Table 2). When the probability decision threshold was lowered to

40%, PC= 74%, HR= 91% and FAR= 34%. By lowering the probability decision threshold, the hit rate for the region

increases but so does the false alarm rate.

Clearly, a single set of binary forecasts does not provide a satisfactory basis for assessment of the quality of the
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forecasting system [64]. This is because it shows the performance of the system at only a single probability decision

threshold. A complete description of predictive skill requires verification over the full range of possible thresholds. An

analysis tool that accomplishes this is the Relative (or Receiver) OperatingCharacteristic (ROC) graph of the hit rate

against the false alarm rate (or sensitivity against 1-specificity) for different decision thresholds. As the probability decision

threshold varies from high to low (moving from left to right) HR and FAR varytogether to trace out the ROC curve. Perfect

discrimination is represented by the point (0,1) where HR= 100% and FAR= 0%. The diagonal HR=FAR represents zero

skill, i.e. the forecasting system performs as well as random guessing. The area under the modelled ROC curve, abbreviated

AUC [65], is a widely used ROC-based measure of skill. AUC characterises the quality of a forecast system by describing

the system’s ability to anticipate correctly the occurrence or non-occurrence of pre-defined events [66]. The possible range

of AUC is [0, 1]. Zero skill is indicated by AUC=0.5, i.e. area under the diagonal HR=FAR. For perfect skill, AUC=1. To

test the null hypothesis that the area under the ROC curve is 0.5, i.e. the forecast has no skill, a p-value can be calculated

using a Mann-WhitneyU-test (see [66]). Figure 10 shows the ROC curve for dengue epidemicsduring the FMA season

2008 using the GLMM for the 160 microregions in South East Brazil, with AUC=0.86 (p-value<< 0.05). This indicates

that the forecasting system is significantly more skillful than randomly guessing. By lowering the probability decision

threshold, the hit rate increases but so does the false alarm rate. Optimal probability decision thresholds are sometimes

determined as the point where the ROC curve intersects the negative 45◦ line (where sensitivity=specificity or HR=1-FAR)

or the point where the distance from the HR=FAR line is greatest [67]. In practice, the choice of epidemic threshold and

probability decision thresholds should be decided based on expert opinion and available resources.

7. Presenting dengue forecasts to decision makers

If a ‘forecasting system’ is capable of producing probabilistic forecastsover a geographical area, these forecasts can

be displayed graphically in the form of a map. This may be useful for targeting resource allocation to areas most at

risk. To communicate information contained in a probabilistic forecast, we adopt a new method for visualising ternary

probabilistic forecasts, i.e. forecasts that assign probabilities to a set of three mutually exclusive and complete outcomes

(e.g. low, medium and high risk). This method is described is more detail in [68]. The idea is to consider a ternary forecast

as a point in a triangle of barycentric coordinates. This allows a unique colour to be assigned to each forecast from a

continuum of colours defined on the triangle. Colour saturation increaseswith information gain relative to the reference

forecast. This provides additional information to decision makers comparedto conventional methods used in seasonal

climate forecasting, where one colour is used to represent one forecast category on a forecast map (e.g. red=‘dry’).

As posterior predictive distributions for dengue incidence rates can be derived from the model for each microregion

and month, the probability of dengue risk falling into pre-defined categoriescan be calculated. The Brazilian Ministry

of Health are interested in areas where DIR≤ 100; indicating low risk,100 < DIR ≤ 300; indicating medium risk and

DIR > 300; indicating high risk. Using this new method, maps can be produced in which theforecast at each geographical

location is expressed as a colour determined by a combination of three probabilities.

Given the pre-defined categories boundaries, the model can produceprobabilistic forecasts,p1 (probability of low risk

category),p2 (probability of medium risk category),p3 (probability of high risk category), that dengue incidence rates will

be in each category at the forecast time. The probability forecast can beregarded asp = (p1, p2, p3) with the constraints

p1 + p2 + p3 = 1 and0 ≤ pi ≤ 1, ∀i. The particular forecastq = (q1, q2, q3) corresponds to the case where the forecaster’s

state of knowledge is ‘no better’ than the historical observed distribution. For example, if the forecaster had no knowledge

other than the observational record, the same forecastq could be issued each year. Here,q will be referred to as the

reference forecast; a benchmark distribution with which all other forecasts can be compared.

