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Abstract

This thesis covers the application of the local density approximation of den-

sity functional theory to a variety of related processes in germanium and

silicon. Effort has been made to use calculated results to explain experi-

mentally observed phenomena.

The behaviour of vacancies and vacancy clusters in germanium has been

studied as these are the dominant intrinsic defects in the material. Partic-

ular attention was paid to the annealing mechanisms for the divacancy as a

precursor to the growth of the larger clusters, for which the electrical prop-

erties and formation energies have been studied. Some preliminary work

is also presented on the germanium self-interstitial structure and migration

paths.

Attention was then turned to a selection of dopant-vacancy defects in both

silicon and germanium. An effort was made to explain recent experimental

observations in silicon through investigating a number of defects related to

the arsenic E-centre. Following this, the properties of donor-vacancy clus-

ters in germanium were studied, and comparison with the results calculated

for silicon suggest a significant parallel between the behaviour of the defects

and dopants in the two materials.

Finally, extensive work was performed on the diffusion of phosphorus and

boron in germanium. Diffusion of both dopants was studied via interstitial

and vacancy mediated paths as well as by a correlated exchange path not

involving any intrinsic defects. The results obtained confirmed current the-

ories of the mechanisms involved in the diffusion of the two defects, while

also expanding the knowledge of other paths and giving Fermi level depen-

dences for the energy and mechanism for diffusion of the two defects. Boron

diffusion was found to exhibit strong Meyer-Neldel rule effects, which are

used to explain the unusually high diffusivity prefactors and energy barriers

calculated from experimental measurements for this dopant.
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Chapter 1

Introduction

1.1 Introduction

Semiconductor devices are almost omnipresent in modern life, and their continued

development and evolution come on the back of a great deal of dedicated research

across the world. In 1965, G. E. Moore predicted that the complexity of such devices

would double every year, later revised down to two years, for at least a decade [1].

The law has so far held, more or less, for over fifty years and has become a benchmark

for progress as much as a prediction of it.

In modern devices, the drive to achieve the high component density predicted by

Moore’s Law has led to a requirement for junctions of the order of a few tens of

nanometres across, and this small scale engineering has magnified the issues sur-

rounding reliable, stable nano-scale doping of semiconductors.

1.2 Silicon and Germanium

Since the early days of semiconductor devices when the first junctions were man-

ufactured on germanium substrates, the industry has turned almost exclusively to

silicon for a number of reasons. Technologically, the existence of a stable silicon
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oxide to serve as a dielectric on the device surface was a very important point in

favour of silicon. Economically, the scarcity and cost of germanium have also played

a role in ensuring the dominance of silicon in commercial electronic applications.

More recently, with the advance of semiconductor technology, the use of SiO2 as a

dielectric is becoming challenging as the dielectric thickness approaches the point

where electron tunnelling is an important effect. Interest is hence growing in the use

of other materials, with higher dielectric constant κ, such as HfO2. However, the

use of such non-native, high-κ dielectrics decreases the channel carrier mobility in

these devices [2]. Germanium then becomes a desirable candidate material due to

its higher low field mobility - a factor of two higher for electrons and four for holes

compared with silicon [3] while the use of a non-native dielectric removes the issue

of a lack of stable germanium oxide.

The manufacture of germanium devices can also benefit from the expertise that

has been developed in silicon, as germanium crystal growth is very similar to that

for silicon. The integration of germanium based devices into silicon technology is

therefore an appealing concept. The higher density and lower physical strength

of germanium compared with silicon does restrict the size of germanium wafers

currently [3], but work is ongoing to improve the techniques for germanium growth.

Experimentally, the properties of germanium are much less well understood than

those of silicon. This is largely due to the dominance of silicon technology for the

past several decades, but is also affected by difficulties in transferring techniques

which have been very successful in silicon to germanium. Electron paramagnetic

resonance, for example, is a technique which has been used to great effect in silicon,

while in germanium, it suffers from weak signals and complex hyperfine coupling

resulting in broad lines [4].

Modelling of germanium has also encountered problems. The small experimental

band gap of germanium, combined with the well known underestimation of the

band gap using density functional theory (DFT) leads to negligible and sometimes

negative values for the band gap calculated in this way and therefore poses serious

problems for calculations involving electrically active defects.
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Despite these problems, the study of germanium and the defects that it regularly

contains progresses apace with the work presented in this thesis forming a part of a

substantial growth in knowledge in this area.

1.3 Unintentional Defects

In addition to intentional doping of semiconductor crystals, which will be discussed

below, there are often also unintentional defects present. These can be intrinsic -

involving only atoms which would be present in the perfect crystal - or extrinsic -

involving species foreign to the crystal.

1.3.1 Intrinsic Point Defects

Intrinsic point defects (IPDs) consist of vacancies, crystal sites without an atom,

and self-interstitials, additional native atoms in the crystal. The latter can exist

in different structures, most commonly the 〈110〉 split interstitial, where two atoms

share a single crystal site separated along a 〈110〉 direction, the interstitial at a

T-site, a position in the crystal where the extra atom has four equivalent nearest

neighbours, and the interstitial at an H-site, where the interstitial has six neigh-

bours. These structures are illustrated in Figure 1.1. Establishing the most stable

configuration for the vacancy and interstitial is the subject of ongoing, primarily

theory-lead, research in the field.

1.3.1.1 Vacancies

DFT investigations on the vacancy in germanium have demonstrated a number of

charged states in the band-gap, and lattice relaxations which are strongly charge-

dependant [5, 6]. It has been shown that the relaxations are strongest along the 〈110〉
chains containing the vacancy, and extend at least to the fifth shell of neighbour

atoms [7]. The symmetry of the vacancy in germanium has been calculated to
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Figure 1.1: Diagrams showing three different configurations for the interstitial atom

in a silicon or germanium crystal. In all pictures, the interstitial atom or atoms

are shown in a darker grey than the surrounding crystal atoms. a) The 〈110〉 split-

interstitial, whereby two atoms share a single crystal site. b) The tetragonal or

T -site, where the interstitial atom is at the centre of a tetragonal cage, with four

nearest neighbours. c) The hexagonal or H-site, where the interstitial atom is at

the centre of a hexagonal ring of atoms, with six nearest neighbours.

depend on the charge state of the defect, with the doubly positive state having a

structure almost identical to the unrelaxed case, with Td symmetry. The atoms

surrounding the vacancy are found to relax inward as electrons are added, forming

extended bonds between them that reduce the energy of the vacancy. Although

there is agreement that the inward relaxations of the surrounding atoms increase

with increasingly negative charge state, the symmetry for the singly and doubly

negative charge states of the vacancy are found to be either C2 or D2 in different

studies [5, 6]. The relaxations for all charge states of the vacancy are shown to be

smaller than their equivalents in silicon, as are the Jahn-Teller distortions, due to a

much smaller electron-lattice coupling in germanium [8]. The type of the Jahn-Teller

distortions calculated for the germanium vacancy is also still debated [9, 10]. Energy

levels have been calculated using the formation-energy method (see Section 3.3.4) to

give the first donor level as lying at Ev +0.20 eV, with the first and second acceptors

at Ev+0.37 and Ev+0.40 eV respectively [9]. A later study using the marker method
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(see Section 3.3.4) gives the donor levels of the vacancy as lying within the valence

band, while the E(−/0) energy is calculated to fall at Ev+0.20 or 0.17 eV depending

on the details of the method used, and the E(= /−) and E(≡ / =) levels are found

to lie at Ec − 0.5 eV and Ec − 0.3 eV respectively [5]. The latter work seems to be

in better agreement with experiments outlined below.

An experimental study [11] of the vacancy, using perturbed angular correlation

spectroscopy (PACS) has been performed, using probe atoms to trap vacancies for

measurement. By applying an argument based on a combination of coulomb and

strain interactions between the vacancy and the negatively charged probe atom or

the similarly charged dopant atoms, it is shown that the acceptor level lies in the

range E(−/0) =Ev + 0.20 ± 0.04 eV. A more recent study [12] using deep level

transient spectroscopy (DLTS) methods gave a position for a vacancy acceptor level

at Ev + 0.14 eV.

In silicon, the vacancy has been calculated in theoretical studies [13] to exhibit

Anderson negative-U level ordering [14]. This is an effect in which structural re-

laxations between charge states provide energy gains that are sufficient to offset

electron-electron Coulomb repulsion, thus allowing two electrons to be bound to a

defect with the second electron held more tightly than the first. For the vacancy in

silicon, this is observed between the doubly positive and neutral charge states such

that the first donor level lies below the second. The defect can be observed experi-

mentally in five charge states, ranging from the doubly positive to doubly negative

[15].

1.3.1.2 Self-Interstitials

The self-interstitial has also been studied using DFT calculations, and has been

shown to be most stable in the 〈110〉 split-interstitial configuration [7, 16]. Energy

levels have been calculated to lie at E(0/+) =Ev+0.07 eV and E(−/0) =Ev+0.31 eV

[6, 16]. There is still some debate as to whether the formation energy of the 〈110〉
split interstitial is higher in silicon or germanium. Earlier studies had given a lower
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formation energy in germanium [7, 6, 16], but later calculations give, for larger

k-point sampling sets, a larger formation energy in germanium [17].

The PACS study mentioned above for the vacancy also included results for the Ge

self-interstitial. Analysis of the data suggests that the self-interstitial has a donor

level in the range E(0/+) =Ec−0.04±0.02 eV [11]. This is not compatible with the

theoretical work presented above, and the authors of the above work suggest that

the observed energy level is the E(−/0) level [6, 16, 17]. Subsequent experimental

work has consistently yielded a donor nature of the level, placing it between Ec−0.2

and 0.04 eV [12, 18, 19].

In silicon, the 〈110〉 split-interstitial is found to be one of two degenerate forms

of the defect with the hexagonal-sited interstitial the other. There do not appear

to be any energy levels within the band-gap, but this may be due to the reduced

band-gap of DFT [20]. The self-interstitial in silicon has not been observed directly

in experiment, though a number of indirect measurements have attributed energy

levels to this defect [21].

1.3.1.3 Formation

Vacancies and interstitials can be formed thermally or by atoms being displaced

from crystal sites through interaction with high energy particles. In the latter, the

energy needed can come from atoms being implanted by an ion beam, or from inten-

tional or incidental irradiation with protons, electrons, neutrons or γ-rays. Thermal

quenching experiments can be used to study excess thermally generated defects.

In germanium, due to its having a lower formation energy than the self-interstitial,

the vacancy is the dominant defect [22]. One indirect measure of thermal vacancy

concentration can be obtained from diffusion experiments in germanium. It is be-

lieved that metal atoms in germanium diffuse in the interstitial state, and then

combine with vacancies, falling into substitutional sites. By studying substitutional

metal concentration as a function of depth into the sample, and applying this model,

the vacancy concentration can be derived. Results suggest that crystal surfaces act
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as sources for vacancies, and give an upper limit for the equilibrium concentration

of around 1014−1015 cm−3 at 750 to 850◦C[23].

Another, more direct measurement involves studying the electrical properties of

heat-treated germanium samples. By comparing the observed generation of acceptor

levels with the suggested electrical activity of the intrinsic defects in germanium, it is

possible to show that thermal treatment creates Frenkel (vacancy-interstitial) pairs

rather than isolated vacancies. Also, the equilibrium concentration of vacancies can

be determined, giving

Ceq
V (T ) = 3 × 1023 exp

(

−2.01eV

kBT

)

cm−3 (1.1)

for the equilibrium concentration, with Ceq
V (T ) = 1.3 × 1015 cm−3 at the melt tem-

perature of 938◦C, consistent with the results above [24].

Irradiation studies also demonstrate that acceptor levels can be created in the band-

gap [25]. After low-temperature irradiation, several electron traps and one hole trap

were detected by DLTS, although it is not believed that all of these are due to single

vacancies and interstitials [26]. By measuring the introduction rates as a function

of electron irradiation energy, the minimum energy required to create these centres

can be determined. This can help identify them, and the energy to displace a single

germanium atom is thus found to be 20±5 eV [27]. It has also been suggested that,

as in silicon, irradiation produces large numbers of close-bound Frenkel pairs that

are not observable to most detection schemes [28].

1.3.1.4 Intrinsic Point Defect Clusters

Clusters of vacancies or interstitials may also be found in semiconductors. Clustering

leads to new defect centres and eventually to large voids or interstitial clusters

that can have severe effects on device behaviour. Large vacancy clusters have been

observed in germanium [29], and this combined with the dominance of the vacancy in

germanium has lead to a great deal of interest in theoretical studies on the behaviour

of vacancy clusters of varying sizes.
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A divacancy consists of two vacancies at adjacent crystal sites, stable due to the

reduction in the number of incomplete bonds per vacancy. This reduction continues

for larger clusters of vacancies, as will be discussed in Section 5.4. Irradiation studies

in germanium have detected a defect centre with a minimum energy for formation

of 40 ± 10 eV, twice the energy for displacing a single atom. This centre is there-

fore identified as the divacancy, as interstitials are more likely to be scattered apart

[26, 27]. Acceptor levels at Ev +0.20 and 0.24 [19] or Ev +0.37 eV [30] have been at-

tributed to the divacancy, though the latter level has more recently been attributed

by the original authors to a larger vacancy cluster [31]. Theoretical calculations for

the divacancy in silicon and germanium have been carried out, and have demon-

strated that, as with the monovacancy, relaxations and Jahn-Teller distortions are

smaller in germanium than silicon [10].

One experimental study [32] claims to have detected tetravacancies after neutron

irradiation, basing the assignment on symmetry measurements taken using stress

studies, although other properties of the defect are not reported.

In germanium, bulk microdefects have been observed by x-ray topography and small-

angle x-ray scattering experiments [33] and by optical microscopy [29]. The former

method detects defects in the size range of hundreds of nanometres, while the latter

looks in the 1 to 6 micron range. The latter paper describes the observed defects

as voids, or vacancy clusters, while the former does not assign a species. A radial

dependence of defect concentration within germanium wafers is observed in the first

study, with larger defects concentrated at the centre, and smaller ones toward the

edge of the wafers [33].

1.3.1.5 Annealing Behaviour

As well as the electronic properties, the annealing behaviour of defects is important

from a device viewpoint. Heat treatments during device fabrication cause many

defects to anneal, and understanding these processes can help to optimise the treat-

ments used.



CHAPTER 1. INTRODUCTION 9

Experiments using resistivity measurements have suggested that germanium self-

interstitials are highly mobile, but collect at dislocations, preventing recombination

with vacancies. At higher temperatures, given as 516◦C, the interstitials escape from

the dislocations and annihilate with vacancies [24]. Work studying local vibrational

modes (LVMs) concluded that vacancies become mobile at around 60K [34]. Later

work [25] using conductivity measurements supported this, and suggested that in

n-type material, the interstitial is trapped at a dopant atom. Coulombic attraction

between the donor and the vacancy could then enhance the recombination rate.

More recent DLTS results have suggested that the vacancy anneals out at around

100K [26], and positron lifetime spectroscopy and PACS results have suggested

200K [11, 35]. These discrepancies may well be due to differing environments for

the experiments, as the diffusion barrier for the defects is expected to depend on

charge state, and therefore on Fermi level.

Most experimental studies on germanium suggest that divacancies are more sta-

ble than monovacancies, and have been shown by DLTS experiments to anneal at

125◦C[32], 150◦C[26] or 180◦C[30] in studies on a variety of n-type germanium sam-

ples with varying levels of phosphorus, antimony and oxygen doping. There have

been few results suggesting an evolution of IPDs in germanium, with those models

proposed assuming annihilation as the annealing mechanism.

In silicon, the migration energy of the divacancy is known directly from paramagnetic

resonance experiments to be around 1.3 eV, and fairly insensitive to the charge state

of the defect, while the dissociation energy must be at least 1.6 eV as divacancies

anneal by migration [36]. In highly oxygenated float-zone silicon, the divacancy

anneals at 220-300◦C, evolving into a defect with similar energy levels, assigned

to the V2O centre [37]. It has also been shown that migration of the divacancy

in silicon is a one-step process, and hence that dissociation requires two atoms

to simultaneously move between the vacancies as the V-Si-V structure is unstable

[38]. The migration barrier for the single vacancy has also been calculated from

experimental measurements to be 0.45 eV in the neutral charge state and 0.32 eV in

the doubly positive charge state with the same energy and mechanism at cryogenic

and elevated temperatures [39]. This lies in contrast with previous work which has
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suggested a much higher barrier for high temperature vacancy diffusion of around

1.8 to 2.8 eV [40, 41, 42, 43]. Theoretical studies [20] have found a migration energy

for the self-interstitial of 0.03-0.20 eV depending upon the method used and the path

taken. The low energy and multiple path options explain why the self-interstitial

dominates diffusion in silicon.

1.3.1.6 Self Diffusion Mechanisms

Self-diffusion in both silicon and germanium is mediated by intrinsic point defects.

In germanium, tracer diffusion experiments suggest that in intrinsic material, the

negatively charged vacancy accounts for 77% of self-diffusion, leading to an increase

in self-diffusion with n-type doping, and a reduction with p-type [44]. From the-

ory that both self-diffusion and diffusion of copper are limited by vacancies, copper

diffusion can be used to study self-diffusion by estimating the diffusivity of va-

cancies. This has been done, and the results are in good agreement with direct

experiments, supporting the assignment of the same mediating defect to copper and

self-diffusion [23]. A more recently developed method uses isotopically-rich germa-

nium heterostructures, with a series of layers containing different stable isotopes of

germanium at high purity. By studying depth profiles using secondary ion mass

spectroscopy (SIMS) measurements, diffusion profiles can be obtained for each iso-

tope. The results from this process support previous work and open up new methods

of study [45]. Experimental results suggest an activation energy for self-diffusion of

3.1 eV, with a pre-exponential factor of about 11 cm2s−1 [22].

For silicon there seems to be disagreement on the activation energy for self diffusion,

with results ranging from 3.5 to 4.9 eV reported [46].

1.3.2 Dislocations

Dislocations are extended intrinsic defects, see Figure 1.2. Dislocations can prop-

agate from the seed crystal during growth, and they affect electronic properties.

Dislocations are also known to act as both sources and sinks for vacancies, and for
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Figure 1.2: Diagrams showing the two types of dislocations in crystals. Top: Edge

dislocations consist of a line of under co-ordinated atoms, running out of the plane

of the page. It can also be thought of as an extra plane of atoms inserted into the

crystal. Bottom: A diagram showing a screw dislocation, where the atoms have the

co-ordination of the perfect crystal, but the arrangement of atoms is distorted so

as to create a ‘screw’ structure around a dislocation axis, as shown. From Refer-

ence [48].

some applications, a small concentration of dislocations is desirable to avoid void

and V2H formation [22]. It is also known that dislocations trap interstitials and

vacancies via strain fields. This can be important for the dynamics of the simpler

intrinsic defects [24, 47].

1.3.3 Donor-Vacancy Complexes

In silicon and germanium, single donor-vacancy complexes are termed E centres.

They are important as they can remove donors from electrically active substitu-

tional sites and contribute to dopant diffusion. The predominance of vacancies in
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germanium combined with the compatible charge states of the donor atom and va-

cancy make these defects very important in any study of donor deactivation in this

material.

Experimental studies have been performed on the E-centre, demonstrating a reduc-

tion in donor centres as they are generated. One study, on germanium samples

with a variety of donor species, used γ irradiation to generate the vacancies, then

Hall coefficient measurements to estimate the number of donor and acceptor centres

present. They concluded that the E-centres of phosphorus, arsenic, antimony and

bismuth are electrically inactive, and observed a small number of acceptor states,

attributed to divacancy-donor complexes [49] . In contrast, a later study also using

γ irradiation, the same dopants and capacitance transient techniques to study the

electrical activity, concluded that the centres act as double acceptors, with energy

levels in the band-gap [50]. The latter study also reported that the centres, anneal

in the range 100-300◦C, with thermal stability increasing with increasing size of the

donor atom. Their results for the antimony E-centre also agree with those of a DLTS

study into various defects in antimony-doped germanium [30].

Experimental work in silicon using positron annihilation spectroscopy (PAS) has

identified a series of defects associated with a decrease in carrier concentration in

heavily n-doped material. Donor vacancy (DV) complexes are observed to anneal out

at around 150◦C, and are replaced by D2V, and then D3V at around 400◦C in samples

with sufficient donor concentration. The subsequent annealing of D3V defects at

around 800◦C is not associated with the growth of a larger defect, but coincides

with a recovery of carrier concentration at around this temperature [51, 52]. A signal

associated with a larger defect, tentatively identified as D5V2, has been observed,

but not at concentrations significant to the electrical activity of the samples.

In germanium and silicon, such defects have been studied theoretically, and the D3V

and D4V defects have been predicted to have a negative formation energy relative to

isolated substitutional donor atoms in both materials [53, 54]. In germanium, there

has been a suggestion that Sb5V may be stable, though a formation mechanism has

not been proposed [55].
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1.4 Doping

Doping of semiconductors is a fundamental process in device manufacture. In ger-

manium, p-type doping has been achieved with boron [56, 57, 58], while phosphorus

[59], arsenic [57, 59] and antimony [57] have been studied as n-type dopants.

This is very similar to the list of dopants used in silicon, where boron, nitrogen,

phosphorus, arsenic and antimony are often used [60, 61, 62, 63, 64].

1.4.1 Implantation of Dopants

There are different approaches that can be used to insert dopants into semiconduc-

tors to create the doped regions required for devices or research.

Molecular beam epitaxy (MBE) involves growing a layer of dopant rich material

upon a usually undoped substrate. Using this method, junctions cannot be grown

on the length scales required for device manufacture, but it is often used for exper-

imental studies of defects as the technique produces relatively few defects (∼ 107

cm−2) [58].

Ion-beam implantation (IBI) involves firing dopant ions into the material with en-

ergies of tens or hundreds of keV. The ions are usually angled at around 7◦ to avoid

ion channelling effects where the ions travel through open channels in the diamond

structure. The penetration depth for the ions can then be controlled by adjusting

the beam energy [56, 57, 58, 59]. This method allows nano-scale junction formation,

but also generates many IPDs, (see Section 1.3.1), and many of the dopant atoms

do not lie in electrically active substitutional sites immediately after implantation.

Post-implantation processing to anneal out the defects and activate the dopants is

then required, and much research has been devoted to achieving this while minimis-

ing the diffusion of implanted dopant atoms.

