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Previous studies have demonstrated statistically significant assations between disease and climate variations,
highlighting the potential for developing climate-based epidemic earlywvarning systems. However, limitations to
such studies include failure to allow for non-climatic confounding facors, limited geographical/temporal resolution,
or lack of evaluation of predictive validity. Here, we consider such isges in the context of dengue fever in South East
Brazil, where dengue epidemics impact heavily on Brazilian public healthexvices. A spatio-temporal generalised
linear mixed model (GLMM) is developed, including both climate and non-timate covariates. Overdispersion
and unobserved confounding factors are accounted for via a Negive Binomial formulation and inclusion of
both spatial and temporal random effects. Model parameters e estimated in a Bayesian framework to allow
full posterior predictive distributions for disease risk to be derived in time and space. Detailed probabilistic
forecasts can then be issued for any pre-defined ‘alert’ thresids, allowing probabilistic early warnings for dengue
epidemics to be made. Using this approach with the criterion ‘greatethan a 50% chance of exceeding 300 cases per
100,000 inhabitants’, successful epidemic alerts would have beesi®d for 81% of the 54 regions that experienced
epidemic dengue incidence rates in South East Brazil, during the majo2008 epidemic. Use of seasonal climate
forecasts in this model allows predictions to be made several morghtahead of an impending epidemic. We argue
that the general modelling framework, described here in the contet of dengue in Brazil, is potentially valuable in
similar applications, both outside of Brazil and for other climate-sersitive diseases. Copyrightc) 0000 John Wiley
& Sons, Ltd.
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1. Introduction

The transmission of many infectious diseases is often influenced by weatthefimate variability, particularly for those
spread by arthropod vectors such as malaria and dengue [1]. Sotoebeme diseases demonstrate seasonal patterns and
display inter-annual variability which can partly be explained by meteorcddactors [2]. Therefore, climate information
could potentially be valuable in early warning systems for epidemic-pronastiseto provide public health decision
makers and the general public with as much advance notice as possibtehablikelihood of an epidemic. This would
allow the implementation of timely preventative measures. Such early warnitegrsysequire statistical and/or biological
models which incorporate the impact of climate variables on disease transmids®to time lags involved in the climate-
disease transmission system, lagged observed climate variables coulemawvid predictive lead for forecasting disease
epidemics. This lead time can be extended by using forecast climate in digea$gipn models. This is a topic of
particular interest given the increasing international scientific effarigpmvested in refinement of seasonal forecasting
models, and on-line access to such predictions (e.g. http://eurobrisa.quedurin

Recent epidemiological studies have demonstrated statistically significactadgms between climate variations and
various infectious diseases (for a review see [3]), and have highlightepotential for developing climate-based early
warning systems (e.g. [4]). However, developing statistical models asedst empirical data that adequately capture
associations between climate-sensitive disease and climatic factors cavblentic. To measure how much variation
in disease risk can be attributed to climatic factors, non-climatic confoundatgré&amust also be carefully considered
to avoid drawing misleading conclusions in estimating climate-disease associ&@mnse relevant information can be
obtained from census data and other routinely collected sources,thudrdenany localised confounding factors is scarce
on a scale suitable to address the needs of public health services.oreegtétistical climate-disease models need to
make due allowance for latent structure relating to unobserved tempaval apatial confounding factors.

Another major barrier to developing such models is the relatively short lefgitiailable time series of good quality
disease data and the lack of spatial resolution at the sub-national levgthndata sets. Epidemics are often sudden
and unexpected, and prevention and control strategies need to batebctargeted in both time and space if they are
to stand a chance of being effective [5]. When sufficient space-tirteeidavailable, it is usually a mixture of multi-
scaled observations, differentially aggregated or averaged in time and.sphis implies the need to allow for complex
correlation structures in the model formulation and possibly multi-level (fobreal) structure. Further complications can
also arise when disease-climate relationships exhibit ‘threshold’ or fegfrdependencies, rather than average behaviour.

An important further requirement is the evaluation of statistical disease madgper assessment of predictive
performance is required along with an evaluation of the practical applicafitime model in a public health context.
The tendency of a disease forecasting system to issue false alarmsg(iaaugpidemic warning when no epidemic is
later observed) or to miss an epidemic can have serious consequentesl\Nin terms of morbidity and mortality, but
also in terms of economic cost and the willingness of the public to rely on subsewarnings [6]. In all cases, model
performance should be validated using out-of-sample data [5].

As an alternative to statistical models, mathematical process models are imgheaging applied to interpret and
predict the future incidence and control of infectious diseases (¢ .8, §1). Whereas statistical models are driven by data
and use empirical (or ‘descriptive’) relationships between the diseabelanate variables, process-based models use
largely deterministic differential equations to represent the dynamical temolaf the disease lifecycle and incorporate
climate influences as parameters. As process models are based oningddnysical and biological processes, some
have argued that they are potentially more powerful than their purely datnd‘descriptive’ statistical counterparts.
They can, for example, be applied to regions where reliable data is lacking predict future disease behaviour based
on postulated climate scenarios. However, in practice such models ardimited by a lack of full understanding of the
biological mechanisms involved, or omission of significant aspects of thenercparasite lifecycle (due to the lack of
information in the literature) and also by the availability of data for model inpdtrandel validation [10]. Parameter
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settings are often selected according to a limited number of site specific fielbaratary studies which may not be
applicable to different regions.

Notwithstanding some of the potential theoretical advantages of proessstimodels, we argue that ‘descriptive’
statistical climate-disease models based on past empirical data provide ble/akiable and effective approach to
developing practical epidemic early warning systems. Such models havelthrtage of being able to incorporate a
sufficiently wide range of both climatic and non-climatic (confounding) exgiany variables [11] and make best use
of routinely available data. We also show that judicious use of sufficientiisticated modern statistical modelling
methods can address or reduce the various potential difficulties that nessbeiated with developing such models, i.e.
unobserved confounding factors, complex correlation structurepepevaluation of predictive power, etc.