According to the observed distribution for the FMA season 2001-2007, 65% of the values fell below DIR= 100, 12%

fell between DIR= 100 and DIR= 300, and 23% fell above DIR= 300 (see density plot in Fig 11). As the categories
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apply to a dengue rate (cases per 100,000 inhabitants), rather than absolute counts, the category boundaries are the same for

each spatial location. Therefore, the reference forecastq becomesq = (0.65, 0.12, 0.23). When representing probabilistic

forecasts using colour, determined from a point in a triangle of barycentric coordinates (see [68]), the reference forecast

(×) can be located at a point which satisfies these 3 probabilities (see triangle inFig. 11). Using these category boundaries,

blue is assigned to the low risk category, yellow to the medium risk category andred to the high risk category.

Figure 12a presents a probabilistic forecast map of DIR for FMA season2008 using the GLMM. The observed DIR

category for each microregion is shown for comparison (Fig. 12b). Forthe FMA season 2008, the GLMM would have

correctly forecast high DIR for Rio de Janeiro and microregions along the east coast and in the west of the region (darker

shades of red) and would have correctly forecast low DIR in the South (darker shades of blue). The map also shows areas

where the model was uncertain as to which dengue category might be observed (pale shades). Communicating information

contained within a probabilistic forecast presents a challenge. It is hopedthat this visualisation method may facilitate the

interpretation of the probabilistic forecasts of dengue incidence rates from the model for public health decision makers.

8. Discussion

This paper highlights the potential for incorporating climate information into a spatio-temporal dengue epidemic early

warning system for South East Brazil. The use of climate variables in conjunction with other factors in a GLMM improves

on current practice for dengue surveillance and control in Brazil. Thiswork builds on several previous climate and health

studies by moving away from simple models at the country level, involving only temporal variations in climate and disease,

to a more sophisticated spatio-temporal model providing probabilistic predictions that can aid decision making and target

resource allocation. This model allows for extra-Poisson variation via a negative binomial formulation, for the annual cycle

via temporally correlated month effects and for unobserved confoundingfactors and spatial correlation through spatially

unstructured and spatially structured random effects.

The GLMM was fitted using a Bayesian estimation framework allowing posterior predictive distributions for disease

risk to be derived at each spatial location for a given month or season. This allowed probabilistic forecasts to be issued.

An evaluation of the forecast skill of dengue epidemic warnings using out-of-sample data was conducted. The model was

compared to a simple conceptual model of current practice, based on dengue cases three months previously. It was found

that the developed model including climate, past dengue risk and observedand unobserved confounding factors, enhanced

dengue predictions compared to model based on past dengue risk alone.

A major obstacle to developing a climate-driven dengue model is the lack of highquality climate and disease data over

long time periods. A further disadvantage is that the available dengue data is not broken down by virus type. Serological

information could be useful to indicate the periodicity of circulating serotypes(DENV-1, DENV-2, DENV-3, DENV-4)

which influence population immunity and hence the occurrence of epidemics. Further, as temperature and precipitation

influence the abundance and transmission potential ofAedes Aegypti, it would be advantageous to include entomological

data in the analysis. However, this information was unobtainable.

Another potentially important component missing from the model is the seasonalmovement of human hosts around

Brazil. The proximity matrix used to formulate the CAR prior for the spatially structured random effects in the GLMM,

assumes a simple local structure where each microregion is dependent onlyon its neighbours. However, certain areas may

be more closely related, in terms of dengue transmission, to remote areas connected by air or road transport links, rather

than neighbouring microregions. IBGE have released a new study entitled ‘Areas of Influence of Cities’ based on research

into the Brazilian urban network. A hierarchy of urban centres is definedbased on the flow of good and services, including

air and road travel. A proximity matrix based on this hierarchical matrix might improve the correlation structure within

the model.