There is a variation on the IBI technique intended to minimise the required anneal-

ing, involving pre-implantation amorphisation of a layer of material by firing ions
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of the same material into it. Much of the damage caused by the dopant ions then

causes solid phase epitaxial regrowth of the crystal, allowing higher substitutional

dopant concentration to be achieved and lower annealing requirements to remove

the implantation damage [56, 65].

1.4.2 Dopant Activation

After IBI, dopant atoms need to be activated by moving them to substitutional

lattice sites. This is usually achieved through heat treating the sample.

Dopant activation in germanium has been studied intensively in the past. From

spreading resistance probe (SRP) and SIMS data, it is possible to determine both

the active and total concentrations of dopants respectively [56, 57, 59]. Comparing

results of these measurements allows the fraction of active dopants to be evaluated

and studied after a variety of heat treatment steps.

It is desirable during post-implantation processing to minimise the thermal budget,

defined by both the temperature of the thermal treatment and its duration. This is

because, as well as removing implantation defects and activating dopants, the ele-

vated temperatures can also cause the diffusion of dopants, deepening and widening

junctions and diluting the dopant concentration.

Rapid thermal annealing (RTA) studies on germanium have been carried out [57, 59],

and have achieved activated concentrations of ∼ 1020 cm−3 for RTA treatment at

650◦C for 10 s, with both boron and phosphorous doping [57]. For shallow junctions,

treatments with a small thermal budget can be used to activate the dopants and

remove implantation damage, but for deeper junctions, more implantation damage is

present, and the higher thermal budget required results in a greater degree of dopant

diffusion. It has also been shown that dopant implantation above the solid-state

solubility limit does not result in greater activated dopant concentration, merely

increased damage [59].
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Studies on the technique involving pre-implantation amorphisation of the germa-

nium described above have shown that the best results are achieved for an amor-

phised region which is just deep enough to survive implantation. The remaining

amorphous region can then be recrystallised with a minimal further anneal. Active

dopant concentrations of 4.5×1020 cm−3 are reported [56, 65].

1.4.3 Dopant Diffusion

Dopant diffusion in semiconductors is an important area of research, as it is the

process which limits junction size during heat treatments.

For p-type regions in germanium, boron has been studied as a dopant, and has

been found to have very low diffusivity. With an activation energy for diffusion

of ∼ 4.5 eV, it does not diffuse until annealing treatments at ∼900◦C for eight

hours are performed [58]. The high diffusion barrier for boron is accompanied by a

high pre-exponential factor of ∼ 105 cm2s−1 compared with typical values of around

∼ 1 cm2s−1 for most other diffusion processes. It is also found that the diffusivity of

boron is the same whether the boron is inserted into the material using IBI or MBE

techniques [58, 66, 67, 68]. One theoretical study has been performed on interstitial-

mediated boron diffusion in germanium. The calculations yielded a diffusion barrier

of 4.5 eV, but did not offer an explanation for the anomalously large pre-exponential

factor [69].

This compares with the case in silicon, where boron is found to diffuse more quickly,

with a diffusion barrier of 3.2-3.6 eV but a more modest pre-exponential factor of

∼ 0.8 cm2s−1 [61]. Transient enhanced diffusion (TED) is also observed, whereby

diffusion is greatly enhanced by interaction with excess IPDs, likely self-interstitials,

after ion implantation. Carbon has been used to arrest this process by trapping

self-interstitials, but it has now been shown that carbon atoms may also trap boron,

forming undesirable, electrically active complexes [60]. It has also been shown that

boron in silicon diffuses by an interstitial-mediated mechanism, as the vacancy-

mediated diffusion energy is too high [62]. Various theoretical studies have been
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performed on boron diffusion in silicon, giving a number of interstitial-mediated

diffusion paths with similar energy barriers [61, 70, 71].

Doping to produce n-type regions has been studied with a larger variety of dopants,

and diffusion has been found to be quicker in germanium than silicon. Phosphorus,

arsenic and antimony have been studied as possible n-type dopants in germanium.

They have been shown to diffuse with activation energies of ∼ 2.7 eV [57, 72, 73].

Tailing of the dopant profile is observed with phosphorus, where a region of low

dopant concentration extends significantly past the edge of the grown-in junction,

softening the junction edge. Significant out-diffusion has also been observed with

phosphorus and antimony doping where a portion of the dopant atoms diffuse out

of the surface of the sample, reducing the concentration available to provide carriers

within the doped region [74]. Theoretical work suggests that a vacancy-mediated

mechanism for the diffusion of these species matches the barriers calculated from

experimental measurements [55].

In silicon, the diffusion of these dopants has also been studied. Phosphorus diffuses

in silicon with barriers of 3.68 and 3.43 eV attributed to diffusion via an interstitial

mechanism in the neutral and singly positive charge states respectively [75]. The

interstitial- and vacancy-mediated mechanisms have been studied with modelling

methods, and it is suggested that while the interstitial-mediated mechanism is dom-

inant for most conditions, the vacancy-mediated mechanism may play an important

role in heavily doped regions, where the charge states of the dopant and vacancy

are compatible [63]. Arsenic diffusion was found from experiment to proceed with

a barrier of 4.20 eV, attributed primarily to the vacancy-mediated mechanism [75].

1.5 Aims and Chapter Summaries

The work presented in this thesis aims to expand and extend the knowledge of defect

behaviour in germanium and silicon. It has been of particular interest to investigate

dopant related defects and dopant diffusion in germanium, but interest has also been

found in studying intrinsic defects in germanium and some dopant related defects
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in silicon. Comparison of results for the two materials will form a significant part

of the discussions sections of the proceeding Chapters. The remainder of the thesis

will be divided up a follows:

Chapter 2: The work presented here has been performed using the local density

approximation (LDA) under density functional theory (DFT). This chapter discusses

the background of this theory starting with the Schrödinger equation for a many

body system, and leading to the DFT.

Chapter 3: This chapter discusses the methods used in applying the theory pre-

sented in Chapter 2 to research problems. Details of how the code used implements

DFT will be discussed, along with the methods used to calculate experimentally

observable results and the specifics of the methods used in later chapters.

Chapter 4: Theoretical modelling work, while sometimes useful in isolation, is at

its most enlightening when used to predict or explain experimental results. This

Chapter details the experimental methods used in the various studies reported in

later chapters. As well as an overview of the methods used, an example of application

is included for each method discussed.

Chapter 5: Intrinsic point defects are the most fundamental lattice defects in any

crystalline material. In germanium, the vacancy is the dominant defect, with the

self-interstitial only recently coming under similar scrutiny. This Chapter details

studies performed on the annealing behaviour of the divacancy in germanium, and

the electrical properties and formation energies of larger vacancy clusters. Also

discussed are calculations of the stable structure and migration paths for the self-

interstitial.

Chapter 6: Dopant-related defects play a very important role in device perfor-

mance in any semiconductor material. They can change the electrical properties

of the dopants, reducing the carrier concentration in doped regions, and can en-

hance dopant diffusion, deepening junctions and diluting dopant concentrations.

This Chapter describes work on the electrical and formation energies of a family of

dopant-vacancy related defects in silicon and germanium.
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Chapter 7: Dopant diffusion is an important process in semiconductor devices.

As well as broadening sharp and shallow junction edges, significant out-diffusion

of dopants can reduce carrier concentration in junction regions. Also of significant

interest is the difference in diffusion properties between boron and phosphorus, com-

monly used as p- and n-type dopants, respectively, and why the differences seem to

be reversed between silicon and germanium devices. This Chapter presents in depth

studies of diffusion mechanics for both dopants in germanium, confirming and ex-

tending the present understanding, and discusses how the difference in mediating

species between the dopants can explain the differences in relative diffusion between

silicon and germanium devices.



Chapter 2

Theory Background

2.1 The Many Body Problem

The Schrödinger equation, the basis for all quantum mechanical investigations, is

analytically soluble only for a very limited number of systems. In classical mechanics,

the interactions of systems involving three or more bodies are known to produce

chaotic results whereby a minor change in initial conditions can lead to a very

significant difference in long-term behaviour. Similar problems are encountered in

the quantum regime, and finding analytical solutions to the Schrödinger equation

for any system involving three or more interacting particles is similarly impossible.

If no external fields are present, the Schrödinger equation takes the form

ĤΨi = EiΨi (2.1)

where Ĥ is the many-body Hamiltonian, Ψi is the many-body wavefunction for the

energy level of the system having energy Ei. Ĥ expands to give

Ĥ = T̂e + T̂N + V̂e−e + V̂N−N + V̂e−N (2.2)
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where T̂e,N are the electron and nucleus kinetic energy operators, and V̂x−x are the

potential energy operators due to the interactions of the indicated species in the

system. For this chapter, the atomic unit (a.u.) system will be used, in which the

values of ~, e, me, and 4πε0 are defined as unity. The atomic unit of length is then

0.529 Å, and that of energy is 27.211 eV. The Hamiltonian then becomes

Ĥ = −1

2

Xe
∑

µ=1

∇2
µ −

XN
∑

α=1

1

2Mα
∇2

α +
1

2

Xe
∑

µ6=ν

1

|rµ − rν|
−

Xe,XN
∑

µ,α

Zα

|rµ −Rα|

+
1

2

XN
∑

α6=β

ZαZβ

|Rα −Rβ|
(2.3)

where Mα,Rα and Zα are the mass, position and charge of the αth nucleus, rµ is the

position of the µth electron, and Xe,N is the total number of electrons and nuclei in

the system, respectively.

Finally, the wavefunction Ψi is a function of nucleus position and electron position

and spin (sµ) co-ordinates.

Ψi ≡ Ψi (R1,R2 . . . ,RXN
, r1, s1, r2, s2 . . . , rXe

, sXe
) (2.4)

For any but the smallest systems, no analytical solution to this problem exists,

and for a crystal sample with hundreds of nuclei and thousands of electrons, the

computational resources required to achieve a direct numerical solution would be

tremendous. In order to usefully solve the problem, then, a series of approximations

must be employed.

2.1.1 Born-Oppenheimer Approximation

The first approximation commonly applied to quantum mechanical many body prob-

lems is the Born-Oppenheimer Approximation [76]. This consists of the argument

that, due to the difference of masses between the nuclei and electrons, the motion of

the electrons and nuclei can be decoupled. In this methodology, the electrons are as-

sumed to react instantly to any change in the nuclei positions, and the wavefunction

can be rewritten as
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Ψ (R, r) = χ (R)ψR (r) (2.5)

where r is now taken to encompass all electron spatial and spin co-ordinates, while

R covers all the nuclei co-ordinates. Equation 2.1 can then be rewritten as separate

electron and nuclei equations:

[

T̂N + V̂N−N

]

χ (R) = ENχ (R) (2.6)
[

T̂e + V̂e−e + V̂e−N

]

ψR (r) = EeψR (r) (2.7)

where ψ and χ are separate all electron and all nucleus wavefunctions. The Schrödinger

equation for the entire system is then written as

Ĥχ (R)ψR (r) = (EN + Ee)χ (R)ψR (r) −
XN
∑

α

1

2Mα

[

χ (R)∇2
αψR (r)

+2∇αψR (r)∇αχ (R)] (2.8)

The second term is significant only in a system in which there is strong electron-

nucleus coupling. The strong coupling leads to a large value for ∇αψR (r) which

can overcome the large value of Mα in the denominator. In these cases, electron-

phonon interactions need to be considered, but in most cases the second term can

be neglected, leading to a Schrödinger equation where the product χ (R)ψR (r) is

the eigenfunction and the sum of independent energy eigenvalues EN + Ee is the

energy eigenvalue for the system.

Ĥχ (R)ψR (r) = (EN + Ee)χ (R)ψR (r) (2.9)

For the fully decoupled electron problem with fixed nuclear positions, the Schrödinger

equation is then

[

T̂e + V̂e−e + V̂e−N

]

ψ (r) = Eeψ (r)
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=

[

−1

2

Xe
∑

µ=1

∇2
ν +

1

2

Xe
∑

µ6=ν

1

|rµ − rν |
−

Xe,XN
∑

µ,α

Zα

|rµ − Rα|

]

ψ (r) (2.10)

2.1.2 Variational Principle

Equation 2.10 can be solved by integration over a discreet grid, and also through

use of the variational principle. As the latter is the method used in almost all

calculations to obtain the ground-state energy of an ensemble of atoms, it is the

method which will be discussed here.

In this method, a subspace of the associated Hilbert space, described as {φ1, . . . , φM},
is chosen to form an approximation Ψapp to the total ground-state wavefunction Ψ0

by the equation

Ψ0 ' Ψapp =

M
∑

i

ciφi. (2.11)

The corresponding approximation of the ground-state energy Eapp can be calculated

as the expectation value of E given by Ψapp:

Eapp =
〈Ψapp|Ĥ|Ψapp〉
〈Ψapp|Ψapp〉

=

M
∑

i,j

c∗i cj〈φi|Ĥ|φj〉

M
∑

i,j

c∗i cj〈φi|φj〉

=

M
∑

i,j

c∗i cjHij

M
∑

i,j

c∗i cjSij

(2.12)

where Hij and Sij are the Hamiltonian and overlap matrix elements, respectively.

By including the condition that the derivative of Eapp with respect to ci must vanish

for stationary states, it can be shown that
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M
∑

j=1

(Hij −EappSij) cj = 0 (2.13)

for all i, which can be generalised to the matrix eigenvalue equation

H · c = EappS · c (2.14)

The Rayleigh-Ritz variational principle [77] states that the lowest eigenvalue of

this equation will be equal or greater than the true ground-state energy, and that

including more basis functions φi will improve the approximation asymptotically

toward Ψ0 and E0.

Theorem 1 (Variational Principle). The energy Eapp calculated from an approx-

imate form of the wavefunction Ψapp is an upper bound for the true value of the

ground-state energy E0. Fully minimising the functional E [Ψ] with respect to the

basis functions will yield E0:

E0 = min
Ψ
E [Ψ] (2.15)

2.1.3 Hartree’s Method

The electronic Schrödinger equation given in Equation 2.10 still contains a term

involving electron-electron interactions, V̂e−e. In order to allow separation of vari-

ables, Hartree proposed modelling each electron as interacting only with an averaged

electron density, rather than every other individual electron. The total electronic

wavefunction ψ (r) can then be rewritten as a product of single electron wavefunc-

tions [78]

ψ (r) = ψ1(r1)ψ2(r2) . . . ψXe
(rXe

) =

Xe
∏

ν

ψν(rν). (2.16)

From this, it is possible to write
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〈ψ|ψ〉 =

∫ ∫

ψ∗(r′)ψ(r)d3r′d3r =

Xe
∏

ν

∫

ψ∗
ν(rν)ψν(rν)d

3rν (2.17)

〈ψ|Ĥ|ψ〉 =
Xe
∏

ν

∫

ψ∗
ν(rν)

[

−1

2
∇2

ν + V̂e−N(rν)

]

ψν(rν)d
3rν

+
1

2

∏

µν

∫ ∫

1

|rµ − rν |
|ψµ(rµ)|2 |ψν(rν)|2 d3rνd

3rµ. (2.18)

Using these equations to construct an equation for the expectation value EH leads

to

ĤHψν(r) = EH
ν ψν (2.19)

with

ĤH = −1

2
∇2 −

XN
∑

α

Zα

|r −Rα|
−

∫

ρ(r′)

|r− r′|d
3r′ (2.20)

where ρ(r′) is the electronic charge density given by

ρ(r′) = −
Xe
∑

ν

|ψν(r
′)|2 . (2.21)

When using the Hartree method, a set of ψν are initially chosen to approximate the

electron wavefunctions of the system. These wavefunctions are then used to calculate

the electron density and another set of wavefunctions ψ′
ν are found. Thus by an

iterative process, it is possible to find a self-consistent set of electron wavefunctions

and from them the electronic contribution to the energy.

Despite this utility, the Hartree wavefunctions are unphysical, as they are invariant

under the exchange of particles and do not prohibit electrons from sharing wave-

functions. This contravenes the Pauli exclusion principle, and an extension to the

Hartree method is required to account for the fermion nature of the electrons.
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2.1.4 Hartree-Fock Theory

Both Fock [79, 80] and Slater [81] independently developed an adaptation to Hartree’s

approach to take into account the fermion nature of the electrons. In this case, the

total wavefunction must be antisymmetric with respect to exchange of electrons,

and this can be achieved by writing ψ(r) as

ψSD(r1, r2, . . . , rXe
) =

1√
Xe!

∣

∣

∣

∣

∣

∣

∣

ψ1(r1) · · · ψXe
(r1)

...
. . .

...

ψ1(rXe
) · · · ψXe

(rXe
)

∣

∣

∣

∣

∣

∣

∣

(2.22)

ie a Slater determinant. As above, ψi are a series of orthonormal single-electron

wavefunctions, but in this case, the exchange of any two electrons changes the sign of

the resulting wavefunction and if any two electrons were to share their co-ordinates,

the determinant would become zero.

Using ψSD as the solution to the purely electronic Schrödinger equation (Equation

2.10), an equation of the form

F̂|ψν〉 = εν |ψν〉 (2.23)

is obtained, where F̂ is the Fock operator:

F̂ψν(r) =

[

−1

2
∇2 −

∑

α

Zα

|r− Rα|

]

ψν(r) +
Xe
∑

µ=1

∫

|ψµ(r′)|2 1

|r − r′|ψν(r)d
3r′

−
Xe
∑

µ=1

∫

ψ∗
µ(r′)

1

|r − r′|ψν(r
′)ψµ(r)d3r′. (2.24)

Alternatively, the equation can be split into component terms:

F̂ = ĥ + Ĵ − K̂. (2.25)

ĥ is the term in square brackets, and represents the Hamiltonian of a single electron

in the potential due to the nuclei, Ĵ is the Coulomb operator,

Ĵψν(r) =
∑

µ

Ĵµψν(r) =
Xe
∑

µ=1

∫

|ψµ(r′)|2 1

|r− r′|ψν(r)d
3r′ (2.26)

and K̂ is named the exchange operator, and is given by

K̂ψν(r) =
∑

µ

K̂µψν(r) =

Xe
∑

µ=1

∫

ψ∗
µ(r′)

1

|r− r′|ψν(r
′)ψµ(r)d3r′. (2.27)
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Representing the operators as matrices, as above, yields

F · c = εS · c (2.28)

where Fi,j = 〈ψi|F̂ |ψj〉, ci = 〈ψi|ψSD〉 and S is the overlap matrix 〈ψi|ψj〉. This is

known as the Roothaan equation [82]. As with the Hartree theory, this equation

can be solved by a self-consistant interactive process leading to convergence of the

total energy. The eigenvalues ε of the converged solution have a physical significance

realised by Koopmans [83].

Theorem 2 (Koopmans’ Theorem). Assuming that the eigenstates c do not vary

significantly after the removal of one electron from the system, the ionisation energy

of the mth electron is given by -εm.

Even with the enhancements here, the Hartree-Fock theory is still flawed. The cor-

relation energy except for exchange is assumed to be zero, which leads, for example,

to a zero density of states at the Fermi level of a homogeneous electron gas.

A number of methods have been proposed to incorporate correlation effects into the

Hartree-Fock theory. The configuration interaction method is an example of such, in

which the wavefunction is described by a linear combination of Slater determinants,

as opposed to the single determinant described above [84]. This yields exact many-

electron eigenstates and eigenvalues, but the computational resources required to

perform the calculations are very large, and the method quickly becomes impractical

as the number of atoms involved moves past a few tens.

2.2 Density Functional Theory

Density functional theory (DFT) is a method wherein a variational principle is

applied with the variable being the electron density n(r) of the ground state of the

system. This method leads to the total energy of the system being a functional of n

rather than of the all-electron wave-function as described above [85, 86]. In fact, the

fundamental variable for determining the properties of the entire system becomes
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n, in place of Xe and the external potential vext in the Hartree-Fock theory. This is

known as the first Hohenberg-Kohn theorem [85].

Theorem 3 (First Hohenberg-Kohn theorem). The external potential is described,

to within a trivial additive constant, by the electron density n(r).

As n therefore defines both Xe and vext, it must also define the ground state wave-

function and therefore the total energy.

The second Hohemberg-Kohn theorem states that for a charge density n′,

E[n′] = F [n′] +

∫

vext(r)n
′(r)d3r (2.29)

≥ E[n] (2.30)

where F is a universal functional accounting for the electron kinetic energy, electron

correlation and exchange correlation. [85]

Theorem 4 (Second Hohenberg-Kohn theorem). For a trial density, n′(r) such that

n′(r) > 0 and
∫

n′(r)d3r = Xe,

E[n′] ≥ E0 (2.31)

This is very similar to the Raleigh-Ritz variational principle, with the charge density,

rather than wave function, being the variable. The total energy, E[n] is defined by

the equation

E[n] = Te[ψ] + Ve−e[n] + Ve−N [n] + EXC [n] (2.32)

where ψ(r, s) is a set of orthonormal spin orbitals linked to n via the relationship

n(r) =
X

∑

λ=1

∑

s

|ψλ(r, s)|2, (2.33)

and the four terms are the electron kinetic energy

Te[ψ] =
1

2

∑

λ,s

∫

ψ∗
λ(r, s)∇2ψλ(r, s)d

3r, (2.34)

the electron-electron potential energy

Ve−e[n] =
1

2

∫

n(r)n(r′)

|r − r|′ d
3rd3r′, (2.35)
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the electron-nucleus potential energy

Ve−N(n) = −
∫

n(r)
∑

α

Zα

|r −Rα|
d3r, (2.36)

and the exchange correlation functional EXC the form of which will be discussed

later.

2.2.1 Kohn-Sham Equations

Using the above equations, the energy can be determined for a charge density formed

by summing the probability density of a set of orthonormal spin-orbitals. The

process of determining these orbitals is usually performed using the Kohn-Sham

equations.

Using the variational principle and the orthonormal property of the spin-orbitals,

the quantity

E −
∑

λ,s

ελ,s

[
∫

|ψλ(r, s)|2d3r − 1

]

(2.37)

may be minimised with respect to ελ,s and ψλ. This done, a series of one electron

Schrödinger equations is obtained:
[

−1

2
∇2 +

∫

n(r′)

|r− r′|d
3r′ −

∑

α

Zα

|r −Rα|
+
∂EXC [n]

∂n(r)

]

ψλ(r) = ελψλ(r), (2.38)

where the charge density is obtained as above:

n(r) =

X
∑

λ=1

∑

s

|ψλ(r, s)|2. (2.39)

Equations 2.38 and 2.39 are known as the Kohn-Sham equations, and are solved

via an interactive self-consistent method. First an initial charge density is used in

Equation 2.38 to generate a set of spin-orbitals, which are then used to calculate a

new charge density using Equation 2.39. This new charge density can then be fed

directly back into Equation 2.38 to generate the next set of spin-orbitals. At each

step, the total energy of the system is calculated, and the process continues until the

difference between the energy calculated at two consecutive iterations is considered

negligible.
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One further refinement of the process is often included to speed the convergence. The

process above usually results in a charge density that oscillates about an optimum

solution. By using a input charge density at each iteration that is some combination

of the input and output densities for the previous iteration, this oscillation is damped

and the number of iterations required to achieve convergence is reduced.