We illustrate this in the context of developing an early warning system fogukefever in South East Brazil. Brazil
is used as a case study to show how a well-specified statistical model cavdiepd, which is capable of providing
probabilistic forecasts and practically useful early warnings of futndeggeographically specific risk of dengue epidemics.
In the 21st century, Brazil became the country with the most reported ocaslengue fever in the world. More than three
million cases were reported from 2000 to 2005 [12], representing 788d oases reported in the Americas and 61%
of all cases reported to the World Health Organization (WHO). Largesanéd®razil have highly favourable climate
for the proliferation ofAedes aegyptinosquitoes and dozens of metropoles with high human population densities living
in substandard conditions with deficient sanitation services [12]. Brésal laas some of the worlds best laboratory-
based surveillance capabilities for dengue/dengue haemorrhagidI8yerlowever, data from this surveillance system
is not routinely nor effectively exploited in any early warning system talioteepidemics. Therefore, Brazil serves as
an excellent ‘test bed’ for which to develop a climate-based early wasyatgm for dengue epidemics. We focus our
analysis on the South East region of Brazil where dengue is most pneald there are a large number of densely
populated urban centres which could benefit from a climate informed eéezayly warning system. This is also the region
of Brazil where previous work has reported climate influences to be signify associated with observed spatio-temporal
variability in dengue risk (see [14]).

Although the specific model details and results in subsequent sectionsteetaie Brazilian case study on dengue,
we believe that the general methodological framework and consideratmagscribe are more widely applicable, both
outside of Brazil and to climate sensitive diseases other than dengue.

2. Dengue

Dengue fever is currently one of the most important emerging tropicalstisaa the world in terms of morbidity and
mortality [15, 16]. It is an acute mosquito-borne viral disease charagetebyg fever, headache, severe muscle and joint
pains (hence commonly referred to as ‘break-bone fever’), raslsea, and vomiting [17]. Most dengue infections do not
result in death, but a small portion develop into the more serious and potedgalllly illness dengue hemorrhagic fever/
dengue shock syndrome. This is characterized by spontaneous hagerincreased permeability of the blood vessels
and circulatory failure, leading to shock. Fatality rates in untreated ddrgyuerrhagic fever/dengue shock syndrome can
be as high as 50% [18]. Global incidence of dengue has grown drafhgaiticeecent decades and according to the WHO,
about two fifths of the world’s population are now at risk, with an estimateahiibn dengue infections worldwide every
year. Dengue is caused by any of four closely related dengue viaissstr serotypes (DENV-1,2,3 and 4), belonging to
the family Flaviviridae [19]. Infection with one serotype provides life-lanmgnunity against further infection from that
same serotype but no protection against the other serotypes. In faas, litlen hypothesised that sequential infections
with other serotypes increases the risk of more severe manifestationsimgctiehgue hemorrhagic fever and dengue
shock syndrome [20].

The vector responsible for major dengue epidemics is the domestic, coriegeelingAedes Aegyptnosquito [21].
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The resurgence of epidemic dengue fever and the emergence ofedeaguorrhagic fever in the last few decades have
been closely tied with population growth, urbanisation and air travel [2R,[28ngue incidence is usually associated
with warmer, more humid weather. Rainfall may influence dengue incidenceghrthe filling of containers out in the
open (e.g. old tyres), which create potential breeding sites for the mosaghile the subsequent cycle also depends on
temperature and humidity [24]. For a dengue epidemic to occur, a large nahi®squitoes are required along with
many people with no immunity to one of the four dengue serotypes and antopippfor the two to interact. The many
potential drivers of dengue, both extrinsic, such as climate, and intrgwgit, as population immunity are often difficult
to disentangle. This presents a challenge for modelling of dengue riskde apd time.

Despite significant progress in vaccine development [25, 26], thexetissted and approved vaccine to protect against
dengue. Therefore, disease control and prevention have mainlgddaon vector control activities and surveillance
[27, 12]. Although there is no specific treatment for dengue, appteprieedical care frequently saves the lives of
patients with the more serious dengue haemorrhagic fever. The cueegtig surveillance system in Brazil relies on
observing early cases of dengue in December/January to estimate epideertgb later in the austral summer (see
[14]). However, this provides neither quantitative estimates nor a londjqtnee lead time. The greater the lead time
available for forecasting disease risk, the greater the opportunityfemtive disease risk intervention, such as preparing
health care services for increased numbers of dengue patients aratiegyopulations to eliminate mosquito breeding
sites. As the lead time of a dengue prediction model could potentially be extegdeging climate, or even forecasts of
the climate, the development and evaluation of a climate informed dengue eanipgvaystem for Brazil is a worthwhile
endeavour.

3. Data

3.1. Dengue, demographic and cartographic data

Dengue fever data (counts of notified cases per calendar month) &nonary 2001 - December 2009 were obtained at
municipality level from DATASUS (http://dtr2004.saude.gov.br/sinanweb/fjovbie data set includes all notified dengue
cases from hospitals and clinic doctors from both the private and puldlthheystem. Individual data are locally entered
into the electronic information system and subsequently transmitted to statetanmdhlevels [27]. Cases are laboratory
confirmed where possible, or otherwise based on syndromic definitioetwork of laboratories, capable of diagnosing
dengue infections, has been implemented in all Brazilian states. The netwespiansible for confirmation of cases to
support epidemiological surveillance [28]. However, this network isacoessible to all municipalities within the states.
To address this issue, dengue counts were aggregated to the lowlatioesmicroregion level, where a microregion
typically consists of one large city and several smaller municipalities (therg6@such defined microregions in South
East Brazil). This alleviates problems of misreporting due to variation in aW#jyabf health services/epidemiological
facilities at the municipality level.

The Brazilian Ministry of Health define yearly dengue incidence rates Y@HRhe number of new dengue cases per
100,000 inhabitants for a geographical area. In order to calculate nugdates using the dengue count dataset described
above, yearly population estimates for Brazilian microregions from 2Q@B 2vere obtained from the Brazilian Institute
for Geography and Statistics (IBGE) (http://www.ibge.gov.br/). These estimatebased on the 2000 census and take into
account changing demographic components such as births, mortality aratiorigAlthough the models in subsequent
sections are specified for counts of dengue cases, results in thisgpepeported in terms of DIR for ease of interpretation.