The spatio-temporal hierarchical model is intended to become part of a newly established climate and health
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observatory in Brazil (http://www.inpe.br/noticias/arquivos/pdf/observatorium.pdf). However, before implementing such

an operational system, several technical issues need to be considered. In practice, observed climate could be replaced

by climate forecasts which might extend the lead time beyond that offered by using lagged observations. By replacing

observed with forecast climate variables in the model, a dengue prediction could be made several months ahead of the

dengue season of interest. For example, to predict dengue incidence for March 2012, the model could be run in November

2011 using the observed ONI for August-October 2011 (6 month lag), and precipitation and temperature forecasts for

December-February 2011-2012 issued in November 2011 (see Fig 13). The dengue risk at the time of forecast (e.g.

November) could be used as a best guess for dengue risk three months previous to the month of interest (e.g. March).

This would provide a four month lead time, which could allow time for the allocation ofresources to interventions such as

preparing health care services for increased numbers of dengue patients and educating populations to eliminate mosquito

breeding sites. However, the efficacy of a climate-based epidemic early warning system will depend on the skill of the

climate forecasting system. One such system that is operational in Brazil andshows some skill in South East Brazil is

the EUROBRISA initiative [69] which is a multi-model combined and calibrated system that produces one-month lead

precipitation forecasts for the following three-month season.

Probability alert thresholds should be carefully designed to minimise false alarms and false negatives (i.e. failing to

predict that an epidemic will occur) and should correspond with the epidemicresponse capabilities of the region where

the model might be implemented. An important issue is the consideration of future interventions in the model framework.

If the Brazilian health services respond to an early warning of a dengue epidemic and take measures to reduce the impact,

an apparent false alarm may in fact be the result of a successful intervention.
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9. Tables and Figures

Table 1.Parameter estimates and convergence diagnosticR̂ for covariates and hyperparameters associated with the spatial and temporal random effects.
CI is the credible interval obtained from the 2.5% and 97.5% quantiles of the distribution.

mean standard deviation 95% CI R̂

Precipitation 0.317 0.035 [0.246, 0.387] 1.029
Temperature 0.503 0.037 [0.435,0.580] 1.071
Oceanic Nĩno Index -0.412 0.022 [-0.456, -0.368] 1.000
Altitude -0.964 0.080 [-1.119, -0.812] 1.023
Population density 0.065 0.055 [-0.041, 0.174] 1.056
Lagged dengue risk 0.214 0.004 [0.205, 0.222] 1.003
Spatially unstructured hyperparameter 11485.052 1276.669[102.615, 4697.996] 1.091
Spatially structured hyperparameter 0.508 0.066 [0.390, 0.652] 1.001
Temporally structured hyperparameter 2.74 1.159 [0.922, 5.378] 1.000
Scale parameter 0.470 0.006 [0.458, 0.483] 1.001

Table 2.Summary of contingency table results for observed dengue incidence exceeding epidemic threshold of 300 cases per 100,000 inhabitants at
varying probability decision thresholds (60%, 50%, 40%) for the 160 microregions FMA 2008 using GLMM.a is the number of events correctly forecast
to occur (hits);b is the number of events incorrectly forecast to occur, (falsealarms);c is the number events incorrectly forecast not to occur, (misses); andd

is the number of event correctly forecast not to occur (correct rejections). PC is proportion correct, HR is hit rate and FAR is false alarm rate.