2.2.2 Exchange and Correlation Energies

The value of the exchange correlation energy EXC is one of the more challenging

problems for the application of density functional theory. Different approaches are

used in different implementations, and their failings are usually manifest in poor

agreement with experimentally determined band structure parameters such as band

gap and effective mass. Ground state properties such as bulk modulus and lattice

constant are, however, usually found to agree well with experiment for even quite

simple approximations.

The most common approximation used in implementing DFT is the local density ap-

proximation (LDA) or local spin density approximation (LSDA), a generalisation of

LDA for systems with a net spin [86, 87, 88]. In these approaches, it is assumed that

the exchange correlation energy is local and can be decomposed into an exchange

energy and a correlation energy. In the notation of the LSDA:

EXC [n ↑, n ↓] = EX [n ↑, n ↓] + EC [n ↑, n ↓] (2.40)

where the ‘up’ and ‘down’ spin densities are calculated through Equation 2.39, re-

stricting s to be one or other spin rather than summing the contributions.

Restricting the calculation to a local density allows the treatment of each point in the

system as a homogeneous electron gas with the local density. In this approximation,

the exchange energy is known exactly [88]:

EX [n ↑, n ↓] = −3

2

(

3

4π

)1/3
(

n ↑4/3 +n ↓4/3
)

. (2.41)

The correlation energy is, however, much more complicated, and there is no sin-

gle analytical solution which can be used. For high charge densities, perturbation
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theory has been used to give an expression for EC [87], while for low density, a

quantum-Monte-Carlo approach using Green functions yields a different expression

[89, 90]. It is possible, though, to construct a parameterised expression from the

numerical results of these two extremes [87, 91, 92], and this is what is used in DFT

implementations.

While the LDA is an attractive and useful method for calculating the exchange-

correlation energy, it suffers from an underestimation of the energy of excited states.

This leads directly to a strong underestimation of the band-gap of semiconductors,

an important problem for any calculation involving defects which introduce energy

levels into the gap. The calculated band gap can be expressed as the difference

between the energies of the highest occupied and lowest unoccupied Kohn-Sham

levels:

Eg = ELU − EHO − ∆XC (2.42)

where ∆XC is the discontinuity of the exchange correlation potential at the Fermi

level as a function of the occupation number. The band-gap underestimation stems

from both a self-interaction error inherent in the LDA potential and the vanishing of

∆XC [93]. In germanium, this problem is especially acute as the small experimental

band-gap combined with the LDA underestimation leads to a predicted gap that is

either negligible or in some cases zero or even negative [94].

Another approximation used in some implementations for EXC is the generalised

gradient approximation (GGA). In this approximation, EXC is expanded to the first

order, including terms of ∇n at an additional computational expense [95, 96, 97].

2.2.3 Pseudopotentials

When modelling electrons in solids with DFT, complications arise due to the dif-

ferences in electron behaviour close to the nucleus compared with behaviour at

interstitial positions far from atom centres. Of particular difficulty is the rapid spa-

tial oscillation of the wavefunctions close to the nuclei, requiring a large number

of basis functions to model accurately, therefore rapidly increasing the computa-
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tional resources required. Also, the energy calculated in all-electron simulations is

very large, with correspondingly large errors when calculations require the energy

difference between two comparable systems.

A common approach to solving these problems involves dividing the electrons into

core and valence sets, and treating the two with different approaches. Potentials are

calculated not for the bare atomic nuclei but for ions consisting of the nuclei plus the

core electrons, taking into account the screening of the nuclei by the core electrons

resulting in a smoother potential for the valence electrons. These pseudopotentials

rely on a few approximations/assumptions:

The all-electron Coulomb operator must be able to be decomposed into two parts -

one for the core electrons and one for the valence electrons.

The core must be unaffected by its environment. This is called the frozen core

approximation.

There must be negligible overlap between the core and valence states. This allows

the decomposition of EXC into two parts. The violation of this assumption does not

preclude the use of the pseudopotentials, but it does require compensation. Non-

linear core correlation is sometimes used to improve the accuracy of calculations

[98].

In solid state calculations, the use of pseudopotentials has another important benefit,

as it removes the need to calculate either wavefunctions or charge densities due to the

core electrons, dramatically reducing the resources required per atom of the material

and allowing significantly larger systems to be studied. Also, in any calculation

involving heavy atoms where relativistic effects become important for the core states,

these effects can be taken into account in the calculation of the pseudopotentials

while allowing the treatment of the valence electrons to be entirely non-relativistic.

There are various methods which can be employed to calculate pseudopotentials.

Those of Bachelet, Hamann and Schlüter [99] are quite commonly used, as are those

of Troullier-Martins [100] and Hartwigsen, Goedecker and Hutter [101].
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2.2.4 Choice of Boundary Conditions

When implementing DFT, the choice of boundary conditions used in the calcula-

tions can be very important on the results calculated, as will be seen in many of

the proceeding Chapters. There are two options for the treatment, periodic bound-

aries or boundaries to vacuum, commonly referred to as the supercell or cluster

methodologies respectively.

In supercell calculations, the modelling is performed within a supercell of tens to

hundreds of atoms with periodic boundary conditions that form an infinite perfect

crystal in the case of an undistorted supercell. When a defect or defects are intro-

duced into the supercell it forms a periodic array of defects. Supercell calculations

have the advantage that defect energies thus calculated are independent of the lo-

cation of the defect within the supercell. This then gives more reliable results for

any calculation involving the comparison of energies of different defect structures,

including migration calculations and calculations comparing different structures of

the same defect.

In cluster calculations, the modelled sample consists of a nanoparticle of usually a

few hundred atoms, with boundaries to vacuum. The surface bonds of the sample

are often terminated with hydrogen atoms to minimise their effect on the calcula-

tions. In the cluster, compared with supercell calculations, there are no defect-defect

interactions, but instead interactions between the surface of the cluster and the de-

fect within must be considered. Modern computing facilities can allow for the use

of large atomic clusters, which can minimise this effect, but defects still need to be

kept away from the cluster surface to avoid significant interaction.

Cluster calculations can be more accurate under some conditions than supercell

calculations, particularly when dealing with host material for which the LDA band-

gap underestimation is critical. Quantum confinement in the cluster artificially raises

the calculated band-gap of the material, with the gap found to decrease towards the

supercell value with increasing cluster size [102]. This effect has been employed

to compensate for the LDA band-gap underestimation as described for example
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in reference [103] and Section 5.3. It has also been suggested that Jahn-Teller

distortions are strongly affected by defect-defect interaction in the supercell, and

hence are more reliably calculated in the cluster where these interactions are absent

[8].

A further complexity of the cluster methodology is the treatment of the surface of

the cluster. This usually either involves preventing the motion of the outermost

layer of crystal and hydrogen atoms or allowing them to relax with the rest of

the cluster. The full relaxation method has been used in the past for example in

references [104, 105, 106, 107, 108], while the fixed surface method has been used in

references [5, 10, 109, 110]. Another technique that may be employed is the use of

strained surface X-H bonds to tune the quantum confinement effect. It is possible

to manipulate the strength of the quantum confinement through the position of the

hydrogen atoms, tuning the calculated band gap to the experimental value. The

effects of these methods on calculated properties of the divacancy are discussed in

Section 5.3, and the fixed surface approach with relaxed X-H bond lengths has been

used for the majority of the work of this thesis. The fixed surface is expected to

reduce the effect of the surrounding vacuum on the system, as the surface provides

the pressure normally exerted by the crystal, and, as it is a fixed volume calculation,

it should be more accurate for calculations comparing the energy of different defect

structures than the fully relaxed systems.

A comparison of the supercell and cluster methods as applied to the single and

divacancy in silicon will be presented in Section 3.2

2.3 Chapter Summary

In this Chapter, the theoretical background underlying the work presented in the

proceeding chapters has been discussed. Starting from the many body Schrödinger

equation, the development of the theory up to the Density Functional Theory has

been discussed. In the next Chapter, the application of this theory to the problems

of later Chapters will be discussed.



Chapter 3

Theoretical Methods

3.1 AIMPro

The work presented in this thesis has been performed using a code known as the

Ab-initio Modelling Program, or AIMPro [102, 111, 112]. The AIMPro code is

capable of performing calculations in both the supercell and cluster methodologies

with slightly different implementations for each.

3.1.1 Supercell AIMPro

In the supercell methodology, the wavefunctions and charge density must be pe-

riodic along the lattice vectors of the supercell. Due to this, some properties are

more efficient to calculate in reciprocal space, so while AIMPro uses a basis set

of localised orbitals to solve the Kohn-Sham equations, the charge density is still

expanded as a series of plane waves, such that integrals of n(k) can be solved by

summing over the Brillouin Zone.
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3.1.1.1 Real Space Basis Functions

The choice of basis set used to expand the Kohn-Sham wavefunctions and construct

the Hamiltonian of the system is always a compromise between accuracy and cost.

As such, there is no consensus on the best basis set to use for a given problem.

The basis sets are constructed to conform to Bloch’s theorem as:

ψλ =
∑

i

cλiBki(r), (3.1)

with

Bki(r) =
1√
NL

NL
∑

n=1

φi(r − Ln)eik.Ln, (3.2)

where the sum is over all the NL real space lattice vectors. In AIMPro, the basis

functions φi are constructed by multiplying a polynomial by a Gaussian:

φi,n1,n2,n3
(r) = (x−Rix)

n1 (y −Riy)
n2 (z − Riz)

n3 e−αi(r−Ri)
2

, (3.3)

where n1, n2 and n3 are integers. If all are zero, the orbital is s-type. When one of

the integers is one and the others zero, a p-type orbital results, while n1+n2+n3 = 2

yields five d-type and one s-type orbitals. Throughout the calculations, the orbitals

are atom centred, and move with the atoms as calculations proceed.

Many other implementations of DFT employ plane wave basis sets to model the elec-

tron wavefunctions. Gaussian orbitals offer a number of advantages over the plane

wave sets, particularly in efficiency and flexibility. Plane wave basis sets require a

large number of functions to model even relatively simple atoms - around 100 func-

tions for Si, and even more for ‘difficult’ atoms with rapidly changing wavefunctions,

for example carbon, nitrogen and oxygen. These are quite common impurities in

both silicon and germanium, and the Gaussian basis sets can model them to fair

accuracy with only 28 functions. Using atom-centred Gaussian orbitals also auto-

matically devotes more coverage to regions of the sample with higher density while

still allowing the addition of ‘ghost’ centres to increase coverage at bond centres

or vacuum surfaces if the default orbital distribution proves insufficient to describe

these regions. Finally, increasing the system size under this type of treatment pro-

duces a more sparse Hamiltonian matrix. However, there are drawbacks to this
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approach, most notably that the non-orthonormality of the Gaussian orbitals neces-

sitates a more complex programme. It is also more costly to test convergence with

basis set size, and numerical noise can become a problem if two or more Gaussian

exponents are chosen too close together.

Exponents for the Gaussian orbitals are chosen by a variational method with the best

exponents being those which minimise the total energy of a test system. Usually, the

test system is more simple than the system being studied, for example the exponents

for germanium and silicon are usually optimised for bulk material and the orbitals

for dopant atoms are often optimised for isolated atoms rather than for the specific

defect being studied. Convergence is tested by adding further functions to the basis

set and repeating the optimisation.

It is possible with some systems to use a smaller basis set and still calculate the

properties of a system to reasonable accuracy. Contracted basis functions of d-type

or higher angular momentum are produced by combining a number of Gaussian

orbitals:

φcont
i,lmn =

∑

n1,n2,n3

clmn,i,n1,n2,n3
φi,n1,n2,n3

(3.4)

where coefficients ci,lmn are optimised for the model system, usually bulk material

[113].

3.1.1.2 Reciprocal Space Basis Functions

In the supercell code, the charge density is approximated in a plane wave basis as

ñ(r) =
∑

G

AGe
iG.r (3.5)

where the sum is over a set of G vectors within a cutoff energy

Ecut =
1

2
G2

cut. (3.6)

Ecut is chosen to be sufficient for ñ to be converged to the value of n calculated from

the Gaussian wavefunctions. The value required for this varies depending on the

species in the system under investigation, with the more ‘difficult’ species requiring
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a larger cutoff energy. As this calculation is performed only for the charge density,

not for every wave function, it does not add significantly to the computational effort

of the simulation. From this plane wave representation, the charge density can be

converted to a reciprocal space representation n(k) fairly simply.

3.1.1.3 Integration over the Brillouin Zone

Once n has been represented in k-space, integration of n(k) can be performed to

calculate properties such as the total energy of the system. The integration is

performed numerically by summing over a set of k points using the method proposed

by Baldereschi, Chadi and Cohen [114, 115]. AIMPro uses the sampling scheme

for k space proposed by Monkhorst and Pack [116] which is used to produce a set

of k-points within the Brillouin zone. The symmetry of the supercell is then used

to eliminate equivalent points leaving an irreducible set of points to be used in the

calculations.

3.1.2 Cluster AIMPro

As in the supercell methodology, the wavefunctions for the cluster implementation

are expanded with Gaussian basis sets. With a lack of periodicity, however, the

charge density is constructed in terms of a density tensor b:

ns(r) =
∑

i,j

bijsφi(r − Ri)φj(r− Rj) (3.7)

where elements are given by

bijs =
∑

λocc

δ(s, sλ)c
λ
i c

λ
j . (3.8)

The sum is over the occupied levels of the system. The energy is calculated in the

space defined by this basis. With Gaussian basis functions, it is possible to calculate

the kinetic and pseudopotential energies analytically using the equations

Tij = −1

2

∫

φi(r −Ri)∇2φj(r −Rj)d
3r (3.9)
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and

V ps
ij =

∫

φi(r − Ri)
∑

α

V ps
α (r − Rα)φj(r − Rj)d

3r. (3.10)

3.1.2.1 Hartree, Exchange and Correlation Energies

To calculate the Hartree energy, a number of integrals must be performed scaling

as O(N4) where N is the number of basis functions. Clearly for a moderately large

system, this would lead to prohibitively complex calculations. In order to streamline

the process, a number of approximations are used. Importantly, the integrals are

reduced to a simpler form using an approximate form of the charge density. The

charge density is expanded in terms of a set of auxiliary basis functions of up to

d-type by default

ñ(r) =
∑

s,k

cs,kgk(r) (3.11)

where the coefficients are calculated analytically to minimise the error in the Hartree

energy [111]. The Hartree energy then becomes simple to solve through analytical

integration. As gk(r) are atom-centred Gaussian functions, the coefficients are easy

to calculate, but still the time taken is quite significant, and is the most time-

intensive step for small clusters. In larger clusters, the time taken does not continue

to scale as quickly, since the overlap between Gaussians centred on distant atoms

can be neglected.

The exchange and correlation energies are calculated using the intermediate approx-

imation of charge density [111].

3.2 Cluster and Supercell Comparison

3.2.1 Introduction

The differences in the supercell and cluster methodologies lead to some potential

issues with regards to the best choice of method for the problem at hand. As
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a test of the behaviour of the supercell procedure compared to that of the cluster,

calculations were performed on the single vacancy (V) and divacancy (V2) in silicon.

Calculations were undertaken in supercells containing 216 and 512 atoms in the per-

fect case (Sup216,512), and in clusters containing 181 Si and 116 H atoms (Clus297),

329 Si and 172 H atoms (Clus501) and 459 Si and 204 H atoms (Clus663). Calcu-

lations were performed to find the migration barriers for the two defects using the

nudged elastic band method (NEB) (Section 3.3.5) and the binding energy of V2

(Section 3.3.3), all in the neutral charge state. Binding energies were calculated by

both methods presented. For Vs separated within the same system, a separation

of fourth neighbours along a 〈110〉 chain was used, as this has been found to give

converged results in previous theoretical calculations [38]. Calculations were also

performed to find the first acceptor and donor levels for the two defects using the

marker method (Section 3.3.4) with the experimentally known donor and acceptor

levels of the PV defect at Ev + 0.27 and Ec − 0.45 eV respectively [117] as markers.

Experimental studies have previously found values for these properties. The migra-

tion barrier for neutral V has been found to be 0.45 eV [39], while that for V2 has

been observed to be 1.3 eV and independent of charge state. [36] The barrier for V2

to dissociate has been given as at least 1.6 eV [36]. As this can be considered as a sum

of the binding energy of the defect with the diffusion barrier of the single vacancy,

the binding energy is expected to be at least 1.2 eV. The first donor level of V has

been assigned to a trap at Ev + 0.03 eV [15] and the first donor and acceptor levels

of V2 have been assigned to levels at Ev +0.25 eV and Ec−0.42 eV [118]. These last

two levels have however been attributed to a high-temperature structure averaged

over three equivalent Jahn-Teller distorted configurations (Section 3.3.1.1), and so

may have positions different from those of the low-temperature structure calculated

with DFT.



CHAPTER 3. THEORETICAL METHODS 40

3.2.2 Results

All the calculated results are given in Table 3.1. Across all the results, it can be

seen that the convergence on supercell size seems to have been achieved by Sup216,

with the possible exception of the V2 binding energy as calculated from separated

vacancies. The change in the sign of the first donor level of both defects between

the Sup216 and Sup512 supercells is not in itself significant, as the difference in level

position is relatively small. For the cluster calculations, convergence on cluster

size is seen to have been achieved for the smallest cluster for static properties -

the binding energy and energy levels - while for the migration barriers, Clus501 is

required to achieve convergence. For the V energy levels and migration barriers, it is

clear that the supercell calculations give better results. For the V2 energy levels, the

cluster calculations seem to give results closer to the experimental values, but it is

not clear how much this is due to the high temperature structural averaging effects

mentioned above. Similarly, for the binding energy calculations the experimental

data only gives a lower bound of 1.2 eV. As all the calculated results satisfy this

condition, little more can be said save that the supercell results agree with previous

theoretical results using a different code suggesting that vacancies can be considered

separate at fourth neighbour positions along a 〈110〉 chain.

From this, it is seen that there is significant difference between the results of supercell

and cluster calculations. The differences in energies calculated via the two methods

is believed to be largely due to the quantum confinement effects in the cluster.

This effect increases energies calculated in the cluster, widening the band gap and

increasing the energies and energy differences calculated by the theory.

For calculations on defects in silicon, the band-gap underestimation in supercell

calculations is not seen to lead to results far from expected values. This is understood

to be due to the relatively wide band-gap in this material meaning that any defect-

related energy levels are still able to fall within the reduced band-gap calculated

from LDA. The quantum confinement effects in the cluster calculations then lead to

overestimation of many calculated results, and so 216-atom supercells are used for

all silicon-based calculations in the remainder of the thesis.
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Table 3.1: Binding Energies of V2 in silicon calculated from vacancies separated

within the same system (Vsep) or isolated vacancies (Visl) along with energy levels

and neutral migration barriers calculated for V and V2. All values are in eV and cal-

culations have been performed in various cluster and supercell systems as indicated.

Also included are experimental values for comparison.

Binding Energy Sup216 Sup512 Clus297 Clus501 Clus663 Experiment

Vsep 1.87 1.68 2.40 2.37 2.35 > 1.2

Visl 1.72 1.74 - - -

Energy Level Sup216 Sup512 Clus297 Clus501 Clus663 Experiment

EV(0/+)−Ev -0.05 0.04 0.20 0.10 0.10 0.03

Ec−EV(−/0) 0.15 0.16 0.49 0.48 0.42

EV2
(0/+)−Ev -0.02 0.03 0.17 0.16 0.15 0.25

Ec−EV2
(−/0) 0.31 0.29 0.65 0.67 0.54 0.42

Migration Barrier Sup216 Sup512 Clus297 Clus501 Clus663 Experiment

V 0.24 0.34 1.56 0.86 0.82 0.45

V2 1.22 1.17 2.65 1.80 1.76 1.3

In germanium, in contrast, the band-gap underestimation leads to defect-related

energy levels lying within the bulk bands of the material, resulting in a calculated

insensitivity of defect properties on charge state, as will be seen in Section 5.3.

The quantum confinement effects present in cluster calculations compensate for

the effects of underestimation in the supercell, allowing defect levels to again fall

within the band gap. As such, it was decided to minimise the importance placed

on germanium-based supercell calculations in these studies, and instead to focus on

cluster calculations which do not suffer as severely from these problems. Therefore

calculations on defects in germanium used 216-atom supercells where necessary and

501 or larger clusters where possible. This decision was subsequently supported by

comparisons between supercell and cluster-focused calculations in Sections 5.3 and

7.3.
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3.3 Calculation of Observables

AIMPro is able to calculate many physical properties which are in some way ob-

servable in experiment. This Section will discuss the methods used to calculate the

values used in the studies forming the latter chapters of this thesis.

It is important to recognise that the Kohn-Sham DFT is a ground state theory

and that the calculations of excited state properties, while possible, is non-trivial

within this code. This comes from the fact that the Kohn-Sham eigenstates are not

one-electron wavefunctions, but a set of basis functions which reproduce the correct

ground state charge density. It is the case that the energy of the highest occupied

Kohn-Sham state is directly related to the ionisation potential of the system [119],

but the theory does not lend itself to elevated temperature calculations. This will

be seen to be important in Section 7.4.

3.3.1 Defect Structure

While the structure of atomic defects is not often directly observable in experiment,

the symmetry of the defects can be observed. In the case of this thesis, however,

calculation of the defect structure is discussed solely as a prerequisite for later work.