Figure 1la shows the time series of DIR for the 2001-2009 period for SeaghBrazil. Two major epidemics occurred
in the late austral summer of 2002 and 2008, while considerably feweuderases were reported in 2004 and 2005.
Figure 1b illustrates the spatial distribution of DIR according to the three agtgories; high (more than 300 cases per
100,000), medium (between 100 and 300 cases per 100,000) and loerniceifless than 100 cases per 100,000).
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National cartographic data such as altitude and area were obtainedsg® Census data for microregions related to
levels of urbanisation were obtained from an aggregated databageAJHitp://www.sidra.ibge.gov.br) maintained by
IBGE and included variables such as the percentage of urban populatioseholds with at least one bathroom, refuse
collection and water supply provided by a network.

3.2. Climate data

Observed gridded2(5° x 2.5° latitude-longitude grid) average monthly rate of precipitation data were obtdinm
the Global Precipitation Climatology Project (GPCP) [29]. The dataset isn@ication of gauge observations with
satellite estimates from 1979 to present. Reanalysis griddgdx 2.5° latitude-longitude grid) monthly mean surface air
temperature data were obtained from the NCEP/NCAR Reanalysis. The/NCER Reanalysis project uses a state-of-
the-art analysis/forecast system to perform data assimilation usingatastam 1948 to the present [30]. Precipitation
and temperature data from both the GPCP combined rain gauge-satellite eathee reanalysis project were extracted
for the period 2000-2009 and will be referred to as ‘observed’ climat@&bles in the remainder of this paper.

A time series of the Oceanic Rb Index (ONI), defined as the 3-month running mean of sea surfacetatape (SST)
anomalies in the Nio 3.4 region (120N-170°W and 5S- 5N), based on the 1971-2000 base period, was obtained
from the NOAA Climate Prediction Center (CPC) (http://www.cpc.noaa.gov/mtséanalysisnonitoring/ensostuff/
ensoyears.shtml). Warm (El fb) and cold (La Nia) episodes of the El Ro Southern Oscillation (see [31]) are based
on a threshold oft0.5°C for the ONI. During the study period of interest the following episodesvadrserved: weak
La Nifia (2000-01), moderate El id (2002-03), weak El Nio (2004-05 and 2006-07), moderate L&&l{2007-08) and
strong EI Nfo (2009-10).

The multi-sourced spatio-temporal datasets were collated using the statisticpliting software R [32]. Data at
the microregion level (i.e. dengue, demographic and cartographic dadagradded climate data were reconciled by
assigning a grid point to each microregion on the basis of the shortest &arlidistance between microregion centroid
and neighbouring grid points.

It should be noted that the nature and availability of both the dengue andirtregecdata for Brazil, means that the
data set is collated at the relatively coarse spatial resolution of the miworetherefore, the model formulated in
subsequent sections will not be able to capture sub-microregion vasdtiolengue which are likely influenced by
localised meteorological conditions. Rather, the aim in this paper is to identify tale variations in dengue that could
be attributed to seasonal variations in temperature and precipitation whicim @aat, driven by the EI Nio Southern
Oscillation. That said, the ability to provide early warnings of epidemics at theoneigion level remains valuable from
the point of view of public health decision making and intervention.

4. Model formulation and estimation

Several studies have reported associations between spatial (e)qarj@3gmporal (e.g. [34, 35]) patterns of dengue and
climate. However, these reported associations are not entirely consggissibly reflecting the complexity of climatic
effects on transmission, and/or the presence of non-climatic confoufatitays. Few studies have included non-climatic
factors that can affect dengue transmission such as measures @csomimic deprivation or levels of urbanisation (e.g.
[34, 36, 37]). Many studies do not account for seasonality in the m@dgl [38, 39]) which can result in misleading
inference about dengue-climate relationships. Some models include climaes rekplanatory variables with multiple
possible time lags (e.g. [40]), which can lead to overfitting [11]. Most stldéwe not tested models on out-of-sample data
(e.g. [41]). In addition, appropriate response distributions for cdata have not always been employed for modelling
dengue cases (e.g. [42]). Otherwise, little allowance has been maddriiPeisson variation (overdispersion), which is
commonly encountered when modelling disease counts and requires attemtiodehfitting [43].
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The model developed in this paper responds to the various points raised, @nd refines and extends the model
used by the authors [14] in a previous study of dengue risk in Brazilmodels used in other studies (e.g. [44] in
spatio-temporal analysis of the relationship between annual malaria ineidedcselected climate covariates at a district
level in Zimbabwe from 1988-1999). The basic modelling framework is athegbinomial (see [45, 46]) generalised
linear mixed model (GLMM), where for each spatial location or microregios,(1,...,160), and monthly time index,
t=(1,...,108), the count of dengue caseg;, follows a negative binomial distribution with unknown scale parameter,
K, and meanus = egpsi. Hereey is the expected number of cases, a known offset (based upon th&apmpof
microregions at time¢ multiplied by the global dengue rate for the whole data set). Thens the unknown relative risk
for microregions at timet. A suitable specification for the log relative riskg p,;, was then sought via a linear predictor
involving climate covariates, non-climate confounding factors, and apjptepspatial and temporal random effects as
discussed below.

A series of models of varying complexity, using different subsets of bbata were tested in arriving at a final
specification for the form of the linear predictor fog p,;. These extensive exploratory analyses included the use of formal
model selection algorithms based on the ‘Akaike Information Criterion’ (Al&)pplemented by graphical analyses of
fitted values and residuals, examination of model fit with and without climatent&tion, and consideration of the range
of other routine model diagnostics. We do not report that model seleatimegs in detail here, but simply comment on
some of the issues that were encountered in the process and how weddeaidsolve them.

First, considering pure time dependence, we included potential termand powers of into the linear predictor to
allow for any global temporal trend in DIR over the 108 month period cal/byethe data (years 2001-2009). These were
not found to be significant during this period in the presence of the otlr&bles considered. However, DIR does have a
marked annual cycle in South East Brazil which peaks in March. To abbowhfs, an autocorrelated monthly effect was
included in the model as a categorical variable for maf(it), wheret'(-) denotes an indicator function which assigns a
month marker to the time index(¢'(¢t) = 1, ..., 12). For convenience, August was set as the reference I1€¢8l £ 1),
since DIR for this month is generally the lowest, so for Septentbgy,= 2 and so on. We allowed for the annual cycle
in this way because it is a more flexible approach than imposing a parametroisialiform which, whilst it may be
mathematically convenient, has little epidemiological justification.