Threshold a b c d PC HR FAR
60% 31 13 23 93 76% 57% 12%
50% 44 27 10 79 77% 81% 25%
40% 49 36 5 70 74% 91% 34%
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Figure 1. (a) Dengue incidence rate (DIR) for South East Brazil January 2001 - December 2009. (b) Map of low (less than 100), medium (between 100 and
300) and high (greater than 300) dengue incidence in each microregion over 2001-2009.
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Figure 2.Scatter plot betweenlog(DIR) and (a) precipitation, (b) temperature (averaged over3 months previous to dengue month) and (c) ONI (lagged 4
months previous to local climate variables). Solid curve - linear model fit, dashed curve - local polynomial regression fit. Note points stratified by calendar
month for DIR.
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Figure 3.Trace plot of log posterior distribution for 1000 samples from the model.
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Figure 4.Parameter estimates (circle) and 95% credible intervals (bars) for autocorrelated month effectω̂t′(t).
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Figure 5.Observed and model fit DIR at the linear predictor level for allmonths (105) and microregions (160). Dashed curve - local polynomial regression
fit. (b) Total observed (black line) and model fit (grey line) DIR from April 2001 - December 2009.
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Figure 6.Multiplicative decomposition of the dengue relative risk mapin South East Brazil into (a) the climate component explained by precipitation,
temperature and ONI and (b) dengue relative risk 3 month previous. (c) Model fit and (d) observed DIR in South East Brazil for FMA in 2005 (non-epidemic
year, row 1) and 2008 (epidemic year, row 2). DIR category boundaries defined by 50, 100, 300 and 500 cases per 100,000 inhabitants.

Statist. Med.0000, 00 1–16 Copyrightc© 0000 John Wiley & Sons, Ltd. www.sim.org 19
Prepared usingsimauth.cls



Statistics
in Medicine R. Loweet al. Early warning system for dengue in Brazil

DIR
Very low
Low
Medium
High
Very high

1b 2008

DIR
Very low
Low
Medium
High
Very high

2b 2009

DIR
Very low
Low
Medium
High
Very high

1b 2008

DIR
Very low
Low
Medium
High
Very high

2b 2009

DIR
Very low
Low
Medium
High
Very high

1c 2008

DIR
Very low
Low
Medium
High
Very high

2c 2009

Figure 7. (a) Observed DIR, (b) predicted DIR using GLMM and (c) predicted DIR using current surveillance model (CSM) for FMA seasonin 2008 (row 1)
and 2009 (row 2). Category boundaries defined by 50, 100, 300 and 500 cases per 100,000 inhabitants.
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Figure 8.Time series of observed (solid line), posterior predictive mean (dashed line) and 95% credible intervals for posterior predictive distribution of
log(DIR) from January 2008 - December 2009 using GLMM (column 1) and CSM (column 2) for selected microregions: (a) Belo Horizonte, (b) Rio de
Janeiro and (c) S̃ao Jose dos Campos.
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Figure 9.Posterior predictive distributions and probability of exceeding the pre-defined epidemic threshold of 300 cases per 100,000 inhabitants (shaded area)
for the microregion Rio de Janeiro, FMA 2008 using (a) GLMM (p(DIR) > 300 = 0.75) and (b) CSM (p(DIR) > 300 = 0.37). Arrow indicates observed
DIR.
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Figure 10.ROC curve for binary event of observed DIR exceeding the epidemic threshold of 300 cases per 100,000 inhabitants for FMA 2008 using GLMM
(AUC=0.86).
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Figure 11.Kernel density of FMA DIR in South East Brazil 2001-2007 withpre-defined category boundaries (dashed lines) of 100 and 300 cases per
100,000 inhabitants (note logarithmic scale) and ternary phase diagram with corners representing ‘Low’p = (1, 0, 0), ‘Medium’ p = (0, 1, 0) and ‘High’
p = (0, 0, 1) dengue risk.× marks location of the reference forecastq = (0.65, 0.12, 0.23).
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Figure 12.(a) Probabilistic forecast using GLMM and (b) corresponding observed categories for FMA 2008. Category boundaries defined as 100 and 300
cases per 100,000 inhabitants.
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Figure 13.Schematic to show time lags between dengue month of interest (e.g. March), 3-month average precipitation and temperature lagged 2 months prior
to dengue month (e.g. December-February) and ONI lagged 6 months prior to dengue month (e.g. August to October, 4 months prior to average precipitation
and temperature). A four month lead time could be gained using a forecasting system such as EUROBRISA (http://eurobrisa.cptec.inpe.br/).
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