The ground state structure of a system can be determined in DFT by minimising

the forces acting on the atoms. For the initial atomic structure, a self-consistent

charge density is calculated as described previously. The energy is calculated from

the charge density and this is used to give the forces on each atom

Fα = −∇αE. (3.12)

For plane-wave basis sets, this can be done using the Hellmann-Feynman theorem

[120, 121]:

Theorem 5 (Hellmann-Feynman Theorem). Let ζ be a parameter in the Hamilto-

nian Ĥ and Ψζ an eigenvalue of Ĥ. Then,

∂E

∂ζ
= 〈Ψ|∂Ĥ

∂ζ
|Ψ〉. (3.13)
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However, for the Gaussian basis sets used in AIMPro, ∂|Ψ〉
∂R

6= 0. This leads to

extra terms called Paulay terms on evaluating the differential. The derivation of

the forces in these systems is described in reference [111], and is significantly more

time-consuming than for the plane-wave systems. In either case, though, the time

taken to calculated forces is almost always smaller than the time taken to perform

the self-consistency calculations.

The atoms are then moved by an amount calculated using the conjugated gradient

algorithm [111] in the direction of the force. The process is repeated with the new

structure, with the charge density calculation starting from the converged value

from the previous iteration, the forces on the atoms calculated afresh. Iterations

are continued until all forces in the system are considered negligible. This process

is called relaxing the system.

This method of calculating defect structures has the advantage of being quick, but

the energy minima found are local rather than global minima. Therefore, to find

the most stable structure for any defect, several starting configurations are generally

required. This is especially true for interstitial-type defects where a number of meta-

stable structures may be found for a given defect - structures which are not the most

energetically favourable but from which an energy barrier must be overcome to

approach the more stable structures.

3.3.1.1 Symmetry Breaking and the Jahn-Teller Effect

Due to the use of the irreducible set of k-points discussed previously in Section 3.1.1.3,

calculations on high-symmetry systems will require less computational effort than

those on low-symmetry systems. It is also the case that systems in nature often

tend to high symmetry arrangements, due to forces along the symmetry arrange-

ments cancelling and resulting in such structures being either maxima or minima of

the total energy. It can therefore be quite appealing to perform calculations in high

symmetry systems. This, however, can often lead to erroneous results for reasons

which will be discussed.
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The first reason is a computational effect. Calculations performed on high symmetry

systems cannot under DFT break this initial symmetry. This artificial constraint on

the system can result in calculations finding unstable equilibrium structures. Such

calculations are termed symmetry constrained and can be useful in some circum-

stances. They will be used in Section 5.3.

The second reason is a physical one, the Jahn-Teller effect. This occurs in systems

where the symmetry has led to a number of degenerate energy states which are

only partially occupied. In this case, breaking the symmetry of the system can

result in the degeneracy being lifted as some of the states are pushed up in energy

and others are lowered. As the electrons will naturally occupy the lower energy

states, the reduction in electronic energy of the system resulting from the symmetry

breaking may overcome any increase in energy from distorting the nuclei from their

high-symmetry configuration resulting in the lower symmetry system being more

stable.

Therefore, it is important to break the symmetry of any system either before per-

forming any relaxations or after an initial relaxation to take advantage of the reduc-

tion in computational effort. This is most simply done by applying a small random

displacement to a number of atoms in the system, typically those close to the defect

being studied. In the proceeding Chapters this will be done for all relaxations not

specified as being symmetry constrained.

3.3.2 Formation Energies

When studying defects, the concentration of the defects is one observable which can

be measured in experiments. The concentration is dependent on a number of exper-

imental parameters, such as the concentration of impurity atoms or temperature,

for example, but is also determined by the defect’s formation energy, which can be

calculated. The formation energy of a defect can also be determined by experiment

from an Arrhenius plot of the measured concentration as a function of temperature.
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The equilibrium concentration of a defect is related to its formation energy as

CD ∝ e(−Ef (D)/kBT), (3.14)

where CD is the concentration of defect D, kB and T have their usual meanings and

Ef(D) is the formation energy of the defect, defined as the energy required to form

the defect from a source of suitable atoms. The nature of the source can vary with

the defect or process being investigated and will be discussed shortly.

In the neutral charge state, the formation energy is calculated as

Ef (D
0) = E(D0) −

∑

i

niµi (3.15)

where E(D0) is the total energy of a system containing the neutral defect, the sum is

over all atomic species, ni is the number of atoms of species i in the system and µi is

the chemical potential of the species. The parameter µi is defined as the derivative

of the Gibbs free energy G with respect to ni at constant pressure and temperature

[122, 123]. G is defined as

G = E + pV − TS (3.16)

where p and V are the pressure and volume of the system, T and S are the temper-

ature and entropy and E is the total energy as mentioned above. The derivatives of

the last two terms are negligible in most solid-state calculations, and so the chemical

potential becomes

µi =
∂E

∂ni
(3.17)

which in turn leads to

E =
∑

i

niµi (3.18)

for a system consisting of the source of the atomic species i. A suitable source for

each species will depend on the nature of the process being studied, but for the work

performed in this thesis, the source of atomic host atoms (Si or Ge) is taken to be

a supercell of undistorted crystal, while dopant atoms are considered to be sourced

as isolated, singly charged substitutional atoms already within the host crystal (B−

or P,As+).
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This requires, then, an additional consideration for charged systems. An extra term

is needed in Equation 3.15 to take into account the electron chemical potential:

Ef (D
q) = E(Dq) −

∑

i

niµi + q (Ev + µe) (3.19)

where q is the charge on the system, Ev is the energy of the valence band top and µe

is the Fermi level measured from the top of the valence band. The term (Ev + µe)

is then the calculated energy of the Fermi level, or the electron chemical potential.

It should also be noted here that these equations hold true only for systems where

different atoms of the same species can be considered equivalent. This is not the

case for cluster calculations where host crystal atoms at different distances from

the centre of the cluster will have different energies. Therefore, it is not possible to

calculate formation energies in clusters, and energy comparison can be performed

only between clusters containing the same number of atom in different arrangements.

3.3.3 Binding Energies

The binding energy of a defect AB with respect to its component defects A and B

can be calculated from their respective formation energies as

Eb(AB
qAB) = [Ef(A

qA) + Ef (B
qB)] − Ef (AB

qAB) (3.20)

where qAB = qA +qB. The binding energy is therefore defined as the energy required

to separate the defects A and B. If the result is positive, the defect is bound against

dissociation, at least in the charge states investigated.

Of note is that, in this form, the binding energy does not depend on the chemical

potential of any impurity atoms involved in the reaction, or the electron chemical

potential as these cancel out between the terms on the right hand side. So, for

supercell calculations the binding energy becomes

Eb(AB
qAB) = [E(AqA) + E(BqB) − nhµh] −E(ABqAB) (3.21)

where nH is the number of excess host atoms in the two supercells containing the

defects A and B compared with the single supercell containing AB and µH is the

chemical potential of the host species.
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The binding energy of a defect can also be calculated in either supercells or clusters

containing the defects A and B separated within the same system. In this case, the

equation becomes

Eb(AB
qAB) = E(AqA +BqB) −E(ABqAB) (3.22)

where E(A + B) is the total energy of the system containing the two separated

component defects. In this case, both the total energies must be calculated in

systems containing the same number of each atomic species, and the charge states

qA and qB cannot be controlled. Still, in many systems it is possible to predict with

confidence the charge states of the component defects from the total charge on the

system.

3.3.4 Energy Levels

The energy levels of a defect are defined as the position of the Fermi level within the

band gap where the defect switches from a charge of q to q−1 with increasing Fermi

energy. Typically, the levels are written as E(0/+), E(−/0), E(= /−) and so forth.

Two methods are commonly used to calculate the energy levels - the formation

energy method and the marker method.

3.3.4.1 Formation Energy Method

The charge-dependent formation energy of a defect, as calculated using Equation 3.19,

can be used to calculate energy levels. From the definition above, the energy levels

of a defect can be considered as the values of the Fermi energy where the most stable

charge state changes.

Figure 3.1 shows a schematic diagram of the formation energies of a defect with a

single acceptor and single donor level in the band gap. As the formation energy

has a linear relationship with the Fermi level, it is simple to find the Fermi level

position where the formation energies of two different charge states are equal. These

positions should then coincide with the energy levels of the defect.
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Figure 3.1: Schematic diagram depicting the formation energies Ef of three charge

states of a defect D as a function of the Fermi level µe. The energy levels defined as

shown are the value of the Fermi Energy where the most stable charge state changes.

For an Anderson negative-U defect [14], the relative position of two of the levels

are reversed, leading to a situation where, for example, the donor level is above the

acceptor level in the band gap, such that the neutral charge state is never the most

favourable and a (−/+) energy level can be observed in experiment.

This treatment can also be performed in a reversed order. If the formation energy

of one charge state of the defect is known, as well as the energy levels, for example

through marker method calculations, the formation energies of the other charged

defect can be calculated. This method is used to calculate the formation energy of

charged defects in Chapters 6 and 7

3.3.4.2 Marker Method

Another approach to the calculation of the energy levels of a defect is the marker

method. This method has a few variations, most notably the defect marker method

and first principles marker method. Both share the same basic principle, and differ

only in the reference level used to measure energies against [104, 113, 124].

The basic concept of the marker method is that the ionisation energy of the defect

being studied is compared with that of a system with known energy level. The
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Figure 3.2: Schematic diagram showing the energies involved in defect marker

method calculations. The ionisation energy is defined as the energy required to

remove an electron from the system, and given a static reference energy Eref , the

difference in ionisation energy should be the difference in energy level.

ionisation energy is calculated as Ei(X
(q−1)) = E(Xq) − E(Xq−1) for both the

defect D and the marker M and the difference in ionisation energies between the

two systems is taken to be equal to the difference in their energy levels. That is, if

it requires 0.1 eV more to remove an electron from the defect being studied than

from the marker, then the defect’s energy level is 0.1 eV below that of the marker.

This is shown graphically in Figure 3.2 and can be expressed as

ED ((q − 1)/q) = EM ((q − 1)/q) +
[

E(M q) − E(M q−1)
]

−
[

E(Dq) − E(Dq−1)
]

(3.23)

The two variants of the marker method are then different due to the choice of marker

system. In the first principles marker method, the marker system is taken to be an

undistorted crystal, with the single donor level being related to the top of the valence

band and the single acceptor level being related to the conduction band minimum.

This has the advantage that the results are completely ab initio, with no empirical

data used, but it is not easy to justify applying this method to the second or third

acceptor or donor levels, and in order to reference the defect level to the other side

of the band gap, more common in experimental results, the experimental band gap

must be used, removing the ab initio ‘purity’ of this method.
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In the defect marker method, the reference level is taken as the electrical level of

an experimentally well characterised defect. Ideally, the defect has a spatial extent

and form that are similar to the defect being studied as well as having energy levels

close to those of the defect being studied [113].

The marker method has the advantage of being easy to apply to the cluster method-

ology as well as supercell calculations, allowing circumvention of the problems as-

sociated with charged supercells in germanium. It also cancels to first order any

systematic errors in the DFT implementation which are charge or structure depen-

dent. As such it is the method which has been used throughout the studies discussed

here, to avoid the use of the germanium supercell. A comparison of the two methods

is given in Section 7.3.

3.3.5 Diffusion Barriers

Diffusion barriers and paths have been calculated by the Nudged Elastic Band (NEB)

method. Broadly this method involves investigating a number of intermediate sys-

tems between an initial and final position, linked by virtual forces - the ‘elastic

bands’ of the name. It is an efficient algorithm which can be applied successfully to

large systems [125]. Two advances on the basic method are implemented in AIM-

Pro, which will be discussed here - the improved tangent method and the climbing

image method [126, 127].

3.3.5.1 Basic NEB

Before an NEB run can be started, the start and end points of a diffusion path

must be defined. These are usually relaxed defect structures found as described

in Section 3.3.1. From these configurations, a series of systems Ri, i = 0, ..., N is

constructed to form a description of the path taken by the diffusion. Typically, this

is done by linear interpolation between the initial and final configurations, though

in some calculations it is necessary to insert an intermediate structure to break the

symmetry of the path. In that case, the linear interpolation is performed between
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the start point and the mid point and between the mid point and the end point.

This set of systems is termed the chain and the systems are termed images.

The images are linked through spring forces between each atom and its equivalent in

adjacent images. The entire chain is then relaxed together with the initial and final

structures remaining as fixed end points. The simplest approach to the relaxation

is to minimise the function

S(R1, ...,RN−1) =

N−1
∑

i=1

E(Ri) +

N
∑

i=1

k

2
(Ri − Ri−1)

2, (3.24)

the sum of the energies of all the non-fixed images, including that due to the virtual

elastic bands. The major disadvantages of this simple approach are that the spring

forces tend to pull the path straight, cutting the corner of the true minimum energy

path, and to cause the images to cluster near the usually low-energy end points

leaving the saddle point region poorly described. These problems are solved by

‘nudging’ the images perpendicular to the local tangent of the path to encourage

relaxation with respect to the true force in that direction.

The tangent to the path is given by the tangent vector

ti =
Ri −Ri−1

|Ri −Ri−1|
+

Ri+1 − Ri

Ri+1 − Ri

, (3.25)

and the virtual spring forces are calculated by the three point method

Fi = k (|Ri+1 − Ri| − |Ri − Ri−1|) . (3.26)

3.3.5.2 Improved Tangent NEB

The calculation of the tangent by Equation 3.25 can be problematic, causing the

calculated path to be irregular and to fail to converge to the true lowest energy path

in certain instances. In systems where the energy changes rapidly along the path

but the force perpendicular to the force is weak, this becomes an important issue.

One solution to this is to use an improved estimation for the tangent, defined either

by the vector between the ith image and its neighbour with higher energy, or by a

weighted average of the vectors between the ith image and its neighbours when the
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ith image has the higher energy [127]:

ti =







t+
i if Ei+1 > Ei > Ei−1

t−i if Ei−1 > Ei > Ei+1

t+
i |Ei+1 − Ei| + t−i |Ei − Ei−1| if Ei > Ei+1, Ei−1

, (3.27)

where Ei = E(Ri), t+
i = (Ri+1 − Ri)/|(Ri+1 − Ri)| and t−i = (Ri − Ri−1)/|(Ri −

Ri−1)|. Provided that a sufficient number of images are used, this implementation

of NEB is more stable and converges more easily to the true lowest energy path.

3.3.5.3 Climbing-image NEB

This implementation is designed to allow for an accurate description of the saddle

point without requiring a large number of images to be used. It works by causing

one of the images to climb along the path direction to reach the saddle point.

Starting with the regular NEB method, after a few iterations, the image with the

highest energy is selected. In order to cause the image to climb to the saddle point,

the component of the force parallel to the path is reversed, driving the image up the

path while still using the perpendicular force to constrain the image to the saddle

point.

The climbing-image NEB method is able to reach the saddle point within a small

number of iterations, even for small image sets and poor initial image choices. This

significantly reduces the computational effort that needs to be committed to study-

ing the diffusion path. In some situations, though it is more efficient to use the

improved tangent NEB with a sufficient number of images. Specifically, this is use-

ful where the saddle point is a high symmetry structure between the initial and final

positions.

3.4 Calculation Parameters

This Section describes the parameters used in the calculations comprising the re-

mainder of this thesis.
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3.4.0.4 Supercell and Cluster Structures

Supercell calculations were performed with cubic supercells containing 216 Ge or Si

atoms in the perfect case.

Clusters were used only for germanium-based calculations. Two clusters were used,

one containing 329 Ge and 172 H atoms and centred on a Ge atom (501 atom clus-

ters), and the second containing 376 Ge and 192 H atoms and centred on an H-site

of the crystal (568 atom clusters). As indicated, all the clusters are terminated with

hydrogen atoms. Most of the calculations are performed with relaxed Ge-H bond

lengths and with the hydrogen atoms and surface germanium held stationary during

relaxations. The effect of Ge-H bonds elongated to reproduce the experimental band

gap, and fully relaxed surfaces are investigated in Section 5.3. All the clusters are

calculated using the experimental value for the lattice constant 5.657 Å[128].

In all calculations not specified as ‘symmetry constrained’, the symmetry of the

system is broken by applying random displacements to the atoms surrounding the

defect prior to commencing relaxation.

3.4.0.5 Brillouin Zone Sampling

In the supercell calculations, the Brillouin Zone was sampled according to a Monkhorst-

Pack sampling scheme of eight k-points (MP-23).

3.4.0.6 Wavefunction Basis Sets

In all calculations, the Si and Ge atoms were modelled using contracted basis sets

containing (4,4,1) distinct exponents for the (s,p,d) orbitals, respectively and opti-

mised for the bulk crystal. The effect of using a larger basis set is discussed briefly

in Section 5.4, but very little difference was found, suggesting that the contracted

basis set used here is a good approximation to the uncontracted set.
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The terminating hydrogen was modelled using a contracted wave function basis set

of four s and one p orbital, optimised for isolated SiH4.

Dopant atoms (As, P, B) were modelled using uncontracted basis sets containing

four of each s, p and d orbitals and optimised for isolated atoms.

3.4.0.7 Charge Density Basis Sets

Charge density was modelled in all cases with atom-centred basis sets using five d

and one s-type orbital for all species apart from terminating hydrogen, where basis

sets of five s-type orbitals were used.

3.4.0.8 Pseudopotentials

All atoms were modelled using the pseudopotentials of Hartwigsen, Goedecker and

Hutter [101].

3.4.0.9 Exchange Correlation Energy

The AIMPro default settings were used for the exchange correlation energy. In

supercell calculations, the functional of Perdew and Wang (PW92) [92] was used

while for the cluster calculations a Padé parametrisation was employed [129].

3.5 Chapter Summary

In this Chapter, the theoretical method used in the studies described in this thesis

has been described and explained. The details of the AIMPro implementation of

density functional theory in both the supercell and cluster methodologies were dis-

cussed, followed by a comparison of results calculated on the vacancy and divacancy

in silicon. It was seen that a 216 atom supercell gave results converged with super-
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cell size for nearly all values calculated, while for cluster calculations, a cluster with

181 or 329 Si atoms was required depending on the calculation being performed.

A discussion followed on the relative strengths of the supercell and cluster method-

ologies for calculations in silicon and germanium. It was explained why supercell

calculations are believed to be more reliable for silicon while for germanium-based

calculations, the cluster methodology was preferred.

The second half of the Chapter presented a description of the methods used to

calculate defect structures and the experimentally observable properties as well as

a discussion of the calculation parameters to be used in later chapters.



Chapter 4

Experimental Methods

4.1 Introduction

Much of the work presented in this thesis concerns the use of atomistic theoretical

modelling methods to provide explanations of experimental results on the proper-

ties of lattice defects in silicon and germanium. It is in this way that theory and

experiment complement one another with each asking questions that can be best

answered by the other.

This chapter will contain a discussion of the experimental methods relevant to the

rest of the thesis, followed in each case by an example of a specific study performed

using that method to illustrate how it may be used to further our understanding of

solid state physics. The aim of this Chapter is to provide a suitable background to

the discussion of experimental results in later Chapters.

4.2 Deep Level Transient Spectroscopy

Deep Level Transient Spectroscopy (DLTS) is a powerful tool to study defect related

electrical levels deep within the band gap of a semiconductor. It was originally

introduced by Lang [130], and has been used to study the E-centre [19, 131] and
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divacancy in germanium [30], as well as the E-centre and oxygen related defects in

silicon [132, 133], to give a very few examples. Some good reviews can be found in the

literature [134, 135]. In addition to the basic technique, a number of modifications

have been developed, including optical DLTS [136] and Laplace DLTS [137], but

these will not be discussed in this section.

4.2.1 Deep Levels

Defects in semiconductors often introduce deep levels into the electron energy gap.

These levels are defined as being located at the level of the Fermi Energy (EF ) at

which the stable charge state of the defect changes. Energy levels located far from

the band edges are referred to as deep levels, and due to the strong binding energies

of electrons or holes, they are strongly localised on the trapping defects. This spatial

localisation results in a high level of delocalisation in k-space, allowing the carriers

to interact with many phonons, and therefore the defects can act as non-radiative

recombination centres.

The capture rates of free electrons and holes by lattice defects are given by

cn = σn〈vn〉n (4.1)

cp = σp〈vp〉p (4.2)

where σn,p are the capture cross sections for the carriers n, p are the free electron

and hole concentrations, and 〈vn,p〉 are the thermal velocities of the electrons and

holes, respectively. These thermal velocities are given by

3

2
kBT =

1

2
m∗

n,p〈v2
n,p〉 (4.3)

where

√

〈v2
n,p〉 = 〈vn,p〉, (4.4)
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m∗
n,p is the effective mass of an electron or hole respectively, and kB and T have

their usual meanings.

Electron and hole emission rates for the traps are calculated using a Boltzmann

distribution of the form

en,p = An,p exp

(

−∆En,p

kT

)

(4.5)

where ∆En,p is the Gibbs free energy for the process of emission of an electron or

hole respectively. The pre-factor An,p is given by

An,p =
σn,p〈vn,p〉Nc,v

g
(4.6)

where Nc,v is the effective density of states of the conduction and valence bands,

respectively, and g is the degeneracy of the defect level. ∆En,p can be expanded

into

∆En,p = ∆Hn,p − T∆Sn,p (4.7)

where ∆Hn,p is the enthalpy change for the emission, and ∆Sn,p is the entropy

change. Combining Equations 4.6 and 4.7 with 4.5 gives

en,p =
σn,p〈vn,p〉Nc,v

g
exp

∆Sn,p

k
exp−∆Hn,p

kT
(4.8)

From Equations 4.3 and 4.4, 〈v〉 can be be seen to be proportional to T 1/2, and N

is known to be proportional to T 3/2 for a 3D system. Therefore an Arrhenius plot

of the emission rates of ln e/T 2 vs 1/T should be linear, and will yield the enthalpy

of emission from the gradient and the capture cross section of the defect from the

intercept.
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Figure 4.1: Diagram showing the band-bending present at a p+n junction containing

a defect with a single acceptor level just below the n-type Fermi level. Also shown

is the built in voltage of the junction, Vbi

4.2.2 The Junction

DLTS experiments use the inherent properties of the space charge region of a p-n

junction or Shottky diode to study the emission rates of any defects present within

the region. Band bending at the interface between the regions in such a structure

ionises the defects in the region as the Fermi level is effectively shifted across the

band-gap, as illustrated in Figure 4.1. An electric field is also present across the

interface. This is important to remove emitted charge carriers before they can be

recaptured by the defects in the studied region.