Second, previous studies on DIR in Brazil (see [47] for further dgta#lse shown dengue to be significantly associated
with a number of climate factors such as temperature, precipitation and theaDNENSO index), with time lagged
values of these variables. For example, Figure 2 shows scatter plotsogbipation/temperature/ONI and DIR for every
month (2001-2009) and microregion in South East Brazil. There is a wesiliy@ association between precipitation and
dengue incidence (Fig. 2a) and temperature and dengue incidencl{zigurther, there is a slight negative relationship
between ONI and DIR (relationship consistent at lags ranging from 2 mdoih months previous, Fig. 2¢). We included
all of these influences as potential explanatory variables in the lineaicfmetbr log p,;. Precipitation and temperature
covariates lag 1-3 were all found to be statistically significant and these timetagconsistent with previous findings
(e.g. [41, 48, 40, 49]). Rather than selecting a particular lag, or indualinthree lag separately, which could result in
over-fitting, these variables were combined into 3-month average precipitait temperature variables, over the three
months preceding the dengue month of interest. This is equivalent to a two ragnimen considering the mid point of
the three-month average. As our model is intended to be used as an earlyggrgystem, this aligns with the fact that
temperature and precipitation would in practice be obtained from seadiomatecforecasting systems which are typically
issued as seasonal (e.g. December—February average) rathendhthly forecasts. The ONI lagged 2 months and 6
months prior to the dengue month of interest (or 4 months prior to the avetaggxkrature and precipitation effects)
were both favoured by AIC model selection. ONI with lag 6 months prior to #regde month of interest was selected
for inclusion into the model as this provides increased lead time which couldvaatageous for a dengue early warning
system.

Third, in regard to non-climate factors we included a range of cartogragdmographic and socioeconomic variables
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related to the urban environment (see Section 3). Altitude and populatigitydenoved to be most important in line
with previous findings on DIR in Brazil (see [47] for further details). Altituwas found to have a significant negative
association with dengue relative risk while population density was positigslyciated, as might be intuitively expected.

Fourth, models to predict vector-borne disease have often includectgréssive time series terms (e.g. [50, 51, 40]),
based on the idea that current incidence can be partly explained bygbass. Clearly, autoregressive terms with one
or two month lag offer little, if any, advance warning of an impending epidennicgs in practice the collation of such
data may not be feasible in advance of the time period for which the formsceslid. However, the number of dengue
cases observed several months previously might indicate the presémceeased mosquito populations or the circulation
of a new dengue serotype to which the human population is not immune. A laggede relative risk term could then
act as a surrogate for unobserved and unmeasured spatio-tempai@irtding factors in the model. Accordingly, the
variable z,; = log(i{;—:i), the log ratio of observed to expected dengue cases, i.e. the log staadambrbidity ratio
(SMR), lagged by 3 months, was tested in the model. This lag was selectedbagpeomise between the longest lag
plausible to provide predictive skill and the shortest lag possible to allowgintme to provide an early warning of a
dengue epidemic. For example, a dengue prediction for March woulddeel loa the dengue risk reported in the previous
December. As the inclusion of an autoregressive term causes the dibseBvations in each microregion to be lost, the
model was fitted to the data set for the period April 2001- December 2@Pr{ibnths).

Finally, unobserved confounding factors such as population immunitlifygofhealth care services, and local health
interventions are very likely present and important. The inclusion of uctsired random effects in the linear predictor of
dengue relative risk can help to account for such unknown or unedxdeonfounding factors in the disease system. At
the same time it is appropriate to include some additional structured randartséff the model to allow for temporal
and/or spatial correlation [52]. Such random effects introduce an sgtirce of variability (a latent effect) into the model
which can assist in modelling overdispersion in addition to the single scalenptarin the negative binomial model.
Additionally, spatially structured random effects allow for correlated logiemeity between microregions. A spatial
dependency structure can be imposed by assuming a prior distributioe &padhial effects which takes the neighbourhood
structure of the area under consideration into account. Prior informaticchwallows for local geographical dependence
causes the relative risks in an area to be shrunk towards a local meardiag to the relative risks in neighbouring areas
[53]. A typical choice for a spatially structured prior is a conditional infiirGaussian autoregressive model (CAR) (see
[54]).

Taking all of the above into account, the final model to emerge from the memlettion process comprised a
combination of non-climate covariates, lagged climate variables and denguamisspatially and temporally structured
and unstructured random effects. The model was formulated as ai8ay&sMM as follows:
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Yst| s, Vs, wp () ~ NegBIN gy = esepse, k), s =1,...,160, t =1,...,105
3 2
log(pst) = log(eat) + log(pst) = log(ew) + a+ > Biajar + Y ViWjst + 6zst + bs + Vs + wyry)

j=1 j=1
a ~ U(—o0,+00)
B; ~N(0,10%), j =1,...,3
v; ~N(0,10°%), 7 =1,2
§ ~ N(0,109)
¢s ~N(0,07)
vs|vjzs ~ CAR(07)
wi =0, wy(pylwe -1 ~ N(wpy—1,03), t'(t) =2,...,12
7o = 1/07 ~ G&0.5,0.0005)
7, = 1/02 ~ G&0.5,0.0005)
7, = 1/0% ~ Ga0.5,0.0005)
x ~ G&0.5,0.0005).

