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Exact Harmonic Coefficients
for a Magnetic Ring Head

David T. Wilton, Barry K. Middleton,Member, IEEE, and Mustafa M. Aziz

Abstract—The magnetic field of a ring head has been analyzed
by Westmijze, using a conformal mapping, and by Fan, using
Fourier techniques. Here these methods are reexamined and
combined to give, for the first time, an explicit analytic expression
for the harmonic coefficients in the Fan solution.

Index Terms— Heads, frequency response, magnetic fields,
mathematics, recording.

I. INTRODUCTION

ONE of the most popular magnetic recording head ge-
ometries is the familiar ring head. Two approaches

to the analysis of the field of such a head are conformal
mapping and Fourier analysis, each of which leads to analytic
results although neither is entirely satisfactory in this respect.
Westmijze [1] first provided a conformal mapping solution
but the mapping requires numerical inversion so that the final
result is not fully analytic. Fan’s [2] Fourier analysis does
provide an explicit result but this is in the form of an infinite
series whose coefficients have been determined by solving a
large (theoretically infinite) system of linear equations.

Here, each of these methods is examined again and by
combining them, two techniques arise which lead to formulas
for the coefficients in the Fan solution, thus avoiding the
need to solve large systems of equations. The first, motivated
by a remark of Mallinson [3], gives an explicit formula
for the coefficients, while the second gives a procedure for
determining each coefficient in terms of the preceding ones.

The motivation for publication of these results is three-fold.
First, the fact that the Fan coefficients, which have previously
been computed by a number of authors [2], [4]–[6] and
measured experimentally [7] with varying degrees of success,
have (after nearly 40 years!) now been derived precisely,
is intrinsically interesting and will hopefully make the Fan
solution more widely accessible. Second, the first technique
described should have wider applicability to other head geome-
tries where a Fourier (Fan-type) solution is known. And third,
publicizing successful techniques of combining apparently
unrelated methods may encourage similar approaches in other
problems.
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Fig. 1. Ring head model in thez plane.

Fig. 2. The complexw plane.

II. REVIEW OF METHODS

A. Conformal Mapping

First the Westmijze solution is briefly reviewed. The ide-
alized model geometry of a ring head is shown in Fig. 1
where two semi-infinite pole pieces are at magnetic poten-
tials and separated by a gap of total length The
Schwarz–Christoffel transformation

(1)

maps the boundary ABCDE (for half a ring head) in theplane
to the real axis in the plane with the corresponding points

shown in Fig. 2. Integration of (1) gives

(2)

and ensuring that and leads to
and

The magnetostatic potential function in the upper half
plane which takes the value on the real axis for

and zero for is
where

(3)
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By standard theory [8], the components of the magnetic field
in the plane are given by

(4)

producing here

(5)

To determine the field components at any point in
the plane, the corresponding point needed in (5) may be
found from (2), using, say, the Newton–Raphson numerical
iterative method.

Two results, derived in [1], are particularly useful
here. Westmijze computed fields along the boundary line

where is real and hence is easily evaluated.
In particular along DE, giving

(6)

where and , the deep gap field.
Westmijze also calculated the flux through the coil, using

the reciprocity principle, in terms of a “gap loss” function

(7)

If

(8)

is the Fourier transform of the horizontal magnetic field,
and are related by

(9)

B. Fourier Solution

Now consider Fan’s Fourier solution. In the gap
region A) the general solution of

Laplace’s equation taking the correct potentials on the pole
pieces is

(10)

while above the poles region C)

(11)

Matching the potential along gives

(12)

and matching the vertical field at in the gap leads to
an infinite set of linear equations which, until now, needed
to be solved to give the normalized harmonic coefficients

III. EXACT HARMONIC COEFFICIENTS

A. Technique 1

The first method presented follows similar work by
Mallinson [3] for the “thin” gap head of Westmijze [1] which
resulted in an explicit form for the appropriate harmonic
coefficients as From (11), is effectively
the Fourier transform of the magnetic potential in the head-face
plane , since for

(13)

giving

(14)

Now put in (12), where is an integer, to give

(15)

and then from (14) and (15)

(16)

As observed in [3], the harmonic coefficients are simply
multiples of sampled values of the spectral response function

at
This result establishes the link with the conformal mapping

solution via (9) giving the normalized coefficients as

(17)

It remains to evaluate the integral (7) when If
the range of integration is split, the substitution for

shows that the integrand is totally real there and
hence gives no contribution to the result, while the substitution

for leads to

(18)

This integral may be evaluated by complex contour inte-
gration on closing the contour in the upper half complex
plane and using the method of residues. There is only one
pole of the integrand, at , and setting leads
to where is the coefficient of in

Now

(19)

where the term in the first bracket is the coefficient ofin
the binomial expansion of and the term in the
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TABLE I
EXACT HARMONIC COEFFICIENTS FOR ARING HEAD

second bracket is the coefficient of in the Taylor series
expansion of This simplifies to

(20)
Hence the normalized harmonic coefficients are

(21)

The first ten values are shown in Table I. The values given
in [6] are seen to be correct to the 6 d.p. quoted there.

B. Technique 2

The second technique which enables exact evaluation of
the harmonic coefficients uses the Westmijze result (6) which
may be rearranged as

(22)

Using an exponential series for tanh [9] gives

(23)

Another expression for is found from the Fourier repre-
sentation (10) as

(24)

The idea now is to match the coefficients of powers of
in each of (23) and (24) but first (24) must be

substituted into the exponential term on the right-hand side of
(23) since (23) is implicit in If , (24) becomes

(25)

and then (23) is

(26)

Expanding in (26) as a power series in valid for
, which is satisfied for sufficiently negative,

expressing as a Taylor series and then equating
coefficients of in (25) and (26) leads to

etc. Each is given in terms of previous ones but it has not
proved possible to establish a general formula.

The computer algebra package Mathematica [10] has been
used to produce further values which are entirely consistent
with the coefficients in Table I and provides a valuable
independent check on their correctness.

IV. CONCLUSIONS

A fresh look at two long-established techniques for deter-
mining the magnetic field of a ring head has given further
insight into this problem. In particular an explicit formula
for the harmonic coefficients of Fan’s solution has been de-
rived. Also the relationship between such coefficients and the
spectral response/gap loss function, observed in [3], has been
reinforced. Such a relationship holds for any head geometry
where a Fourier representation of the form (11) is valid.
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