The width of the space charge region can be varied using an externally applied

voltage V , and is given by

W =

√

2ε(Vbi + V )

qN
(4.9)

where Vbi is the built in voltage of the junction as shown in Figure 4.1, ε is the

permittivity of the semiconductor, q is the carrier charge and N is the density of

ionised defects in the region. The capacitance of the region is given by
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C =
εA

W
= A

√

qNε

2(Vbi + V )
(4.10)

4.2.3 Capture and Emission

To study the emission rates of defects within the space charge region of the junction,

a voltage pulse is applied to ionise the defects as shown in Figure 4.2. A reverse bias

(V0) is initially applied across the junction, and a filling pulse for majority carriers

is applied by removing this reverse bias temporarily, decreasing the size of the space

charge region. The applied voltage remains at zero for a time long enough to fill

all the traps in the space charge region, after which it is returned to V0 and the

evolution of the capacitance is measured as the traps emit carriers and return to

their equilibrium state. For minority carrier filling, the magnitude of the reverse

bias would be increased above V0 during the filling pulse.

From equations 4.9 and 4.10, it can be seen that the capacitance of the space charge

region depends on the density of carrier traps such that

C(t) = C0

√

N(t)

N0

(4.11)

where C0 and N0 are the equilibrium values of the capacitance and number of traps

for V = V0. N will tend to N0 in this regime via an exponential decay of the

transient, given by

N(t) = N0 −Nte
−ent (4.12)

for emission of electrons as majority carriers, where Nt is the number of traps under

examination, and therefore Nte
−ent is the number of ionised traps at time t. If

the emission is of minority carriers, the sign of the second term changes, and for

hole emission, the electron emission rate would be replaced. In most studies, where

N0 � Nt, Equation 4.11 becomes
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Figure 4.2: Schematic diagram illustrating the filling pulse as used in majority carrier

DLTS on a p+n junction containing a defect with a single acceptor level, such as

that shown in Figure 4.1. a) The initial situation, with a steady reverse bias V0, and

space charge region width W0. b) The filling pulse during which the applied voltage

is turned off, the space charge region is reduced and the defect acceptor levels are

filled. c) With the reverse bias voltage restored, charged defects in the depletion

region thermally emit electrons back into the conduction band where the inbuilt

electric field sweeps them away from the junction. Note that for the sake of clarity,

the band bending discussed previously is not included on this diagram.

C(t) = C0

(

1 − Nt

2N0
e−ent

)

(4.13)

and the fractional change in capacitance is

∆C

C0

= − Nt

2N0

e−ent (4.14)

As noted above, where the method is used to study minority carrier emission, the

capacitance change becomes positive but the equations and arguments presented

here otherwise apply.

To measure en,p versus temperature, a sequence of filling pulses is applied to the

junction at different temperatures. A common measurement technique is the double

box-car method [130, 138]. In this method two measurement times, t1 and t2 are
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Figure 4.3: Diagram displaying the stages in a double box-car measurement under

DLTS. The diagrams on the left show the evolution of capacitance with time for

minority carrier emission at a variety of temperatures, increasing from bottom to

top, and also indicating the two measurement times, t1 and t2. The diagram on the

right shows how C(t1)−C(t2) varies with temperature for fixed measurement times.

chosen, and C(t1) − C(t2) is measured for varying values of T . This method is

depicted in Figure 4.3.

The emission rates en,p can be measured from these results by noting the existence of

the maximum in capacitance change for a certain temperature. From Equation 4.13,

we can see that

C(t1) − C(t2) =
C0Nt

2N0

(

e−ent2 − e−ent1
)

(4.15)

and that a maximum occurs when
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0 =
d (C(t1) − C(t2))

dT
(4.16)

0 =
CoNt

2No

(

−t2e−ent2 + t1e
−ent1

) den

dT
(4.17)

0 = −t2e−ent2 + t1e
−ent1 (4.18)

en(Tmax) =
1

t2 − t1
ln
t2
t1

(4.19)

By altering t1 and t2, the value of en for which the maximum of C(t1)−C(t2) occurs

can be changed, and hence the temperature at which this maximum is observed.

By calculating the emission rate for a number of temperatures, and plotting ln e/T 2

vs 1/T , the enthalpy of emission and the capture cross section of the defect can be

calculated, as explained above in Section 4.2.1.

4.2.4 Vacancy Clusters Observed in Electron-Irradiated Sil-

icon

Bleka et al published work in 2007 using DLTS to study irradiation damage caused

by electron irradiation of silicon [139]. The group studied two materials - magnetic

Czochralski (MCz) and standard-float-zone (SFZ) wafers, with phosphorus doping.

Carbon and oxygen concentrations were measured using secondary ion mass spec-

troscopy (see Section 4.4) to be 0.5-1×1018 cm−3 and ≤ 1016 cm−3 in the MCz and

< 5 × 1015 cm−3 and 2-4×1015 cm−3 in the SFZ samples respectively. The samples

were irradiated with 6-MeV electrons to a dose of 5×1012 cm−2 at room temperature,

and kept at room temperature for the duration of the investigation.

In both samples, peaks in the DLTS spectrum were detected at ∼80, 113, 163

and 198 K, with no significant difference in peak amplitude between the samples.

The difference in amplitude that was detected was constant across all peaks and

attributed to errors in electron dose. The first peak was attributed to the vacancy-

oxygen (VO) centre, and the second and fourth to the divacancy (V2) defect. The

third peak was not immediately identified with any defect. After 2036 hours at room
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temperature, the third peak was observed to have disappeared, the second V2 peak

had decreased and the VO peak had increased.

By subtracting the final value of ∆C
C0

after the 2036 h anneal from the values measured

after shorter anneal times for the unknown peak and the second V2 peak, it was

seen that the two peaks decreased at the same rate. This was taken to suggest that

the unknown defect possesses a trap level coinciding with the second V2 level.

The defect concentration giving rise to any given peak is calculated by using the

standard equation Nt = 2N0
∆C
C0

, and from this an annealing rate of 2.3 × 10−7 s−1

was calculated. Taking a typical annealing prefactor of 109 − 1013 s−1, an activation

energy of 0.9-1.2 eV for the annealing was estimated. Level transitions at 0.37 and

0.45 eV below the conduction band were deduced for the first and second levels of

the unknown defect respectively.

The unknown defect was first compared with the substitutional phosphorus-interstitial

carbon (PsCi) defect, known to have similar energy levels and be unstable at room

temperature [140]. This, however, was argued not to be the defect in question, as the

ratio of phosphorus to oxygen, the two competing traps for the carbon interstitial in

the samples, was very different between the two samples and yet the concentration

of the unknown defect was almost unchanged.

Comparison was then made with another study on 7-MeV proton-irradiated silicon,

in which the first level of the unknown defect is observed with a significantly higher

trap concentration [37]. This difference was taken to indicate that the level was

related to a higher-order defect centre. The difference in position of the two levels

is also taken to support this view. As the two levels of the unknown defect are

closer together than those of the divacancy, this suggested that the dangling bonds

on which these levels are localised are more distant than in the divacancy, reducing

the coulomb repulsion between them, and hence the energy difference between the

levels. Thus it was suggested that the defect was an intrinsic defect cluster larger

than the divacancy.
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The increase in concentration of VO as the unknown defect annealed was the final

piece of evidence presented to identify the defect as being vacancy related. Therefore

the paper concluded that they had detected a vacancy-related defect larger than V2

which is unstable at room temperature.

4.3 Positron Annihilation Spectroscopy

Positron annihilation spectroscopy (PAS) is a technique used to study vacancy-

type defects in semiconductors and metals. The basic principle of the technique

is that the annihilation of externally injected positrons (e+) with electrons in the

crystal structure is quantitatively studied, and that this data is examined to give

information on the environment of the electrons. Information can be gathered on the

size of vacancy clusters present and their neighbouring atoms and also on amorphised

regions. It has been used for example, to study vacancy growth in silicon [141] and

germanium [142] and fluorine-vacancy clusters in silicon [143, 144]. This section will

provide a relatively brief explanation of the method and the information which can

be gathered from it. For a more in-depth discussion, see for example, references

[145, 146] and references therein.

4.3.1 Experimental Set-Up

Conventionally, artificial radioisotope β+ emitters are used as the source for PAS

studies. 22Na is particularly favoured as it emits a photon of γ radiation at the

same time as the positron, allowing for measurement of the positron lifetime. Mean

penetration depths from such a source typically range from 10-100 µm, and the

annihilations will probe a volume of the target material around this depth. Vari-

able energy positron beams (0.1-1MeV) can also be used as positron sources, with

pulses of at most ∼100 ps duration required for lifetime measurements. Photon

detectors (often BaF2 or plastic scintillators) are used to collect both the source and

annihilation photons.
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Upon entering the sample, the positrons thermalise, dropping in energy to a few tens

of meV, well below the kinetic energies of the electrons with which they annihilate.

This occurs through ionisation, electron-hole excitation and finally phonon scatter-

ing as the positron drops in energy. This process occurs within a few picoseconds,

much shorter than the positron lifetimes of 0.1-1 ns.

4.3.2 Annihilation

The primary mechanism for positron-electron annihilation is two-photon annihila-

tion, resulting in the emission of two 511 keV photons. In positron-electron centre of

mass reference frame, these photons will be emitted in precisely opposite directions,

while in the laboratory reference frame, there can be a small perturbation to both

the angle and energy of the photons due to the momentum of the electron. The

other quantity of note in the annihilation is the positron lifetime τ or annihilation

rate λ = τ−1. These three quantities can be calculated from atomistic variables as

follows:

∆E ∼ cp//

2
(4.20)

∆θ ∼ p⊥
m0c

(4.21)

λ ∼ πr2
cne (4.22)

where p//,⊥ are the components of electron momentum parallel and perpendicular

to the photon emission direction respectively, m0 is the electron rest mass, rc is the

classical electron radius and ne is the effective electron density as experienced by

the positron, or more accurately, the overlap integral of the electron and positron

probability densities.

Via ne, the positron lifetime is sensitive to open volumes within the target material.

As positrons are repelled by the ion cores in condensed matter, thermalised positrons

can become trapped at open volume defects with a rate
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κ = νct (4.23)

where ct is the defect concentration experienced by the positrons, and ν is a trapping

constant. Due to the reduction in electron density within the open-space regions,

the average lifetime for positrons trapped in these defects increases, and the life-

time profile for a PAS study will contain contributions from different annihilation

environments with differing τ .

N(t) =

n
∑

i=1

Iiλi exp (−λit) (4.24)

where Ii is a positron fraction which can be extracted along with λi for each envi-

ronment by computer models. Each type of defect, and the bulk material itself will

exhibit a different value of λi, and each defect will also possess a different trapping

constant ν, and therefore Ii.

Doppler broadening of the photon energy due to electron momentum can give in-

formation on the annihilation environment. The spectrum is conventionally char-

acterised by the parameters S and W, S being the fractional area of the central

part of the count distribution, while W provides the same measure for the tails.

The S parameter will therefore increase when more positrons are annihilating with

low-momentum electrons, and the W parameter when interaction with high mo-

mentum electrons increases. These parameters can change if, for example, more

positrons become trapped at open volume defects, or if the atoms surrounding va-

cancies changes, such as during defect annealing. Angular correlation measurements

reveal similar information as Doppler broadening measurements, as explained above.

Typically, angular correlation measurements are taken with detectors several metres

from the sample, improving angular, and hence momentum resolution at the expense

of detector efficiency, as only a small solid angle around the sample is monitored.

Combining Doppler broadening and positron lifetime measurements is also possible,

using one photon to signal the end of a positron lifetime count and the other in the

Doppler measurement.
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4.3.3 Vacancy Clustering in ZnO

A study published in 2008 by Børseth et al in 2008 used PAS among other tech-

niques to study defect evolution after nitrogen implantation into ZnO samples [147].

Nitrogen was implanted into the ZnO samples at room temperature with doses of 1.2

or 2.4×1015 cm−2 and energy of 220 keV resulting in a projected range of ∼ 330 nm.

Measurements were taken on the samples immediately post implantation and after

annealing stages at 600, 800 and 1000◦C. PAS was used to study the evolution of

defects containing zinc vacancies (VZn) over the annealing processes. Oxygen vacan-

cies (VO) were not expected to be detectable in this study due to being positively

charged defects and hence not trapping positrons.

The post-implant PAS measurements on the samples shown in Figure 4.4 displayed

an S component significantly above that observed for the single VZn, suggesting the

presence of clusters of these vacancies, (VZn)n. This S value was also seen to be dose

dependent, which provided further evidence that it was due to these clusters, not

saturation trapping at VZn defects, as saturation trapping would not display dose

dependence.

After the 600◦C anneal, the S parameter was found to have risen further suggesting

the formation of larger clusters, termed (VZn)N , N > n. The 800◦C anneal caused

the S parameter to drop substantially indicating that either all the vacancy clusters

were removed by this anneal, or that the positrons were being trapped at other

defects with a lower characteristic S parameter. After the 1000◦C anneal, the S

parameter was seen to have risen to close to the as-implanted level attributed to

(VZn)n.

A substantial increase in electron concentration in the sample was also observed after

the 1000◦C anneal, attributed to the annealing of acceptor defects. To investigate

whether these two changes were related, a second PAS measurement was taken on the

800◦C annealed samples. During the second measurement, the temperature of the

sample was raised to 500K in order that the positrons should gain sufficient thermal

energy to escape from any acceptor defects and be trapped by VZn. An increase in S
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Figure 4.4: Image from Ref [147]. Doppler spectroscopy data for N implanted ZnO

samples. The dashed line indicates the S parameter for VZn and [N]MAX indicates

the position of peak N concentration. Sample A and B have implanted doses of

1.2 and 2.4×1015 N cm−2 respectively. Results for a virgin sample are included for

reference.

parameter was observed, in accordance with the hypothesis that the positrons were

being preferentially trapped at acceptor sites in the initial measurements.

The evolution of VZn related defects in N implanted n-type ZnO thus seems to follow

the following pattern. After implantation, small clusters of VZn are observed to form.

On annealing at 600◦C, some of these clusters evolve to form larger clusters which

then anneal out during the 800 or 1000◦C annealing stages, while the smaller clusters

survive the annealing and are still present after the highest temperature anneal.

Further, the PAS data suggests the presence of acceptor defects after the 800◦C

anneal with a lower S parameter than the vacancy clusters which then disappear

during the 1000◦C anneal.

4.4 Secondary Ion Mass Spectroscopy

Secondary ion mass spectroscopy (SIMS) is a technique used to measure depth

profiles of concentration of different species in a sample. Good descriptions of the
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method can be found in the literature [148, 149], and the method has been used to

study impurities in both silicon [150, 151] and germanium [152, 153], and has even

been used to study vacancy cluster concentrations in germanium through marking

with impurity atoms [141].

4.4.1 Basic Principles

SIMS measurements are performed by firing a primary ion beam with energies of

∼1-20 keV at the sample of interest. These ions can produce secondary ions from

the sample, which are gathered and passed to a mass spectrometer to record their

mass-charge ratio. As the primary ion beam gradually erodes the sample surface,

the evolution of the signal from the mass spectrometer with time can be used to

produce a depth profile of the concentration of the atomic species present.

To ensure the surface erosion is constant, the primary ion beam is usually rastered

over an area of the sample, and in order to avoid gathering secondary ions originating

in the walls of the etching pit, either physical or electrical gating is used. These

methods involve either using an experimental setup which does not collect secondary

ions from regions near the pit’s edge, or one which does not count events measured

while the beam is passing over these edge regions.

To convert the measurements of count rate for a given species into a depth profile for

that species, a reference sample must be used. This allows the determination of the

fraction of atoms in the eroded volume which are sputtered as ions and collected by

the detection apparatus. Once the initial surface has been eroded (once the depth

exceeds ∼10 nm), the rate of erosion of the sample becomes fairly constant, and so

the evolution of the measured signal with time can then be converted directly to a

comparison of signal with depth.
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4.4.2 Primary Ion-Sample Interactions

The processes by which the sputtering occurs within SIMS are complicated to un-

derstand in detail, involving linear cascade theory [154]. The primary ion undergoes

a series of binary collisions with atoms in the sample, and imparts sufficient energy

to many of those atoms that they in turn undergo further collisions, resulting in a

cascade of displacements. If a cascade path intersects the surface, and the ejecting

particle, be it a single atom or a group, has sufficient energy to overcome surface

binding, it will be sputtered from the sample. These particles usually originate

within 2-3 atomic layers from the surface, and leave the surface with energies of a

few eV.

The processes resulting in the ionisation of ejected particles are more complicated

still, but in terms of general trends, electronegative atoms near the sample surface

tend to lead to positively charged ions while electropositive atoms cause the ejec-

tion of negatively charged ions. It is for this reason that oxygen and caesium are

often used as primary ions due to their strong electronegativity and electropositivity

respectively.

During the process of sputtering, changes will occur in the sample structure which

need to be taken account of to some extent when considering the results. The

first is that the structure of the sample will be disturbed by the addition of the

primary ions, which remain in the material. These primary ions serve to ionise the

ejected particles as described above, but may have other effects. The second, more

important effect is that of broadening. As the cascade processes occur, they force

many atoms further into the sample, increasing the depth at which the species are

found. This effect is highly sensitive to channelling effects, whereby a displaced

atom can travel large distances along open channels in the bulk crystal. To reduce

the magnitude of the broadening, the energy of the incident ions can be reduced,

and the incident beam angle relative to the surface normal can be increased.
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4.4.3 Nitrogen Incorporation in GaNAs

SIMS has been used in a study published by Zhao et al in 2006 [155] into the

incorporation of nitrogen into GaAs grown by molecular beam epitaxy at varying

rates to form GaNyAs1−y quantum wells. The devices are designed to act as quantum

well lasers, and the effect of the N is to decrease the band gap of the GaAs, confining

carriers to the nitrogen-containing layer and allowing for carrier injection to lead to

population inversion in the wells. The samples studied consisted of 500 nm GaAs

buffer layers with 18 nm of GaNAs and a capping layer of a further 90 nm of GaAs

grown upon them. The GaNAs layers were grown at rates ranging from 1 down to

0.125 µmh−1. SIMS measurements were taken of the samples both before and after

a 30s 700◦C rapid thermal annealing stage, as were high resolution x-ray diffraction

(XRD) measurements, a technique which can be used to measure the amount of

substitutional N in the crystal.

The results indicated a marked increase in nitrogen incorporation in the crystal with

decreased growth rate. However for the lowest growth rates, undesirable relaxations

occurred in the mis-matched GaNAs region. Also, while the concentration of sub-

stitutional nitrogen measured by XRD increased with decreasing growth rate, the

total nitrogen concentration, measured with SIMS increased much faster, leading to

a shift from primarily substitutional to primarily interstitial nitrogen as the growth

rate decreased. The rapid thermal annealing step did not change the amount of

interstitial or substitutional nitrogen in the samples, but it did increase the photo-

luminescence intensity and cause a blue-shift in the emitted light. Overall, it was

seen that a moderate decrease in growth rate led to a desirable decrease in band

gap of the GaNAs layer, but that larger decreases in growth rate led to relaxations

in the GaNAs layer which dramatically lower the quantum efficiency of the device

by providing centres for non-radiative recombination.
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4.5 Spreading Resistance Profiling

Spreading resistance profiling (SRP) is a technique used to produce a depth profile

of resistivity, and thence carrier concentration and active dopant concentration in

semiconductors. The physics of the technique is discussed elsewhere [156] and there

has been extensive work performed to establish reproducibility and reliability of the

technique [157, 158]. There are also variations of the work including one which can

measure two dimensional dopant profiles [159], though this is beyond the scope of

this section.

Typically, SRP measurements are carried out using a small point contact and a large

current return contact. A bevelled surface is cut into the sample usually at an angle

of ∼ 5 − 10◦ from the ‘natural’ surface in order to magnify the depth profile of the

sample. For a flat circular probe of diameter a, the majority of the potential drop

occurs within a distance of 3a of the probe, and thus a measure of the voltage drop

between the probe and the current return contact gives a measure of the resistivity

of the volume of sample near the probe. Calibration is achieved by comparing the

results with those measured on controlled samples of known dopant concentration.

4.5.1 Evolution of Boron Interstitial Clusters in Silicon

SRP has been used to study boron interstitial clusters (BICs) in silicon and their

evolution with annealing for increasing times [160]. Boron doping was grown into

silicon samples by molecular beam epitaxy, with a deeply buried δ-doped layer and

a surface region with uniform doping. The samples were implanted with 60 keV Si

ions to create implantation damage in the broad region, but not in the deeply buried

δ-doped layer which acted as a reference.

After annealing, SIMS measurements revealed an enhanced diffusion of the broad

B layer, due to transient enhanced diffusion effects caused by the interstitial super-

saturation. An immobile peak was also observed in the sample with the highest

level of Si implantation, attributed to BICs. SRP measurements of carrier density
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in the samples were performed, and showed a strong deactivation of boron in the

implanted regions in accordance with the formation of BICs. With longer annealing

times, the concentration of B within the clusters remained almost constant for up to

fifteen minutes for all implantation doses, and the BICs dissolved as the annealing

time increased further. This was attributed to an Oswald ripening process acting on

the defects for short annealing times until the interstitial supersaturation dropped

below a level able to sustain the BICs.

4.6 Transmission Electron Microscopy

Transmission electron microscopy (TEM) is a technique analogous to traditional

optical microscopy. Using electrons in place of photons to probe the sample allows

for a much higher resolution due to a decrease in wavelength. A 10 keV electron

has a wavelength, calculated using the relation pc =
√
E2 + 2Em0c2 = hc/λ, of

0.12 Å, around five orders of magnitude smaller than that for visible light. This

translates directly to an improvement of around five orders of magnitude in maxi-

mum resolution [161]. A more in-depth discussion of the technique can be found,

for example, in reference [162]. This technique has been used for example, to study

fluorine-vacancy complexes [144, 163], and vacancy clusters [141] in silicon.

4.6.1 Controlling the Electron Beam

The electron beam in an electron microscope is created in a vacuum of < 10−4 mbar

with an energy of usually ten to a hundred keV. Magnetic lensing of the electrons is

used to focus the beam, with simple microscopes having two lenses in an equivalent

set-up to an optical microscope, but with magnifications of 10,000 achievable. As

the shape of the lenses are constrained by Maxwell’s equations, it is not possible

to shape a simple lens so as to avoid spherical aberration, which becomes the most

important factor in limiting the resolution of the microscope.
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The problem of spherical aberration was addressed by Scherzer and later Feynman

[164], who realised that magnetic octupole and quadropole lenses could be used to

correct the focus of the beam. Two correcting lenses are required, each consisting

of a quadropole proceeded by an octopole lens, to correct for spherical aberration

in the two directions perpendicular to the beam.