The variablesz ., (j =1,...,3) represent the selected climate influences: precipitagien ) and temperaturgj (= 2)
averaged over the previous three months (equivalent to a two month mhaiyhe@ ONI four months previous to the local
climate variablesj = 3). The variablesv;,, are: altitude { = 1) and population density;j (= 2). Variablez,, is the log
dengue SMR three months previously. Spatial random effects are cethpbspatially unstructured; and structured
components;. The spatially unstructured random effects, are assigned independent diffuse Gaussian exchangeable
priors and the structured random effeats, are assigned a Gaussian CAR prior. As the formulation of the CAR used
here is improper, we follow the usual practice of applying a ‘sum to zemstraint tov,, s = 1,...,160, and assigning

a uniform flat prior to the model intercept(see [55] for more details). A first order autoregressive month effgg, is
included with month 1 (August) set to zero,(= 0) and subsequent months following a random walk or first difference
prior [56] in which each effect is derived from the immediately precediffigce Independent diffuse Gaussian priors
(mean 0, precision x 10~% ) were taken for the fixed effect$; (j = 1,...,3),v; (j = 1,2) andd. A gamma prior was
used for the scale parameterollowing [57], weakly informative independent gamma hyperpriors witdpg parameter

¢ = 0.5 and inverse scale parametgt= 0.0005 were used for the precisiongy(= 1/a§,, 1o = 1/02, 7, =1/02) of the
hyperpriors for the spatial and temporal random effects.

The Bayesian model was fitted via MCMC sampling using R in conjunction with WiaB$oftware [58] and the
R2WIinBUGS package [59] (see Supporting Material for model codep parallel MCMC chains were generated,
each of length 25,000 with a burn-in of 20,000 and thinning of 10 to obtai® Habnples from the joint posterior
distribution. The fixed explanatory variables were standardised to zean amel unit variance to aid MCMC convergence.
MCMC samples from the ‘log-posterior’, i.e, samples from the logarithm ofdhe posterior distribution of all model
parameters, evaluated at each MCMC iteration can be inspected to givelieation of convergence, since the joint
posterior distribution is a global summary of all model parameters. This omgdisatisfactory convergence of the overall
model (see Fig 3). To check convergence of the individual paramstienaes, the potential scale reductiBr(see [60]
for details) was calculated (see Table 1, Note: values below 1.1 are eosith be acceptable in most cases, [61]).

Posterior mean parameter estimates are summarised in Table 1. For all passdmetept for population density), the
95% credible interval does not contain zero. This table also includesrippsteeans for the hyperparameters, relating
to the precisions for both spatially structured and unstructured randect®fFigure 4 shows the parameter estimates
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and 95% credible intervals for the ‘autocorrelated’ month facteg, in the model. Note that calendar montfi) = 1
(August) is set as the reference level i.e. its effect is aliased in the madedepto.

Figure 5a compares observed DIR and fitted posterior mean DIR for @lhiiéroregions for the 105 month time
period (April 2001 - December 2009). Despite the large variability, thesoposed scatter-plot smoother indicates
strong overall positive association between observed and model fitFdyRare 5b shows the temporal evolution of the
fitted posterior mean DIR compared to observed DIR for South East Brazlwhole. The model is able to correctly
detect the inter-annual variability over the time period. The model captuedhve magnitude of the DIR in the peak
season (February-April (FMA) in 2001, 2006, 2007 and 2008. &éies, the model underestimated the DIR in 2002 and
overestimated in 2004 and 2009, for example.

Figure 6 shows the decomposition of the dengue relative risk across tith East into the climate components
(exp(B1215¢ + Powas + P3xst), See Fig 6a) and the dengue risk three months previeus dzs;), see Fig 6b). This
allows us to identify the relative contribution of the spatio-temporal covariatéee model and their spatio-inter-annual
variability for the peak dengue season February - April (FMA) in 2@0&dn-epidemic year, row 1) and 2008 (an epidemic
year, row 2). The spatial distribution of the model fit DIR (including all dpaarameter estimates and random effects) and
observed DIR are shown in Figure 6¢ and d respectively.

5. Predictions for dengue epidemics

In order to quantify the predictive benefit of the model and to ensureftita®y of the modelling framework to public
health decision makers, it is important to assess how well the developed caodaledict future and also geographically
specific dengue epidemics. For that purpose, the model was fitted to alatéfiril 2001 - December 2007 and posterior
predictive distributions [62] were then derived for dengue countthfout-of-sample data from January 2008 —December
20009.

The current monitoring system in Brazil relies on observing an increasarly cases around 3 months prior to the
onset of the peak dengue season. To test if the spatio-temporal med&mkd in the previous section performs better
than current practice, that model is compared to a simple model which efigarflacts current dengue surveillance in
Brazil i.e.:

Yst ~ NegBir(Msta ’{)
log s = log egt + v + 6244,

with the expected number of cases as the model offset and the variaklg = log(ze’::—:g) being the log of the ratio
of observed to expected cases lagged by 3 months, as previouslydd#&fieavill refer to this as the current surveillance
model (CSM). Note that this is a sub-model of the GLMM specified the prevéeation.

The out-of-sample posterior predictions for January 2008 - Decenf®® ffom the GLMM and CSM were compared
with observations for each of the 160 microregions in South East Brazilr&igshows the spatial distribution of observed
and predicted DIR using both models for the FMA season 2008—2009.Wjthitne GLMM has a tendency to over predict
DIR in certain areas, the model is better able to capture instances of varphRgacross the South East region. In general
the CSM predicts low to medium DIR for most of the region even when high Dt®served. Despite some false alarms
(i.e. high DIR predicted when low DIR observed), there are more inssanbere the GLMM successfully detected high
DIR compared to the CSM (e.g. east coast 2008, Fig. 7.1a, b and aglDtlee CSM fails to capture the observed DIR
behaviour across the region.

In general, dengue warnings are most useful at the microregion lewalotelocal governments to make decisions on
resource allocation. With this in mind, it is useful to select some key large regians in SE Brazil for further inspection.
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Belo Horizonte (population of 4,932,777) and Rio de Janeiro (populatidi &664,872) were chosen as they contain the
capital cities of the states of Minas Gerais and Rio de Janeiro, respecth&eao Paulo experienced comparatively
low DIR during the out-of-sample period, another large microregion in ttze svas selected:3® Jose dos Campos
(population of 1,381,846). In Figure 8, observed DIR, the mean of teeepor predictive distribution and 95% credible
intervals, calculated using te5% and97.5% quantiles of the posterior predictive distribution, are presented for these
three microregions; Belo Horizonte, Rio de Janeiro aad $ose dos Campos. In general, the GLMM better captured the
temporal behaviour of DIR than the CSM. The GLMM was also able to préuitthe dengue season for Belo Horizonte
was equally high in 2009 as in 2008 (see Fig. 8.1a). For microregions Riamkiro and & Jose dos Campos the
GLMM over-predicted the 2009 season but again better captured the ranyedaviour in dengue than the CSM (see
Fig. 8.1b, 8.2b, 8.1c and 8.2c).

The GLMM and CSM can be used to predict the probability of dengue diugea pre-defined epidemic threshold
in each microregion. As the posterior predictive distribution can be obtdaregiach microregion (rather than a point
estimate), the probability of exceeding an epidemic threshold can be calculdtediecision to trigger an alert can
be based on the probability of exceeding the threshold being greater w@aciied alert level, (e.g. a probability of
exceedance greater than 50%). As an example, the event of denglemoeexceeding 300 cases per 100,000 inhabitants
(DIR> 300; high incidence threshold defined by the National Dengue Control Bnoge in Brazil) is considered. In
March 2008, a serious epidemic occurred across parts of Brazil, igatated in Rio de Janeiro. As a further illustration
of the weakness of the CSM as a prediction tool, it is interesting to note thatoterjpr predictive probability of
DIR> 300, obtained from the CSM is less that 50% for all microregions during the majdemic in FMA, 2008. On
the other hand, the GLMM highlights 44 microregions as having more than acb@¥ce of DIR- 300 (note that 54
microregions experienced DIR300). For example, in Rio de Janeiro, the CSM gave a probability of excee@ihgases
per 100,000 inhabitants 6f37 whereas for the GLMM, the probability of exceedance was 0.75 (se®Fig.

Although the GLMM produces a considerable number of false alarms ceapathe CSM, it is capable of detecting
elevated levels of DIR which is important for an early warning system to hiedptdhe allocation of resources to cope with
area-specific dengue epidemics. We conclude that the GLMM is an improvéonsurrent practice and that the inclusion
of climate information and observed and unobserved confounding $aicthroves the performance of the model. The
remainder of the paper focuses on the usefulness of the developetitmpdblic health decision makers.

6. Probability decision thresholds

One way to evaluate probabilistic forecasts of any event is to consideetiud deterministic binary forecasts obtained
by choosing a range of probability decision thresholds [63]. The abilith@{GLMM to predict dengue epidemics across
South East Brazil during the 2008 epidemic (FMA season) can be agsbgscomparing observed DIR for the 3-
month season FMA 2008 with model predictions with varying probability decigicesholds. During this season, 54
of the 160 microregions in South East Brazil experienced an ‘epidemi®¥3300). A 2 x 2 contingency table then
provides information on the overall predictive skill of the warning syst@marga specific threshold. For example, given
a probability decision threshold of 60%, the proportion correct (Pd)nele as the proportion of the 160 microregions
for which the prediction correctly anticipated the subsequent epidemicreepidemic,(a + d)/(a + b+ ¢+ d), was
76%. The hit rate (HR); the proportion of epidemics that were correctly ptedi¢/(a + ¢), also known as sensitivity),
was 57%. Conversely, the false alarm rate (FAR); the proportion of epidemicswiat predicted but did not occur
(b/(b+ d), also known as 1-specificity), wag% (see Table 2). When the probability decision threshold was lowered to
40%, PG= 74%, HR= 91% and FAR= 34%. By lowering the probability decision threshold, the hit rate for the region
increases but so does the false alarm rate.

Clearly, a single set of binary forecasts does not provide a satisfalbtmis for assessment of the quality of the
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forecasting system [64]. This is because it shows the performance afytem at only a single probability decision
threshold. A complete description of predictive skill requires verificatiegr ahe full range of possible thresholds. An
analysis tool that accomplishes this is the Relative (or Receiver) Opel@tiatacteristic (ROC) graph of the hit rate
against the false alarm rate (or sensitivity against 1-specificity) fagrdifft decision thresholds. As the probability decision
threshold varies from high to low (moving from left to right) HR and FAR virgether to trace out the ROC curve. Perfect
discrimination is represented by the point (0,1) where=HR0% and FAR= 0%. The diagonal HR=FAR represents zero
skill, i.e. the forecasting system performs as well as random guessiagwéa under the modelled ROC curve, abbreviated
AUC [65], is a widely used ROC-based measure of skill. AUC charactetisequality of a forecast system by describing
the system’s ability to anticipate correctly the occurrence or non-ocag@pre-defined events [66]. The possible range
of AUC is [0, 1]. Zero skill is indicated by AUC=0.5, i.e. area under the diagonal HR=FARpEdect skill, AUC=1. To
test the null hypothesis that the area under the ROC curve is 0.5, i.e. dvadbhas no skill, a p-value can be calculated
using a Mann-Whitney-test (see [66]). Figure 10 shows the ROC curve for dengue epidelnioyy the FMA season
2008 using the GLMM for the 160 microregions in South East Brazil, with AUB6&(p-value<< 0.05). This indicates
that the forecasting system is significantly more skillful than randomly gugsBiy lowering the probability decision
threshold, the hit rate increases but so does the false alarm rate. Optababjbity decision thresholds are sometimes
determined as the point where the ROC curve intersects the negatiliegl@wvhere sensitivity=specificity or HR=1-FAR)
or the point where the distance from the HR=FAR line is greatest [67].datjwe, the choice of epidemic threshold and
probability decision thresholds should be decided based on expert opinébavailable resources.

7. Presenting dengue forecasts to decision makers

If a ‘forecasting system’ is capable of producing probabilistic forecas&s a geographical area, these forecasts can
be displayed graphically in the form of a map. This may be useful for tagetaource allocation to areas most at
risk. To communicate information contained in a probabilistic forecast, wetadapw method for visualising ternary
probabilistic forecasts, i.e. forecasts that assign probabilities to a seeefriiutually exclusive and complete outcomes
(e.g. low, medium and high risk). This method is described is more detail inTB&]idea is to consider a ternary forecast
as a point in a triangle of barycentric coordinates. This allows a uniqueictdobe assigned to each forecast from a
continuum of colours defined on the triangle. Colour saturation increeisesnformation gain relative to the reference
forecast. This provides additional information to decision makers compgarednventional methods used in seasonal
climate forecasting, where one colour is used to represent one fooategory on a forecast map (e.g. red="dry’).