4.6.2 Sample Restrictions

Samples to be studied using TEM have to conform to two main conditions for the

technique to be useful. Firstly, the samples must be penetrable by the electrons,

which in general implies a maximum thickness of around 100 nm. The sample must

therefore be able to withstand the preparatory techniques used, typically ion-beam

milling or chemical etching, to produce a smooth surface at this thickness. Ion-

beam milled samples are especially prone to structural defects caused by the ions

imparting significant energies to atoms in the sample.

The second condition is that the structures being observed by the technique must be

able to withstand bombardment by the 10-100 keV electrons used in the beam, and

the sample must not be susceptible to damage which would obscure the structures

being studied.

To form an image, it is possible to use either the transmitted or diffracted electron

beam. The former is formed from those electrons which have not interacted signifi-

cantly with the sample, with the material of the sample appearing as dark areas in

the image, and the latter from those which have interacted strongly and have been

deflected from their initial trajectories. For crystalline materials, the transmission

or diffraction properties of the sample depend strongly on the Bragg condition, and

so the sample is often mounted on a rotating table. The diffracted beam image

is often used because the electrons which form it have directly interacted with the

sample, and low-contrast details are more clearly observable.
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4.6.3 Real-Time Imaging of Gold Nanowire Evolution

TEM has been used to study, in real time, the evolution of nanoscale gaps in gold

nanowires under feedback controlled electromigration [165]. The gold layer was

grown on Si3N4 membranes upon silicon wafers. Photo- and electron-beam lithogra-

phy was used with thermal evaporation to shape the samples into wires with 50nm

wide, ∼100-150 nm long constrictions. These constrictions were observed under

TEM as currents were passed across them.

The current used was feedback-controlled, with the voltage applied being varied

with the conductance of the sample, to avoid thermal runaway leading to thermal

evaporation of the gold at the point of narrowing. The TEM was performed using

the transmitted beam, and was used to observe the shape of the gold layer and the

narrowing of the layer as the experiment progressed.

In the first experiment, current was passed across the constricted region until the

wire was broken by narrowing. With the feedback mechanism keeping the potential

difference across the constricted region at the critical level for electromigration, the

sample exhibited faceting at a ∼15 nm narrowed region, at the upstream edge of the

etched constriction. To explain this faceting, an ’unzipping’ model was proposed,

where the crystal erodes one atomic layer at a time. In this model, the erosion would

begin with a single surface atom being thermally excited to an adatom position. This

atom would then be blown across the surface in the direction of current flow by an

electron wind force, leaving a vacant site in its place. This vacant site would migrate

in the opposite direction until it reached the edge of the faceted region, and would

also act as a source for excitation of further adatoms from the same layer, as the

atoms adjacent to the vacant site have a reduced number of nearest neighbours, and

hence a reduced binding energy.

To rule out the possibility of thermal migration or sublimation of the gold atoms,

a second experiment was performed to study the asymmetry of the narrowing, de-

scribed in Figure 4.5. Current was passed in one direction across the constriction,

and a faceted narrowing was observed at the upstream side of the region as before,
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Figure 4.5: Figure from Ref [165]. TEM images of the Au layer in the second

experiment described. The Au layer is the dark region, and arrows indicate the

direction of current flow in the sample. a) Initial structure of the sample. b) Current

is applied. c) A faceted void begins to grow into the Au layer. d) Reversal of the

current causes the void to refill. e) The void is now completely refilled. f) After

further time, a build-up of material is visible at the former location of the void, and

a void begins to grow on the opposite side of the constricted region.

while a build-up of material was observed at the downstream end. When the cur-

rent was reversed, the narrowing was then at the downstream end of the constricted

region and began to refill. Further migration resulted in a build up of material over

the site of the narrowing and the appearance of faceted narrowing at the other end

of the constriction. This result indicated that the mechanism for narrowing cannot

be thermal migration or sublimation, as neither of these processes are reversible or

dependent on current direction.
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4.7 Scanning Tunnelling Microscopy

Scanning tunnelling microscopy (STM) is a technique used to produce surface height

profiles at an atomic scale. If the sample is electrically conductive, a current can

be passed between a sharp-tipped probe, typically formed of platinum-rhodium or

tungsten, and the sample. As the current depends exponentially on the width of the

tunnelling barrier, a very accurate height profile can be attained. Spatial resolution

of ∼2 Å allows for truly atomic-scale study of the surface of a sample. For an

in-depth discussion of the technique see, for example reference [166] and references

therein.

4.7.1 Self Assembly of Ordered Bi Patterns on InAs

Growth of bismuth patterns on Bi-passivated InAs surfaces has been studied using

STM over the course of a number of annealing stages [167]. Bismuth was evaporated

onto the sample at a rate of approximately 0.5 monolayers/min and approximately

1.5 monolayers were deposited onto the substrate. The sample was then annealed at

250◦C for one and then twelve hours. Subsequent STM measurements revealed a set

of parallel lines in the [01̄1] direction which became more straight and uniform with

longer annealing. Annealing at higher temperatures caused the surface bismuth to

desorb, revealing the apparently unperturbed Bi-passivated InAs surface.

More detailed examination of the STM data yielded a periodicity along the lines

of ∼8.6 Å, double the a0 of the underlying lattice. The measurements along the

lines also revealed a double-peak structure, with the two peaks separated by ∼3 Å,

the bond length of a Bi dimer. Perpendicular to the lines, a periodicity of 4.3 nm

was observed, and the full width at half maximum of the lines was measured to be

11 Å, which is slightly more than double that which has been reported for a single

Bi dimer. Therefore, the lines were modelled as consisting of chains of pairs of Bi

dimers, with the nano-line dimers lying parallel to the Bi dimers passivating the

substrate, as this gives the correct 2a0 periodicity along the chains.
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4.8 Summary

Various experimental techniques are applicable to studying defects in silicon and

germanium. In the context of theoretical research, the usefulness of experimental

techniques is to provide data with which theoretical models can be compared to gain

a judgement on the reliability of the methods or the predicted atomistic mechanisms

which may give rise to that data and also to test predictions made by the theory as

to expected experimental measurements.

In the remainder of this thesis, the various methods outlined here will be referred to

where appropriate. DLTS and SIMS measurements are often presented as these give

information on defect-related carrier traps and diffusion rates, which are the focus

of much of the proceeding work. PAS is also important in the study of vacancies

and vacancy-related defects, and so will be important in Chapter 5.



Chapter 5

Intrinsic Defects in Germanium

5.1 Introduction

Having established the theoretical and experimental background to the investiga-

tions which will be discussed in the remainder of this thesis, this Chapter commences

discussion of the original work that has been performed.

Intrinsic crystal defects are the most fundamental of all defects in semiconductors,

playing an important role in the formation of many other defect centres and large

complexes, as well as playing a strong role in dopant diffusion processes and often

being electrically active themselves.

This Chapter will describe theoretical work undertaken in the present investigations

to study the annealing behaviour of the divacancy and the electrical properties of

a range of vacancy clusters, and will discuss the current understanding of the self-

interstitial defect in germanium.
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5.2 Modelling Method

Calculations were performed using 216 atom supercells and 501 or 568 atom clusters,

as described in Section 3.4. The 568 atom clusters were used for the vacancy cluster

study (Section 5.4), while the rest of the work in this Chapter was performed within

501 atom clusters. In the divacancy annealing study (Section 5.3), three treatments

of the cluster surface were tested - one with relaxed surface Ge-H bonds, one with

Ge-H bonds strained to reproduce the experimental band gap, and one where the

entire surface was relaxed at the same time as the defect. The other studies used

relaxed Ge-H bond lengths but a fixed surface. All other calculation parameters

were as described in Section 3.4.

Formation energies for neutral defects were calculated using the method described

in Section 3.3.2, migration barriers using the NEB method in Section 3.3.5 and

electrical energy levels using the marker method as described in Section 3.3.4. The

acceptor levels of substitutional gold at Ev + 0.135 eV and Ec − 0.215 eV [168] and

the vacancy oxygen (VO) defect at Ev + 0.27 eV and Ec − 0.21 eV [169] were used

as markers for the vacancy clusters. Binding energies for the vacancy clusters were

calculated from formation energies only, while the divacancy binding energies were

calculated using both methods described in Section 3.3.3.

5.3 Divacancy Annealing

Vacancies (V) in germanium have been the focus of a variety of work over the past

few years. The low formation energy of vacancies, calculated to be 1.9 to 2.6 eV

[9, 170], compared with 3.5 eV for self interstitials [17], suggest they will play an

important role in germanium and they have been suggested as the primary mediating

species for self-diffusion [44], and diffusion of some impurities [171]. Single vacancies

have been the focus of a number of previous studies, dealing with their diffusivity

[35, 170, 172], energy levels [7, 5, 9, 11] and atomic structure [7, 5, 6, 9, 10, 173].
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With the high mobility [35, 170, 172] and low formation energy of vacancies, it would

not be surprising to find vacancy clusters forming easily in germanium. Indeed, large

voids have been observed with diameters ranging from hundreds of nanometres up

to ten micrometres following the growth of germanium crystals [33, 29]. Such voids

could severely damage a device if they form within its active region.

Although the divacancy (V2) has been studied Previously using both ab-initio meth-

ods and experiments, its properties and identification are still the object of some

controversy. Structurally, they were shown to have properties similar to those for the

silicon case, although with much weaker Jahn-Teller distortions and energies [10].

In fact, the calculated distortion magnitudes and types found in cluster calculations

are found to be sensitive to the lattice parameter that was employed to generate the

cluster [10, 174]. Energy levels have also been calculated from ab initio methods,

with a first donor level found to lie at Ev + 0.03 eV and first and second acceptor

levels at Ev + 0.3 eV (Ec − 0.36 eV) and Ec − 0.4 eV respectively [174]. Two deep

level transient spectroscopy (DLTS) studies also report results for the divacancy.

The earlier study reports a pair of electron traps at Ec − 0.35 eV and Ec − 0.32 eV

which anneal at 150◦C, and are attributed to the divacancy [26, 27], while the more

recent work links the divacancy to a shallower electron trap at Ec − 0.29 eV which

anneals at 180◦C[30]. An infrared absorption study has also shown a band which

is attributed to an internal electronic transition at the divacancy [175]. This band

anneals out at 200 K, but its assignment has been questioned by a later paper [176].

It can be expected that there are two ways in which V2 can anneal in germanium.

Firstly, it may dissociate into highly mobile vacancies. This would be expected to

occur at the rate

R = ν exp(−W/kBT ), (5.1)

where ν is an atomic jump frequency taken to be of the order of 1013 s−1, W is

the energy barrier for the process, and kBT has its usual meaning. This leads to an

activation energy ofW ∼ 1.3 eV for V2 annealing around 150 to 180◦C in 15 minutes.

Secondly, if V2 anneals by migration to a trap, the prefactor would be reduced from
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ν as the defect must make a number of migratory jumps before reaching a trap.

Assuming a trapping centre density of ∼ 1018 cm−3, the prefactor would decrease

by a factor of about 104. This gives an energy barrier for diffusion of V2 of ∼ 1.0 eV

for V2 to anneal at the temperatures observed.

It is interesting to compare the annealing behaviour of V2 in germanium with that

in silicon. The energy barrier for reorientation of V2 in silicon is 1.3 eV and the

process involves a single lattice jump. The dissociation barrier is at least 1.6 eV.

Thus, in oxygen rich silicon, the defect anneals around 300◦C through a migration

mechanism with a barrier of 1.3 eV [36].

This section will discuss research performed to investigate a similar picture for the

annealing behaviour of the V2 defect in germanium. It will also look at the suitability

of the supercell as a method in which to study charged and migrating defects in

germanium. This work has been published in Materials Science in Semiconductor

Processing and Physical Review B [177, 178].

5.3.1 Results

5.3.1.1 Supercell Calculations

Binding energies in the supercell calculations were calculated by both methods de-

scribed in Section 3.3.3. From the first method, comparing the formation energies of

the component defects, a binding energy of 0.6 eV was obtained. Using the second

method, with a separation of four atomic positions along a 〈110〉 chain, a binding

energy of 0.7 eV was calculated. This shows that the vacancies are essentially free

at this separation, in line with previous work on V2 in silicon [38]. This method was

also applied to study charged defects, but only negligible changes in formation and

binding energies were observed for any of the charge states examined.

Migration energies were calculated by the NEB method. The end points used were

relaxed divacancies separated by one atomic jump, so a single Ge atom traverses

the divacancy in each diffusion step. Figure 5.1 displays the shape of the migration
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Figure 5.1: Top: Diffusion barrier shape for the divacancy in the supercell. Bottom:

Atomic configuration of a) the initial structure, b) the saddle point, c) the final struc-

ture. The faded atom in the saddle-point configuration indicates the undisturbed

crystal position as an aid to the reader.

barrier and the saddle point configuration. The saddle point was seen to be very

close to the configuration with two vacancies at second-neighbour sites in the crystal.

The energy barrier was found to be 0.7 eV.

5.3.1.2 Band Structure Analysis

In order to check the validity of the supercell results, the band structure of a supercell

containing V2 was calculated and is plotted in Figure 5.2 along with the valence and

conduction bands of a bulk supercell. The levels introduced by the divacancy into

the band gap are seen to cross into the valence band for a range of k values along

the symmetry directions sampled. This includes the Γ-point and at least one of the

Monkhorst-Pack (MP-23) sampling points. This is almost certainly an erroneous

result due to the underestimation of the band gap within the supercell methodology.

This explains the insensitivity of the formation and binding energies found above to

charge state. It also brings the results of the migration energy of neutral V2 given

above into question.
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Figure 5.2: Band structure for the divacancy (lines) between the Γ point and two L

points. The valence and conduction bands of the perfect crystal are presented for

comparison (shaded regions). Indicated on the x-axis are two of the sampling points

used in the MP-23 scheme. As can be seen, the conduction band energy levels are

barely affected by the introduction of the divacancy to the system, while the valence

band energy levels are strongly distorted. Defect-related states (dashed lines) are

seen to lie within the valence band at the Γ-point and one of the two MP-23 sampling

points shown.

5.3.1.3 Cluster Calculations

In the cluster calculations, it is only possible to calculate binding energies using

the method of separating defects within the same system. In order to examine

the effect of defect-surface interactions on the V2 binding energy within germanium

clusters, the energy increase with defect separation was calculated for clusters with

strained surface bonds, and the results are summarised in Table 5.1. In the fourth

nearest neighbour configuration, where the vacancies are considered to be separate,

each vacancy is at a third neighbour site to an immobile surface Ge atom. It is

therefore not expected for the energy difference to exhibit complete convergence,

and the energy difference between the fourth and fifth neighbour configurations is

considered to be dominated by vacancy-surface interactions. The difference between

these energies allows an estimation of the contribution of surface interaction on the

binding energy to be made, and suggests an overestimate of ∼ 0.2 eV from this

source.
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Table 5.1: Table showing the increase in energy upon moving the divacancy from

the first nearest neighbour out to a fifth nearest neighbour configuration along a

〈110〉 chain.
Separation Energy

(eV)

1 -

2 1.06

3 1.29

4 1.53

5 1.61

Table 5.2: Binding (Eb), migration (Em) and symmetry constrained saddle point

(Escsp) energies, in eV, of the divacancy found in 501 atom clusters with strained

surface bonds, relaxed surface bonds and fully relaxed surfaces for various charge

states.
Surface Charge Eb Em Escsp

+ - - 1.0

Strained 0 1.5 1.1 1.1

− - 1.2 1.2

= 1.6 1.3 1.3

Relaxed Bonds 0 1.7 - 1.1

= 1.8 - 1.3

Relaxed Surface 0 1.7 - 1.1

To avoid spurious charge transfer between the vacancies, only evenly charged states

were calculated with this method. Results are given in Table 5.2 for binding energies

calculated in all three cluster types. Three surface conditions were used in these

calculations in order to investigate their effect on the processes being studied. The

fully relaxed surface calculations also allow an estimation of the effect of the lattice

parameter used to construct the clusters.

The binding energies show an increase in stability with the more negatively charged

states, and are also notably higher than the supercell case. Results calculated in

clusters with relaxed surface bonds and fully relaxed surfaces show an increase in

binding energy. No differences were calculated between the clusters with relaxed
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bond lengths and those with fully relaxed surfaces, and energy changes with different

charge states were not sensitive to surface treatment.

Migration energies were calculated with the migration occurring symmetrically about

the centre of the cluster. The saddle point was again shown to be close to the sec-

ond nearest-neighbour configuration having C2v symmetry. Symmetry-constrained

relaxations were performed with this configuration, and the energy difference from

the bound divacancy is reported in Table 5.2 (Escsp) along with the migration ener-

gies. As can be seen, the barrier calculated by the NEB method and those calculated

by this relaxation are in excellent agreement, and some migration barriers were cal-

culated solely by this method. Comparing the results calculated for different surface

conditions reveals a negligible change in the migration barrier between the systems

for any charge state investigated, of the order of ±0.03 eV.

Similarly to the binding energies, the migration energies show an increase as the

charge state becomes more negative.

The divacancy is seen in these calculations to be unstable against Jahn-Teller (JT)

distortions. These involve spontaneous lowering of the symmetry of the system

accompanied by a lowering in the energy as dangling bonds on the Ge atoms sur-

rounding the divacancy interact. As shown in Figure 5.3, the JT distortions main-

tain the reflection symmetry with a plane of reflection through the b and b′ atoms.

If, as shown in Figure 5.3, the atoms move such that ab = bc < ac (and likewise

a′b′ = b′c′ < a′c′), the distortion forms a resonant bonding (RB) structure, as there

is a resonant reconstructed bond between the three atoms. If instead, the atoms

move in the opposite sense, such that ab = bc > ac, there is instead a pairing bond

between atoms a and c, and this distortion forms a pairing structure.

It is shown in Table 5.3 that the neutral divacancy is seen to relax into a RB con-

figuration in most cluster calculations. In charged cluster calculations and neutral

calculations with relaxed surface bonds, however, no significant distortion was ob-

served. Also of note from these results is the increased relaxation going from the

singly to doubly negative case and in the cluster with a fully relaxed surface. Given
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Figure 5.3: Diagram showing and end-on view of an undistorted divacancy. The

vacancy sites (black) are surrounded by three Ge atoms at each end (light and

dark grey, respectively). The JT distortions observed in the divacancy preserve the

reflection symmetry plane containing the two vacant sites and the atoms b and b′.

Resonant bonding occurs when ab = bc < ac, as indicated by arrows in the diagram.

the energy differences observed in the cluster calculations with different surface con-

ditions, it is seen that the contribution from these changes must be very slight.

5.3.2 Discussion

The structures resulting from the calculations presented here show slightly smaller

JT distortions than those presented in one previous theoretical work on the diva-

cancy [10], although another, more recent study gives results that are very similar

to those found here [174].

The supercell calculations showed that the vacancies are essentially free at fourth

neighbour separation, similar to earlier results in silicon [38]. Binding and migration

energies of about 0.7 eV were found for the neutral and charged defects. Taking

a neutral vacancy migration barrier of 0.4 eV from supercell calculations in the

literature [170], gives a dissociation energy of V2 of about 1.1 eV. The migration
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Table 5.3: Inter-atomic distances for atoms surrounding the divacancy in angstroms

and as percentages of unrelaxed values, using the the labelling scheme from Fig 5.3.

Results are presented for different charge states and surface conditions.

Method Charge ab ac aa′

Supercell 0 3.19 (81%) 3.33 (84%) 5.40 (89%)

Cluster + 3.77 (95%) 3.77 (95%) 6.00 (98%)

with 0 3.60 (90%) 3.77 (95%) 5.86 (95%)

Strained − 3.60 (90%) 3.60 (90%) 5.78 (94%)

Surface = 3.53 (88%) 3.53 (88%) 5.67 (92%)

Relaxed 0 3.73 (94%) 3.73 (94%) 5.93 (96%)

Bonds = 3.53 (89%) 3.53 (89%) 5.66 (92%)

Fully

Relaxed 0 3.31 (83%) 3.75 (94%) 5.70 (93%)

Surface

barrier for the the V2 defect was calculated to be 0.7 eV. These are both below

the experimental values deduced from the V2 annealing temperature, and would

correspond, instead, to annealing temperatures of 90 and 30◦C respectively. Band

structure calculations for supercells containing a divacancy showed that the energy

levels introduced into the band gap by the divacancy crossed into the valence band

for a range of k-points, including some used for sampling the Brillouin Zone.

Migration barriers from cluster calculations were found to be largely insensitive to

surface conditions, yielding essentially the same results for clusters with strained

or relaxed Ge-H bonds and with fully relaxed surfaces. Binding energies of both

neutral and charged defects deduced from runs where the vacancies are separated at

fourth neighbour were not strongly affected by the method used to treat the cluster

surface. Therefore, it is deduced that the effect of the surface bonds on migration

and binding energies is minimal, as is that of the choice of lattice constant used

in the initial construction of the cluster. It is estimated that interaction between

the separated vacancies and the cluster surface causes an 0.2 eV overestimate of the

binding energy of the vacancies in V2.

The charge dependence of the migration barrier of the divacancy is found to be

opposite to that found by AIMPro calculations for the single vacancy in germanium
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[170]. This trend in the divacancy case can be explained by considering the structure

results above along with the migration path observed. The relaxations increase the

energy of migration by reducing the space through which the mobile atom can move,

thereby increasing the distortion required to allow it to pass. Increasing relaxation

in more negative charge states further increases this barrier.

The dissociation energy found by the cluster method is the binding energy plus the

migration energy of a single vacancy taken from cluster calculations reported in the

literature [170] to be 0.7 and 0.4 eV in the neutral and singly negative charge states

respectively. This gives dissociation barriers of 2.0 and 1.8 eV for the neutral and

doubly negative divacancy when the overestimation from the surface interactions is

taken into account. The migration barrier for the divacancy is found to rise from 1.1

to 1.3 eV in the neutral to doubly negative charge states. These suggest annealing

temperatures by dissociation of 390 down to 360◦C for the neutral to doubly negative

defect, and by migration of 200 to 290◦C. The neutral migration temperature is then

in fair agreement with the experimental values of 150 to 180◦C[26, 27, 30], suggesting

that this is the annealing mechanism observed in the experimental work.

These results support the evaluation made above and explained in Section 3.2 that

the cluster-based calculations are more reliable than the supercell for calculations in

germanium. Using the cluster methodology allows the calculation of energy barriers

for divacancy diffusion and dissociation, and thence a determination of the atomic-

scale processes involved in the annealing observed in experiment.