As posterior predictive distributions for dengue incidence rates caretiged from the model for each microregion
and month, the probability of dengue risk falling into pre-defined categoeade calculated. The Brazilian Ministry
of Health are interested in areas where BIR00; indicating low risk,100 < DIR < 300; indicating medium risk and
DIR > 300; indicating high risk. Using this new method, maps can be produced in whidbrast at each geographical
location is expressed as a colour determined by a combination of thredopittdsa

Given the pre-defined categories boundaries, the model can prpchlzabilistic forecastgs; (probability of low risk
category)p» (probability of medium risk category)g (probability of high risk category), that dengue incidence rates will
be in each category at the forecast time. The probability forecast ceegbsded ap = (p1, p2, p3) With the constraints
p1+ p2 +p3 = 1ando < p; <1, Vi. The particular forecast = (q1, g2, ¢3) corresponds to the case where the forecaster’s
state of knowledge is ‘no better’ than the historical observed distributimmeXxample, if the forecaster had no knowledge
other than the observational record, the same foregastuld be issued each year. Hetgwill be referred to as the
reference forecast; a benchmark distribution with which all other fetea@an be compared.

According to the observed distribution for the FMA season 2001-208% 6f the values fell below DIR= 100, 12%
fell between DIR= 100 and DIR= 300, and 23% fell above DIR= 300 (see density plot in Fig 11). As the categories
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apply to a dengue rate (cases per 100,000 inhabitants), rather th&ut@bsants, the category boundaries are the same for
each spatial location. Therefore, the reference foregcastomes; = (0.65,0.12,0.23). When representing probabilistic
forecasts using colour, determined from a point in a triangle of baryicastordinates (see [68]), the reference forecast
(x) can be located at a point which satisfies these 3 probabilities (see triaigde irl). Using these category boundaries,
blue is assigned to the low risk category, yellow to the medium risk categorsedrtd the high risk category.

Figure 12a presents a probabilistic forecast map of DIR for FMA se2608 using the GLMM. The observed DIR
category for each microregion is shown for comparison (Fig. 12b)the®FMA season 2008, the GLMM would have
correctly forecast high DIR for Rio de Janeiro and microregions aloag#st coast and in the west of the region (darker
shades of red) and would have correctly forecast low DIR in the Solattkér shades of blue). The map also shows areas
where the model was uncertain as to which dengue category might beed¢eale shades). Communicating information
contained within a probabilistic forecast presents a challenge. It is tbpethis visualisation method may facilitate the
interpretation of the probabilistic forecasts of dengue incidence ratestfre model for public health decision makers.

8. Discussion

This paper highlights the potential for incorporating climate information into daspemporal dengue epidemic early
warning system for South East Brazil. The use of climate variables in cctigurwith other factors in a GLMM improves
on current practice for dengue surveillance and control in Brazil. Whik builds on several previous climate and health
studies by moving away from simple models at the country level, involving onlydesmhgariations in climate and disease,
to a more sophisticated spatio-temporal model providing probabilistic predidtian can aid decision making and target
resource allocation. This model allows for extra-Poisson variation vigative binomial formulation, for the annual cycle
via temporally correlated month effects and for unobserved confourfdatgrs and spatial correlation through spatially
unstructured and spatially structured random effects.

The GLMM was fitted using a Bayesian estimation framework allowing postereaatigtive distributions for disease
risk to be derived at each spatial location for a given month or seasusmallowed probabilistic forecasts to be issued.
An evaluation of the forecast skill of dengue epidemic warnings usingbs&mple data was conducted. The model was
compared to a simple conceptual model of current practice, based goaleases three months previously. It was found
that the developed model including climate, past dengue risk and obserdeshobserved confounding factors, enhanced
dengue predictions compared to model based on past dengue risk alone.

A major obstacle to developing a climate-driven dengue model is the lack ofjhiglity climate and disease data over
long time periods. A further disadvantage is that the available dengue datakisoken down by virus type. Serological
information could be useful to indicate the periodicity of circulating serotyp&EaNV-1, DENV-2, DENV-3, DENV-4)
which influence population immunity and hence the occurrence of epidemigbeF, as temperature and precipitation
influence the abundance and transmission potentiakdies Aegyptit would be advantageous to include entomological
data in the analysis. However, this information was unobtainable.

Another potentially important component missing from the model is the seasmeament of human hosts around
Brazil. The proximity matrix used to formulate the CAR prior for the spatially stmettuandom effects in the GLMM,
assumes a simple local structure where each microregion is dependeandtsiyeighbours. However, certain areas may
be more closely related, in terms of dengue transmission, to remote area&steahby air or road transport links, rather
than neighbouring microregions. IBGE have released a new study enfitieals’ of Influence of Cities’ based on research
into the Brazilian urban network. A hierarchy of urban centres is defiasdd on the flow of good and services, including
air and road travel. A proximity matrix based on this hierarchical matrix might irgtbe correlation structure within
the model.

The spatio-temporal hierarchical model is intended to become part of & restablished climate and health
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observatory in Brazil (http://www.inpe.br/noticias/arquivos/pdf/obseruato pdf). However, before implementing such
an operational system, several technical issues need to be considepedctice, observed climate could be replaced
by climate forecasts which might extend the lead time beyond that offeredithy lagiged observations. By replacing
observed with forecast climate variables in the model, a dengue predictiteh e made several months ahead of the
dengue season of interest. For example, to predict dengue incidedarith 2012, the model could be run in November
2011 using the observed ONI for August-October 2011 (6 month lag) paecipitation and temperature forecasts for
December-February 2011-2012 issued in November 2011 (see Fighi8)dengue risk at the time of forecast (e.g.
November) could be used as a best guess for dengue risk three mosittmip to the month of interest (e.g. March).
This would provide a four month lead time, which could allow time for the allocatioesdurces to interventions such as
preparing health care services for increased numbers of denguetpaiiel educating populations to eliminate mosquito
breeding sites. However, the efficacy of a climate-based epidemic eamyngasystem will depend on the skill of the
climate forecasting system. One such system that is operational in Brazshamd some skill in South East Brazil is
the EUROBRISA initiative [69] which is a multi-model combined and calibratedesyshat produces one-month lead
precipitation forecasts for the following three-month season.

Probability alert thresholds should be carefully designed to minimise falsesland false negatives (i.e. failing to
predict that an epidemic will occur) and should correspond with the epidersgonse capabilities of the region where
the model might be implemented. An important issue is the consideration of futareantions in the model framework.
If the Brazilian health services respond to an early warning of a derngjderaic and take measures to reduce the impact,
an apparent false alarm may in fact be the result of a successfulentem.
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9. Tables and Figures

Table 1.pParameter estimates and convergence diagnéstar covariates and hyperparameters associated with thialspati temporal random effects.

R. Loweet al. Early warning system for

Cl is the credible interval obtained from the 2.5% and 97.5%rjles of the distribution.

mean  standard deviation 9B%Cl R
Precipitation 0.317 0.035 [0.246,0.387] 1.029
Temperature 0.503 0.037 [0.435,0.580] 1.071
Oceanic Niio Index -0.412 0.022 [-0.456, -0.368] 1.000
Altitude -0.964 0.080 [-1.119,-0.812] 1.023
Population density 0.065 0.055 [-0.041,0.174] 1.056
Lagged dengue risk 0.214 0.004 [0.205,0.222] 1.003
Spatially unstructured hyperparameter ~ 11485.052 1276.66802.615, 4697.996] 1.091
Spatially structured hyperparameter 0.508 0.066 [0.383%24). 1.001
Temporally structured hyperparameter 2.74 1.159 [0.92283.3 1.000
Scale parameter 0.470 0.006 [0.458,0.483] 1.001

dengue in Brazil

Table 2.Summary of contingency table results for observed dengudénce exceeding epidemic threshold of 300 cases per 10()B@bifants at
varying probability decision threshold6(%, 50%, 40%) for the 160 microregions FMA 2008 using GLMM.is the number of events correctly forecast
to occur (hits) is the number of events incorrectly forecast to occur, (falaems);c is the number events incorrectly forecast not to occur, (rm)ss@dd

is the number of event correctly forecast not to occur (comejections). PC is proportion correct, HR is hit rate andrRFa false alarm rate.

Threshold a b c d PC HR FAR
60% 31 13 23 93 76% 57% 12%
50% 44 27 10 79 77% 81% 25%
40% 49 36 5 70 74% 91% 34%
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Figure 1. (a) Dengue incidence rate (DIR) for South East Brazil Jan@@n1l - December 2009. (b) Map of low (less than 100), mediurtw@en 100 and
300) and high (greater than 300) dengue incidence in eactoragion over 2001-2009.
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Figure 2. Scatter plot betweelvbg(DIR) and (a) precipitation, (b) temperature (averaged @varonths previous to dengue month) and (c) ONI (lagged 4
months previous to local climate variables). Solid curve edinmodel fit, dashed curve - local polynomial regression fiteNboints stratified by calendar
month for DIR.
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Figure 3. Trace plot of log posterior distribution for 1000 samplesiirthe model.
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Figure 4. Parameter estimates (circle) and 95% credible intervalsfiarautocorrelated month effedt/ ;).
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Figure 5. Observed and model fit DIR at the linear predictor level fomadinths (105) and microregions (160). Dashed curve - localnoolyal regression
fit. (b) Total observed (black line) and model fit (grey line)Dfom April 2001 - December 2009.
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Figure 6. Multiplicative decomposition of the dengue relative risk mapSouth East Brazil into (a) the climate component explaingdiecipitation,
temperature and ONI and (b) dengue relative risk 3 month pusvig) Model fit and (d) observed DIR in South East Brazil fbtAcin 2005 (non-epidemic
year, row 1) and 2008 (epidemic year, row 2). DIR category baties defined by 50, 100, 300 and 500 cases per 100,000 tiaiishi
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Figure 7. (a) Observed DIR, (b) predicted DIR using GLMM and (c) préelicDIR using current surveillance model (CSM) for FMA seaiso2008 (row 1)
and 2009 (row 2). Category boundaries defined by 50, 100, 88®@0 cases per 100,000 inhabitants.
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Figure 8. Time series of observed (solid line), posterior predictiveamédashed line) and 95% credible intervals for posteriedistive distribution of
log(DIR) from January 2008 - December 2009 using GLMM (column 1J &$M (column 2) for selected microregions: (a) Belo Horizofitg Rio de
Janeiro and (c) & Jose dos Campos.
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Figure 9. Posterior predictive distributions and probability of erding the pre-defined epidemic threshold of 300 cases pg@d®hhabitants (shaded area)
for the microregion Rio de Janeiro, FMA 2008 using (a) GLMMDPIR) > 300 = 0.75) and (b) CSM $(DIR) > 300 = 0.37). Arrow indicates observed
DIR.
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Figure 10.ROC curve for binary event of observed DIR exceeding theazpid threshold of 300 cases per 100,000 inhabitants for FM¥82&ing GLMM
(AUC=0.86).
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Figure 11.Kernel density of FMA DIR in South East Brazil 2001-2007 withe-defined category boundaries (dashed lines) of 100 af@idc@8es per
100,000 inhabitants (note logarithmic scale) and ternagsphliagram with corners representing ‘Lqw= (1, 0,0), ‘Medium’ p = (0, 1,0) and ‘High’
p = (0,0, 1) dengue riskx marks location of the reference forecast (0.65,0.12,0.23).
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Figure 12.(a) Probabilistic forecast using GLMM and (b) correspondafserved categories for FMA 2008. Category boundariesetbfis 100 and 300
cases per 100,000 inhabitants.
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Figure 13.Schematic to show time lags between dengue month of intergstarch), 3-month average precipitation and temperatugeld@ months prior
to dengue month (e.g. December-February) and ONI lagged 6 sprithr to dengue month (e.g. August to October, 4 months priavérage precipitation
and temperature). A four month lead time could be gained usingegdsting system such as EUROBRISA (http://eurobrisacdppe.br/).
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