5.4 Vacancy Clustering

Beyond the divacancy, small vacancy clusters form during annealing, and it is these

Vn (n ≤10) clusters on which this Section will concentrate. A recently published

study using a variety of experimental techniques provides evidence for vacancy clus-

tering in highly damaged germanium [142]. DLTS and high resolution Laplace DLTS

(LDLTS) on neutron irradiated, n-type samples revealed a broad band of levels lower

in the band gap than the level attributed to the divacancy after high neutron dose
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irradiation, though no exact position was calculated. Due to the shape of the peak,

it is believed to be due to an extended or inhomogeneous defect, and is attributed

to a vacancy cluster. Positron annihilation spectroscopy performed on the highly

irradiated samples revealed the growth of larger vacant regions after annealing at

200◦C, believed to be of the order of 10 vacancies in size. The authors attributed

the formation of these defects to the creation of localised regions of type inversion.

As all reported irradiation damage-induced defects act as acceptors, they will lower

the Fermi level, and also be negatively charged. In local regions of sufficient damage

in n-type material, the Fermi energy will be lowered to the point where some of

the defects will become neutral, and will then be able to merge and form larger

defect clusters. Other DLTS studies have attributed acceptor levels at Ev + 0.20

and Ev + 0.24 [19] or Ev + 0.37 eV [30] to V2. A later paper by the second group

attributed the Ev + 0.37 eV level to a larger vacancy cluster and suggested that

the divacancy levels would lie in the lower half of the band-gap, an opposite trend

in the position of the acceptor level to that suggested by the first results discussed

[31]. Single vacancies have also been linked to a defect level at Ev + 0.2 eV [179],

Ev + 0.14 eV [12] or Ev + 0.33 eV [180].

This Section will describe work to investigate the formation energies and acceptor

levels of small Vn clusters, and the stability of the defects. A brief investigation

of the effect of altering the basis set used to model the electronic wave functions

around the Ge atoms is also discussed. Previous theoretical work has placed the

first and second acceptor levels of V1 both at around 0.2 eV above the valence band

top or at Ev + 0.37 and 0.40 eV [5, 180] and V2 at around 0.3 eV [174].

5.4.1 Results

The structure used for the Vn clusters is shown in Figure 5.4, and was chosen to

minimise the number of broken bonds for any size of the cluster. Figure 5.5 shows

the formation energy, calculated per vacant site in the cluster, for clusters ranging in

size from single vacancies up to n=14. Also included is the number of dangling bonds

per vacancy in the cluster. Due to the structure of the cluster, the Vn clusters with
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Figure 5.4: Diagram showing the structure of the Vn clusters for n ≤14. The clusters

were formed by the removal of atoms from the cluster or supercell in the order as

indicated by the numbers on the atoms.

n=6, 10 and 14 form closed shells of vacancies, and hence dip below the overall trend

for the number of dangling bonds per vacancy. Comparing this with the formation

energy per vacancy in the defect, it can be seen that these clusters exhibit local

energy minima with respect to cluster size. It is also the case that for every cluster

size studied, Ef(Vn) < Ef(Vn−1) + Ef(V1). That is, there is no cluster size at which

a vacancy is not bound to the cluster, with the smallest binding energy calculated

as 0.3 eV for the 11th vacancy in V11.

The single and double acceptor levels calculated for the vacancy clusters are shown

in Figure 5.6. Alternative calculations were performed with a larger basis set for

the electronic wave functions around the Ge atoms for the V defect using the VO

acceptor levels as markers. Using an uncontracted basis set for the germanium

atoms with four each of the s, p, d orbitals made almost no difference to the results

obtained, with differences of under 0.1 eV for each energy level.
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Figure 5.5: Formation energy (solid line) and dangling bonds (dashed line) per

vacancy for Vn clusters up to n=14. Of note is that while both values decrease with

increasing cluster size, they also show correlation for structures where the number

of dangling bonds dips, at six, ten and fourteen vacancy-clusters.

As n increases, both of the levels are seen to move down in the band gap, and for

larger clusters modelled with the VO marker, drop below the top of the valence band.

The Au marker gives higher energy levels, but also gives a negative-U [14] ordering

across all the clusters studied. Beyond n = 6, the second acceptor level is calculated

with Au to lie within the valence band. Anomalous results are seen at n=5 and

n = 9 where the second and first acceptor levels respectively are found to lie well

below the broad trend predicted by other cluster sizes. It is not clear whether these

results are due to a real physical effect or are an artifact of the modelling method.

5.4.2 Discussion

Comparing these results with prior experimental data, it can be seen that the Au

marker gives acceptor levels closest to the measured levels at 0.2 eV [179] or 0.14 eV

[12] above the valence band. The levels calculated using the VO marker are found

to be lower in the band than any experimentally observed levels, while the level

observed at Ev + 0.33 eV is higher than any calculated here. The levels attributed
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Figure 5.6: First (solid line) and second (dashed line) acceptor levels for Vn clusters

up to n=10, calculated in eV from the top of the valence band using Au (crosses)

and VO (squares) as markers. The dotted line indicates the top of the valence band.

Of particular note are the anomalous results for the second acceptor level at n=5

and the first acceptor level at n=9.

to V2 at Ev + 0.20 and 0.24 eV [19] or Ev + 0.37 eV [30] are notably deeper than

the results calculated with either marker, and with an overall downwards trend in

the position of the acceptor levels with increasing cluster size, the Ev +0.37 eV level

[31] does not match any vacancy cluster calculated.

Comparing the results with previous theoretical work, the levels for the single va-

cancy are the same as those found in previous work using the same method [5] and

significantly lower than those calculated using the formation energy method [9]. The

acceptor levels of the divacancy defect are calculated to be shallower than the single

vacancy, and shallower than previous results of ∼0.3 eV above the valence band

[174].

A more in-depth comparison of the model proposed by Peaker et al [142] with our

results suggests that small clusters of up to 14 vacancies are stable with respect to

smaller isolated clusters in the neutral charge state. The formation of these vacancy

clusters in n-type material would seem to require areas of type inversion to allow
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the diffusion of small neutral vacancy clusters to larger defects without Coulomb

repulsion, as suggested.

In conclusion, we have studied the formation energies of vacancy cluster defects Vn,

with 1 ≤ n ≤ 14 and acceptor levels for clusters with n up to 10. It is calculated

that the clusters are stable in the neutral charge state with respect to Vn−1 clusters

and isolated single vacancies. The clusters with n = 6, 10 and 14 are particularly

stable, coinciding with local minima in the number of dangling bonds per vacant

site in the cluster. The acceptor levels were calculated to move down the band gap

with increasing cluster size, with the second acceptor level entering the valence band

at n = 6 and lying below the first acceptor for all values of n.

5.5 Self Interstitial Diffusion

While the self interstitial (I) has not been conclusively observed in experiment in

germanium, there has been some interest from modelling groups to understand how

this fundamental defect behaves differently in germanium and silicon, where in the

latter it is a much more important defect. In the neutral charge state, a number

of prior works on germanium have calculated a 〈110〉 split interstitial as the most

stable form of the defect [16, 17, 181]. The defect is calculated to have a formation

energy of 3.55 [17] or 3.50 eV [181].

From experiment, donor levels between Ec − 0.2 and 0.04 eV [12, 11, 19, 18]. have

been attributed to the interstitial and the migration barrier has been estimated at

∼0.6 eV [179].

5.5.1 Results

Three defect structures were studied in the neutral charge state. The 〈110〉 split-

interstitial structure (I110), a T -sited interstitial (IT ) and an H-sited interstitial (IH).
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Figure 5.7: Figure depicting the ‘short’ (left) and ‘long’ (right) diffusion paths for

the I110 defect. The faded images behind each side image are the starting point

repeated as an aid to the reader.

The calculations gave the I110 structure as the most stable, with a formation energy

of 3.60 eV compared with 3.83 eV for IT and 4.13 eV for IH .

Diffusion barriers were calculated for the I110 structure in the neutral charge state

as well as for the the doubly positive I2+T as this has been calculated to be the most

stable structure in an important charge state [182]. For the I2+T defect, the motion

investigated consisted of motion between adjacent T -sites along the 〈110〉 channels

in the crystal. For the I110 defect, two diffusion steps along the 〈110〉 chains were

considered, as depicted in Figure 5.7, and a rotation between adjoining chains was

also investigated.

The migration barrier for the I2+T defect was calculated to be 1.23 eV. For the I0110

defect, the ‘long’ diffusion step exhibited a barrier of 0.64 eV, the ‘short’ step 0.80 eV

and the rotation between chains was calculated to proceed with a barrier of 0.75 eV.

This suggests that in the neutral charge state, diffusion proceeds via the long step,

with the rotation between chains occurring less frequently, but enough to allow

diffusion throughout the crystal.
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5.5.2 Discussion

The formation energies and structure calculated here are in good agreement with

previous theoretical work giving a I110 structure and a formation energy of 3.50

or 3.55 eV [16, 17, 181]. Subsequent work on the germanium self-interstitial has

found a more favourable diffusion path for the I0110 defect with a barrier of 0.5 eV

via a metastable I0H structure. A stable structure for the singly positive defect,

with the interstitial atom lying between an H- and adjacent T -site (I+Hd) has also

been calculated along with a diffusion path for this defect with a barrier of 0.3 eV

and a saddle point at I+H [183]. Energy levels have been calculated for the different

defect structures. The I110 defect is found to be electrically inactive, and in low

temperature experiments, the barrier for transformation from the split-interstitial

to the caged T - or H-site interstitials can lock the defect in the I110 structure.

At higher temperatures, the singly and doubly positive charge states of the defect

become attainable as the thermal energy becomes sufficient to allow the defects

to relax into I+Hd and I2+T structures. The first donor level of these structures is

calculated to lie below the top of the valence band, and the second donor level at

Ec − 0.08 or 0.20 eV depending on the marker used [182]. Comparing these with

the experimental data, it can be seen that there is good agreement between the

theoretical and experimental values.

In addition to the papers referenced above, much of the work discussed in this final

section has formed a section of the thesis of A. Carvalho [184].

5.6 Chapter Summary

In this Chapter, the calculated annealing behaviour of the divacancy as well as the

electrical properties and formation energies of vacancy clusters were presented. Fi-

nally, details were given of some initial work done on the germanium self-interstitial,

followed by a brief description of the study to which this work led.
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The first notable result from the divacancy work in germanium was that on the

applicability of the supercell method to calculations in germanium. Band structures

calculated in the neutral supercell clearly show electron states in the valence band

which are due to the divacancy. This suggests that results calculated in the supercell

would be unreliable, and explains the result that the binding and migration energies

calculated in the supercell are insensitive to charge state. Thus the decision was

made to minimise the use of germanium supercells in further studies.

Supercell calculations are seen to predict annealing temperatures via either dissocia-

tion or migration at temperatures which are well below those observed in experiment.

Cluster calculations, on the other hand, give annealing temperatures for annealing

via migration to trapping defects which are in good agreement with the experimen-

tal results for the neutral charge state, supporting the decision to rely on cluster

calculations and suggesting that this is the atomistic mechanism involved in the

experimentally observed annealing.

The vacancy cluster calculations demonstrated a definite link between the formation

energy per vacancy in the cluster and the number of dangling bonds per vacancy.

As expected, the formation energy calculations showed that for every cluster up to

V14, the last vacancy was bound to the cluster, with the smallest binding energy

being 0.3 eV for the 11th vacancy in the V11 defect. The energy levels calculated for

the clusters showed a broad downward trend of the acceptor levels, with the larger

clusters having acceptor levels falling below the edge of the valence band.

The results for the self interstitial structure in germanium are in agreement with

prior theoretical work on the problem, giving the 〈110〉 split interstitial as the most

stable structure in the neutral charge state. The diffusion barrier for the defect was

calculated to be 0.75 eV in the neutral and 1.23 eV in the doubly positive charge

states. This formed a basis for later work by A. Carvalho in which the charge-

dependent structures, energy levels and diffusion mechanics of the self interstitial in

germanium were studied in detail.



Chapter 6

Dopant-Related Defects

6.1 Introduction

The study of dopant-related defects in semiconductors is a very wide-ranging sub-

ject of great importance to device behaviour. As well as removing dopants from

electrically active substitutional sites in the crystal, thus reducing the active dopant

concentration, defects may also actively compensate the remaining active dopants

if they are themselves electrically active. In addition they may promote diffusion of

the dopants, impeding the creation of small-scale sharply defined devices. Diffusion

of dopants will be dealt with in more detail in Chapter 7

In germanium, the dominant intrinsic defect is the vacancy, due to its low forma-

tion energy [9, 170]. In silicon, while the self-interstitial is an important defect,

the vacancy still plays an important role, and therefore this chapter will focus on

vacancy-related defects in both materials, looking at their energy levels, formation

paths and annealing mechanics.
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6.2 Modelling Method

The silicon-based calculations of Section 6.3 were performed in 216 atom super-

cells while the germanium-based calculations in Section 6.4 used a combination of

216 atom supercells and 501 atom clusters. Description of the systems and other

calculation parameters may be found in Section 3.4.

Formation energies for neutral defects were calculated using the method described in

Section 3.3.2, migration barriers using the NEB method in Section 3.3.5 and electri-

cal energy levels using the marker method as described in Section 3.3.4. Formation

energies for charged defects were calculated using marker-method-calculated energy

levels and the formation energies calculated for neutral defects. Binding energies

were calculated from formation energies as described in Section 3.3.3 For germa-

nium, the antimony E-centre (SbV) donor level at Ev + 0.09 eV and acceptor levels

at Ev + 0.31 and Ec − 0.30 eV [50, 131] were used as markers for the phosphorus-

related defects in germanium. In silicon, the phosphorus E-centre (PV) donor level

at Ev + 0.27 eV and acceptor level at Ec − 0.45 eV [117] were used for all defects

while the vacancy-oxygen (VO) acceptor level at Ec − 0.17 eV [185] and interstitial

carbon (Ci) donor level at Ev + 0.28 eV [186] were used in addition to model the

As2V defect.

6.3 Arsenic-Boron-Vacancy defects in Silicon

One line of research performed on this topic was prompted by an interesting study

involving vacancy-related defects carried out in silicon [187]. An electron beam

incident on the n-type layer of an As/B-doped n+p mesa diode was used to irradiate

the sample while defects in the p-type region were monitored by DLTS. A defect level

at Ev + 0.20 eV was observed to grow in after heat treatment at 400 K. The defect

is believed to be related to the As E-centre (AsV) which becomes mobile around

this temperature, and indeed the unknown defect was not observed in similarly B-

doped Schottky-diodes, confirming its As-related nature. The E-centre itself was
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not observed in the p-type region, and the authors suggested that the defect is As2V

formed in the highly doped n-type region which could then diffuse into the p-type

region. This is, however, contested by previous ab initio theoretical calculations

using a different code than that employed here which yield migration energies of 1.4

or 1.3 eV for the AsV defect and 1.9 or 2.0 eV for As2V [53, 188], implying that

a significantly higher temperature would be required for As2V to become mobile

compared with AsV.

The recent discovery that the E-centre defect has in addition to the well-known

acceptor level at Ec − 0.45 eV, a donor level at Ev + 0.27 eV [117] has important

consequences for defect behaviour in p-n junctions. In this case, it opens up the

possibility of the mobile AsV becoming positively charged in the p-type region and

becoming Coulombically attracted to negatively charged B dopants.

The related boron-vacancy defect has been studied previously. Watkins et al per-

formed electron paramagnetic resonance studies in which a signal was attributed to

the BV defect [189]. The signal was seen to anneal at 260 K and the symmetry of

the observed signal led to the assignment of a structure with the B atom at a second

neighbour position to the vacant site. Theoretical work by Adey et al revealed a

charge dependent structure for the defect, with the B atom at a second neighbour

site to the vacancy in the positive charge state and a third neighbour site in the

negative charge state [190].

In this study, the properties of AsV were studied along with those of the As2V and

AsBV defects believed likely to form when AsV becomes mobile and is able to be

captured by either As or B dopants in the n+ or p-doped regions respectively. Parts

of this work have been published in Applied Physics Letters [191].

6.3.1 Defect Structures

In light of the previous studies on the boron-vacancy (BV) defect in silicon, six

structures for the AsBV defect were studied in the singly positive, singly negative

and neutral charge states. The structures are shown in Figure 6.1. The AsVB
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Figure 6.1: Examined structures for the AsBV defect complex. In all the images,

the orange balls represent Si atoms, the black ball identifies the vacant site, the

large, light blue ball represents the As atom, and the small, green ball the B atom.

structure is similar to As2V, with the B and As atoms occupying two first neighbour

sites to the vacancy. BAsV, AsV.B and AsV.Bh all place the B atom at a second

nearest neighbour site to the vacancy. In BAsV, the B is adjacent to the As atom,

while in AsV.B and AsV.Bh, the B atom lies on the opposite side of the vacancy

with C1 and C1h symmetry, respectively. Finally, the B atom is placed at a third

neighbour site from the vacancy in the AsV..B and AsV..Bh structures. In the first

structure, the B atom is at a second neighbour site to the As atom, while in the

latter, higher symmetry structure, it lies at a fourth neighbour site to the As.

For each charge state, the relative energies of the different structures were calculated,

and the results are shown in Table 6.1. The AsV.B and AsV.Bh structures are seen

to be degenerate across all charge states and are the most stable structure for the

defect in the neutral and singly positive charge states. AsV..Bh is seen to be slightly

more stable in the singly negative charge state. Barriers for reorientation of the

defect are expected to be of the same order as for migration of the AsV defect and

therefore much larger than the energy differences between structures. Therefore the

AsV.B and AsV.Bh structures (hereafter referred to collectively as AsV.B due to

their degeneracy) as well as the AsV..Bh structure will be considered in more depth

as independent defects.
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Table 6.1: Relative energies of the AsBV structures investigated in this study in the

neutral, singly negative and singly positive charge states. Results are given in eV,

relative to the structure exhibiting the lowest energy for each charge state.

Structure AsVB BAsV AsV.B AsV.Bh AsV..B AsV..Bh

− 0.24 0.22 0.05 0.04 0.09 0.00

0 0.08 0.39 0.01 0.00 0.20 0.15

+ 0.09 0.37 0.01 0.00 0.20 0.14

Table 6.2: Separation between atoms for the various defects studied in the neutral

charge state. All lengths are given in Å, with following brackets indicating the

percentage of the unrelaxed distances. All distances apart from Si-B are for the

atoms surrounding the vacancy. Si-B distances indicate the separation between the

B atom and the adjacent Si atoms. Two results are given for the Si-Si length in the

AsV and AsV.B complexes due to strong rebonding effects such that one length is

significantly shorter than the other two.

Defect Si-Si Si-As Si-B As-As

AsV 2.91 (76%) 3.36 (88%) 3.41 (89%) - -

As2V 2.84 (75%) 3.40 (89%) - 3.45 (91%)

AsV.B 2.93 (77%) 3.95 (104%) 3.57 (94%) 2.05 (88%) -

AsV..Bh 3.41 (89%) 3.56 (93%) 2.05 (88%) -

For all defects studied, the positions of the atoms surrounding the vacancy were

examined to investigate the nature and strength of symmetry breaking in the de-

fects. The breaking of symmetry can be indicative of rebonding of dangling bonds

surrounding the vacancy. The results for the neutral charge state are presented in

Table 6.2.

In almost all cases, the vacancy relaxed entirely inward, and the inter-atomic dis-

tances decreased. The only exception is the AsV.B structure, where the B pulls the

Si atom between it and the vacancy strongly away from the vacancy. The AsV and

AsV.B complexes demonstrated a strong Jahn-Teller distortion, leading to one of

the three Si-Si distances being significantly shorter than the other two. This sug-

gests that rebonding occurs in these defects. This feature is also seen to be present

to a similar degree in the AsV..Bh structure in the singly negative charge state, sug-

gesting that it plays an important role in determining the lowest energy structure
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Table 6.3: Donor and acceptor levels of the various defects studied. Energies given

in eV. Defects in brackets indicate the markers used in the calculations.
Level AsV As2V AsV.B AsV..Bh

E(0/+)−Ev 0.25 -0.05 (PV) -0.10 (PV) -0.10 (PV)

0.05 (Ci) 0.00 (Ci) 0.01 (Ci)

Ec−E(−/0) 0.40 0.01 (PV) - -

0.22 (VO)

E(−/0)−Ev - - 0.47 0.27

for the AsBV defect. Comparing the shorter Si-Si length in these defects to that in

the As2V defect suggests that this defect will undergo rebonding as well.

6.3.2 Energy Levels

The energy levels calculated for the various defects are summarised in Table 6.3.

The AsV and As2V levels were calculated using the donor and acceptor levels of

PV. As the electronic structure of PV is not especially close to that of As2V, the

levels of this defect were also modelled using the VO defect for the acceptor level,

which has a much closer electronic structure and Ci for the donor level, which has an

electronic structure completely different from either PV or As2V. These are indicated

in the table. The AsBV defect was considered in either structure to consist of an

As E-centre near to, but separate from a B atom. The B is expected to retain its

negative charge, such that the donor level of the AsV is perturbed by its presence

and is labelled the acceptor level of the AsBV defect. Thus the AsBV acceptor level

is modelled using the donor level of PV as a marker, and the AsBV donor level

is modelled using both PV and Ci. Of note in this model is the possibility that

some experimental measurements may detect the donor level of the AsV constituent

defect rather than the acceptor level of the whole defect, including the negatively

charged B atom.

The calculations predict the donor levels of the As2V and AsBV defects to all lie

either below or degenerate with the top of the valence band. That the calculated

levels remain effectively constant using either of two very different markers suggests

that the results are accurate despite the difference in structure between the marker
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Table 6.4: Formation energies of the defects studied. Results are given in eV relative

to isolated As+
Si and B−

Si. µe is the Fermi energy measured from the top of the valence

band. Defects in brackets indicate the marker used in the calculation of charged

states.
Charge V AsV As2V AsV.B AsV..Bh

+ 2.99 2.48 − µe (PV) 2.78 + µe 2.92 + µe

2.38 − µe (Ci)

0 3.91 3.24 − µe 2.43 − 2µe 2.68 2.87

− 3.96 − 2µe 3.55 − 3µe (PV) 3.15 − µe 3.09 − µe

3.34 − 3µe (VO)

and the defect being studied. The acceptor level of the As2V defect is seen to vary

with the marker used, but the VO marker is expected to yield more reliable results

due to the similarity in electronic structure between it and the As2V defect.

6.3.3 Formation Energies

Formation energies of the defects are given in Table 6.4. The results are given in

terms of µe, the Fermi energy measured from the top of the valence band. The

results show that each As atom is strongly bound to the vacancy. Assuming a value

of µe of around 1 eV for the n-type material where these defects are expected to

form, the results are in good agreement with previous non-AIMPro theoretical

values of 2.3 [53] or 2.4 eV [188] for AsV, and fair agreement with a prior result of

0.8 eV [53] for As2V. Boron is found to be rather less strongly bound to the defect,

but the AsBV defect should still be bound for the low values of µe expected in the

p-type region where this defect is formed.

6.3.4 Migration Energies

Migration energies were calculated for the AsV and As2V defects. The migration of

AsBV was not studied as the low binding energy calculated suggests that the defect

would dissociate into substitutional BSi and AsV before it diffused as a unit. Migra-

tion is predicted to proceed via diffusion of the vacancy around the six-membered
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Figure 6.2: Diffusion path for the AsV defect in silicon. The smaller, orange balls

represent Si, the larger, blue one As and the black ball marks the vacant site. Images

a) to d) show one diffusion step as the vacancy moves around the six-membered ring

and then exchanges position with the associated As atom.

rings of the diamond structure. For AsV there is only one path this can take, illus-

trated in Figure 6.2, while for As2V, there are two paths. The reorientation path is

shown in Figure 6.3a),b),c),d) and is a process by which the defect can change the

six-membered rings it lies on without changing the position of the central vacancy.

The rotation path is shown in Figure 6.3a),b),e),f) and results in net motion of the

defect around one of the six-membered rings on which it is located. As the As2V

defect lies on two of these rings, diffusion can proceed by the rotation path alone,

but the reorientation path can accelerate the process if the associated energy barrier

is equal or less than that for the rotation path.

For AsV diffusion, the barrier was found to be dominated by the motion of the

vacancy to the third neighbour site of the As atom and back. In the singly positive

charge state, the barrier was calculated to be 0.9 eV, rising to 1.2 and 1.3 eV in the

neutral and singly negative charge states respectively.

As2V diffusion is also dominated by the motion of the vacancy to the side of the

six-membered ring furthest from the As atoms. Calculations for the As2V diffusion

were carried out only in the neutral charge state, and gave a barrier of 2.2 eV for

the rotation diffusion path and 2.5 eV for the reorientation path. This suggests that

diffusion will occur primarily without the aid of the accelerating reorientation step,

with a barrier of 2.2 eV.

Total barriers for As to diffuse via either of these diffusing defects are calculated

by summing the formation energy of the defects and their diffusion barriers, and
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Figure 6.3: Diffusion path for the As2V defect in silicon. The smaller, orange balls

represent Si, the larger, blue one As and the black ball marks the vacant site. Images

a),b),c),d) show the reorientation of the defect from one hexagonal ring to another

via the net motion of As atoms only. Images a)b)e)f) show the motion of the complex

around a single six-membered ring. The former process is not required for diffusion

of the defect, but may act to enhance the motion if the associated energy barrier is

low.

Table 6.5: Table giving total diffusion barriers for As via the formation of AsV and

As2V defects, relative to As+
Si in eV.

Charge AsV As2V

+ 3.89

0 4.44 − µe 4.63 − 2µe

− 5.26 − 2µe

are given in Table 6.5. It can be seen there that for µe > 0.4 eV, the total barrier

for diffusion via neutral As2V will be lower than that for any charge state of AsV

calculated.

6.3.5 Discussion

The structures calculated for the AsBV defect in various charge states correlate ex-

cellently with those calculated previously for the BV defect in silicon [189, 190]. The

inter-atomic distances calculated (Table 6.2) suggest that the presence of rebond-
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ing between Ge atoms around the vacancy plays an important role in determining

the most stable structure of AsBV and is also present in AsV and As2V, which are

observed to be highly stable.

The As2V energy levels calculated give a donor level close to the band edge, and

an acceptor level at Ec − 0.22 eV using the VO marker. This level is notably above

that calculated by earlier non-AIMPro modelling work of Ec − 0.39 eV [192] but

quite close to a level assigned to the defect from experimental work at Ec − 0.17 eV

[193]. The AsV acceptor level calculated to lie at Ec − 0.40 eV is in similarly good

agreement with experimental work suggesting Ec − 0.47 eV [117].

The migration barrier for the AsV defect, calculated to be 1.2 eV for the neutral

defect, and 0.9 and 1.3 eV for the singly positive and singly negative charge states is

in good agreement with previous non-AIMPro modelling work which gave 1.4 [53]

and 1.19 eV [188] in the neutral charge state. Similarly, the As2V diffusion barrier

is in fair agreement with the previous work giving 1.9 [53] and 2.2 eV [188] barriers

for diffusion in the neutral charge state. The total diffusion barriers for As via the

formation of these defects suggest that for µe above 0.4 eV, the most favourable

diffusion path is that which proceeds via the formation of As2V defects. This is

in agreement with some earlier calculations [53], but we have not considered the

alternative paths for enhanced AsV diffusion proposed later [188].

A previous experimental study on As diffusion under highly n-type conditions in

silicon reported an estimated barrier of 2.7 eV [194]. Comparing this with the results

for As diffusion via AsV and As2V defects reported in Table 6.5, the barrier for As2V

at µe ∼ 1 eV is closest to the experimental result, while the barriers calculated for

AsV diffusion approach the experimental value only for µe at the conduction band

in the singly negative charge state.

To estimate the temperature at which a defect is expected to anneal by diffusion,

we suppose that the number of diffusion steps N taken in a time ∆t is given by

N = ν∆te−W/kBT , (6.1)



CHAPTER 6. DOPANT-RELATED DEFECTS 109

where ν is an atomic vibration frequency, taken to be 1013 s−1, W is the energy

barrier for defect migration and kB and T have their usual meanings. If the defect

must make ∼ 103 steps to encounter an annealing centre in heavily doped material,

for an annealing time of 30 minutes we predict, using thermal migration barriers

given above, annealing temperatures of ∼75-225◦C for the AsV defect in different

charge states and ∼575◦C for the neutral As2V defect. These results are quite close

to the 175-225◦C observed by experiment for AsV, but higher than the observed

temperature of 420◦C for As2V diffusion [52].

With regard to the experimental work on As/B-doped n+p mesa diodes discussed

above, our results cast doubt on the assignment given to the new level [187]. The

As2V defect is not calculated to have a donor level within the gap, nor to be mobile

until temperatures significantly higher than those for AsV diffusion. Conversely,

the acceptor level of the AsV..Bh defect calculated to lie at Ev + 0.27 eV seems to

be in the correct range, and may exhibit donor-like ionisation behaviour; but it is

not clear how the defect could form during the annealing process without the AsV

defect being observed alongside it by the DLTS measurements.

6.4 Donor-Vacancy Clusters in Germanium

While p-type doping in germanium can be achieved to a high level of active acceptor

concentration and shallow junction depth using boron as a dopant [65, 67], the same

is not true of n-type regions. An activation ceiling of around 1019 cm−3 is measured

by SRP in experiments using ion beam implantation methods, with large proportions

(∼ 90%) of the total implanted donor atoms as measured by SIMS remaining inactive

for rapid thermal annealing (RTA) processes below 700◦C[59]. The inactive donor

fraction is expected to be in the form of donor aggregates or large donor-vacancy

complexes and a study of the latter will form the remainder of this chapter.

In silicon, there has been a detailed PAS study on the evolution of vacancy-related

defects in material heavily n-doped using phosphorus, arsenic and antimony [52]. A

series of defects were identified by their distinctive W and S-parameters. The single
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donor-vacancy defect, DV (D=P, As or Sb) or the E-centre is the first to appear,

and anneals at around 150◦C. For sufficiently high doping levels (1020 cm−3) D2V

complexes grow in, followed by D3V complexes when D2V anneals at 400◦C. The D3V

complexes anneal out at around 800◦C, coinciding with a strong recovery of active

dopants as detected by electrical measurements [51]. Larger defects tentatively

identified as As5V2 have also been observed in very heavily (> 1020 cm−3) As-doped

material, but the As3V defects are the dominant vacancy-related defects in this

material [51]. D3V has been calculated by ab initio methods to have a negative

formation energy with respect to substitutional donor atoms in both silicon and

germanium [53, 54], with arsenic and antimony donors, respectively, suggesting that

it will be as important a contributor to the inactivity of dopants in germanium as

silicon.

In germanium, the same detailed experimental investigation has not been performed,

but there have been a number of theoretical modelling studies on donor-vacancy

defects. An AIMPro study established structures with two substitutional antimony

atoms both adjacent to a vacant site as the most stable structure for the Sb2V defect

[54]. While another similar study has suggested a similar structure for the E-centre,

with a single donor atom adjacent to a vacant site [103]. This is supported by

recent non-AIMPro studies [55], while similar earlier studies suggested a split-

vacancy structure for the antimony E-centre, wherein the donor atom lies in the

centre of a divacancy, at what would be the bond centre for the two absent atoms

[195]. Also of interest in one of these studies is the apparent stability of Sb5V with

respect to Sb4V and SbGe [55]. The energy binding the fifth Sb atom to the defect

is rather small, and the corresponding defects with P or As as the donor atoms are

not stable, suggesting that this may be a strain-related effect. However, since the

largest single vacancy defect observed in silicon is the D3V centre and there is no

clear formation mechanism for even the D4V defect, D5V has not been studied here.

This work seeks to investigate the behaviour of phosphorus-vacancy clusters (PxVy,

x ≤ 5, y ≤ 2) to understand their contribution to donor deactivation in germanium

and their thermal evolution. Parts of this work are awaiting publication in Materials

Science in Semiconductor Processing [196].
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Table 6.6: Calculated energy levels for a number of PxVy clusters. Energies are

given in eV above the valence band top.

Level PV P2V P3V P4V

(0/+)−Ev 0.13 -0.26 0.06 -0.57

(−/0)−Ev 0.43 0.50 0.31 1.62

(= /−)−Ev 0.38 0.47 1.51 1.49

Level P3V2(2,1) P3V2(3,0) P4V2(2,2) P3V2(3,1) P5V2

(0/+)−Ev 0.01 0.15 -0.01 -0.34 0.06

(−/0)−Ev 0.26 0.49 0.40 0.55 0.32

(= /−)−Ev 0.48 0.41 0.31 0.54 1.47

6.4.1 Energy Levels

The PxVy defects studied were considered to consist of x P atoms in substitutional

positions immediately adjacent to the vacant sites. This structure has been calcu-

lated to be the most stable for PV and Sb2V defects [54, 103], and it is believed that

these structures will continue to be the most stable for larger defects. There are two

possible structures for each of the P3V2 and P4V2 defects, with different numbers

of P atoms around each vacant site. These structures are denoted with numbers in

brackets to indicate the number of P atoms around the first and second vacant site.

The energy levels of the various PxVy defects were calculated and are presented in

Table 6.6. All the defects are modelled using the SbV donor level at Ev + 0.09 eV

and acceptor levels at Ev + 0.31 eV and Ev + 0.36 eV (Ec − 0.30 eV) as markers

[50, 131].

All of the defects studied except for P4V are calculated to insert acceptor levels

into the band gap, and several of them are predicted to become doubly negatively

charged for Fermi level positions achieved in n-type regions. For PV, these values

are in good agreement with experimental results of Ev + 0.35 and Ec − 0.23 eV

(Ev + 0.43 eV) [50] for the first and second acceptor levels. For P4V, the electrical

inactivity is easily explained by noting that all the dangling bonds surrounding the

vacancy have been removed by P atoms.
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Table 6.7: Formation energies calculated for the PxVy clusters being studied. En-

ergies are given with respect to isolated P+
Ge

Charge PV P2V P3V P4V

+ 2.10 2.04 − µe 1.45 − 2µe 1.49 − 3µe

0 2.23 − µe 1.78 − 2µe 1.51 − 3µe 0.92 − 4µe

− 2.66 − 2µe 2.28 − 3µe 1.82 − 4µe 2.53 − 5µe

= 3.04 − 3µe 2.74 − 4µe 3.34 − 5µe 4.03 − 6µe

Charge P3V2(2,1) P3V2(3,0) P4V2(2,2) P4V2(3,1) P5V2

+ 2.99 − 2µe 2.69 − 2µe 2.61 − 3µe 2.69 − 3µe 2.08 − 4µe

0 3.01 − 3µe 2.84 − 3µe 2.60 − 4µe 2.36 − 4µe 2.13 − 5µe

− 3.26 − 4µe 3.33 − 4µe 3.00 − 5µe 2.90 − 5µe 2.51 − 6µe

= 3.74 − 5µe 3.74 − 5µe 3.31 − 6µe 3.44 − 6µe 3.99 − 7µe

6.4.2 Formation Energies

Formation energies are calculated as described above, and summarised in Table 6.7.

All the defects are seen to be stable with respect to smaller component defects or

an appropriate number of isolated lattice vacancies and substitutional P+
Ge. For

sufficiently large values of µe, the P3V, P4V and P5V2 defects are calculated to

exhibit negative formation energies, indicating that they are more stable than 3,4 or

5 isolated P+
Ge atoms with no vacancies. While this does not suggest that the defects

will form spontaneously, due to kinetic considerations, it does suggest that these

defects will contribute significantly to the deactivation of phosphorus in germanium

if they are able to form.

6.4.3 Migration Energies

Migration paths for the PV and P2V defects similar to those for AsV and As2V in

silicon, described in Section 6.3.4 were considered.

For the PV defect, the barriers for both the motion of the vacancy out to a third-

neighbour distance to the P atom and for the exchange of the P atom across the

vacancy were calculated. The diffusion was considered in the neutral, singly and

doubly negative charge states. In all these states, the barrier for the exchange of
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P across the vacancy dominated the barrier for motion out to third neighbour and

back. The barrier for diffusion of the PV E-centre is then 1.6, 1.3 and 1.0 eV in the

neutral, singly negative and doubly negative charge states respectively.

The P2V complex was found to diffuse with more complex barriers, shown in Fig 6.4,

for the neutral charge state while the singly and doubly negative charge states exhibit

barriers of a very similar form and magnitude. As for As2V, the barrier for both

the reorientation and rotation processes were calculated, and also as for As2V, the

diffusion of the defect does not require the reorientation step to proceed. As can be

seen, the defect passes over a number of increasingly high barriers, with the highest

barrier lying as the vacancy moves furthest from the P2 centre. The vacancy’s

subsequent return to the P2 pair is then a symmetric reversal of the outward journey.

The reorientation step is again seen to exhibit a significantly higher energy barrier,

and so it is not considered to contribute to the diffusion of the complex. Therefore

the calculated barrier for P2V diffusion in the neutral state is 1.8 eV. In the singly

and doubly negative states, the reorientation barrier changes by less than 0.1 eV,

while the barrier for the rotation step drops to 1.7 eV for both of these charge states.

It can therefore be said that the diffusion of the P2V defect is not affected by charge

state, and once formed, the defect should diffuse at a rate insensitive to the local

doping conditions.

6.4.4 Discussion

Assuming that formation of the PxVy defects will proceed via the diffusion of

vacancy-containing defects, or the vacancy itself, and that the P+
Ge donor atoms

are isolated from one another, formation paths for the defects studied above can be

discussed. PV formation should be rapid, enhanced by Coulomb attraction between

the negatively charged vacancy and positively charged P+
Ge. Diffusion of PV and

P2V will allow the growth of up to P3V centres with Coulomb attraction between

the component defects speeding the process. Diffusion of the P3V centre, however,

is not as easy to envisage, as, unlike the two smaller centres, the P3V defect does



CHAPTER 6. DOPANT-RELATED DEFECTS 114

a) b) c)

Reorientation Barrier
2.5

2.0

1.5

1.0

0.5

0.0

1.
6 

eV

1.
1 

eV 2.
3 

eV

a) b) e)e)

2.0

1.6

1.2

0.8

0.4

0.0

1.
8 

eV

1.
1 

eV

1.
6 

eV

E
ne

rg
y 

D
iff

er
en

ce

Rotation Barrier

Figure 6.4: Diffusion barriers for the neutral P2V defect, for both the reorientation

and rotation paths. The labels indicate the configuration of the defect at that point

along the path, and correspond with the structures shown in Fig 6.3. In the rotation

path, the complex passes through two equivalent structures, both corresponding to

structure e) in Fig 6.3, with the symmetry point for the diffusion process lying

between these positions.

not lie on a single six-membered ring. It is therefore believed that the P3V defect is

immobile and thus formation of P4V is unlikely.

All the PxV2 defects studied can be formed through the trapping of mobile PV or

P2V defects by other PxV defects. This process is expected, however, to be impeded

by Coulomb repulsion between the component acceptors. It is therefore expected

that P3V will be the most important compensating defect in germanium, with each

defect removing four electrons from the conduction band. This is similar to results

observed in highly n-doped silicon [52].

To estimate the temperature at which P2V may be expected to anneal, we refer to

Equation 6.1. If it is assumed that N , ν and ∆t are the same for P2V annealing in

germanium and As2V annealing in silicon, we come to the relationship

WSi/TSi = WGe/TGe (6.2)

where subscripts indicate the material. Using the results presented above for As2V

diffusion in silicon, along with the annealing temperature of ∼ 420◦C[52], TGe is

estimated to be around 290◦C, about 100◦C lower than TSi. This value is in good
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agreement with DLTS results where an Sb2V-related level has been suggested to

anneal out at around 300◦C[197].

The 100◦C difference in annealing temperatures between germanium and silicon also

appears in the carrier recovery at higher temperatures which occurs at ∼ 800◦C in

silicon, in the same temperature range as D3V annealing [52], while in germanium,

the carrier recovery appears to occur at ∼ 700◦C[59]. This could suggest that D3V

annealing begins with D2V diffusion away from the third D atom followed by the

dissociation of D2V.

6.5 Chapter Summary

In this chapter, the electrical properties and migration barriers for a number of

vacancy-related defects in silicon and germanium were studied.

In silicon, the AsV, As2V and AsBV defects were studied. It was found that the

most stable forms of the AsBV defect were those with the B atom at a second or

third neighbour site to the vacancy, in line with previous calculations on BV in

silicon. The As2V and AsBV defects were not found to exhibit donor levels, but all

the defects did insert acceptor levels into the band gap.

The migration barriers calculated for AsV and As2V were in line with previous

modelling calculations on the defects, while the diffusion barriers calculated for As

diffusion via formation of these defects lie in good agreement with experiment. An-

nealing temperatures estimated from the migration barriers were in good agreement

with experiment for the AsV defect, but less so for the As2V.

In germanium, a series of PxVy defects was studied. All of the studied defects

except P4V were found to possess at least one acceptor level within the band gap,

and all were found to be stable with respect to isolated P+
Ge and V or smaller defects.

PV and P2V were found to be mobile, with the same paths as for AsV and As2V

defects in silicon. No similar migration path for P3V could be seen, and combined

with the Coulomb repulsion between the component defects required to form the
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PxV2 defects, this suggests that P3V will be the dominant compensating defect in

germanium, as it has been observed to be in silicon.

Comparison between the migration barriers for P2V in germanium and As2V in

silicon suggest a difference in annealing temperature of ∼100◦C, in line with both

experimental measurements of As2V annealing and higher temperature recovery of

active dopant concentration. The latter is attributed to D2V migration being the

first step in the removal of the D3V defects in both materials.

Phosphorus diffusion in germanium will be studied more thoroughly in Chapter 7,

using many of these techniques and some of these results.



Chapter 7

Dopant Diffusion in Germanium

7.1 Introduction

Dopant diffusion is an important process to understand in semiconductor research,

due to the role it plays in shaping junctions in semiconductor devices. Ion-implantation

is the technique most often used to achieve the small-area doping that modern de-

vices require, but the atoms it introduces are often not at electrically active sub-

stitutional sites, and significant lattice damage accompanies any significant dopant

concentration. Activating the dopants and removing this implantation damage re-

quires thermal annealing which can also lead to diffusion of the dopant atoms away

from their intended positions, and it is this diffusion which this section will concen-

trate on understanding.

Phosphorus and boron are important dopants in silicon and germanium, though

their diffusion properties are radically different in the two materials. In germanium,

boron is a very stable acceptor which readily moves to active substitutional sites

and diffuses slowly, and p+ doping of germanium is relatively simple to achieve.

Phosphorus, on the other hand, diffuses readily under most annealing regimes, and

achieving a high active concentration is difficult, as has been discussed in Section 6.4.

In this Chapter, the diffusion of both these dopants will be examined, with the aim

of understanding the mechanisms involved.
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7.2 Modelling Method

Calculations were performed using 216 atom supercells and 501 atom clusters. De-

scription of these systems and other calculation parameters can be found in Sec-

tion 3.4.

Formation energies for neutral defects are calculated using the method described

in Section 3.3.2 and migration barriers using the NEB method in Section 3.3.5.

Electrical energy levels are calculated using either the marker or formation energy

methods, as described in Section 3.3.4. Formation energies for charged defects were

calculated either directly from charged supercell calculations as in Section 3.3.2 or

using marker method-calculated energy levels and the formation energies calculated

for neutral defects. Binding energies were calculated by both methods given in

Section 3.3.3.

The experimentally known donor level of substitutional Se at Ec−0.28 eV [198] and

acceptor level of the VO complex at Ev + 0.32 eV [169] are used as markers for the

boron interstitial defects, while the SbV donor level at Ev +0.09 and acceptor levels

at Ev +0.31 and Ec−0.30 [50, 131] were used for the phosphorus vacancy and boron

vacancy defects. Both of these defect sets were used for the phosphorus interstitial

defects.

Three mechanisms for dopant diffusion were investigated in these sections.

In vacancy-mediated diffusion, the dopants form complexes with the lattice vacancy

while remaining in a substitutional position themselves. Diffusion then proceeds as

motion of the vacancy enables net motion of the dopant atom. This mechanism has

been discussed already in Sections 6.3.4 and 6.4.3.

In interstitial-mediated diffusion, the dopant atoms are considered to either be

‘kicked out’ into interstitial sites (Pi or Bi) or to remain in substitutional positions

and form complexes with self interstitials (PI or BI). The diffusion then proceeds

either by motion of the Pi or Bi defects along the open channels of the crystal, or

by motion of the PI or BI defect as a whole.
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The third mechanism, correlated exchange (CE) has been proposed previously by

Pandey for self and dopant diffusion in silicon [199]. This method involves diffusion

without interaction with any other defects, and proceeds through the rotation of the

two adjacent atoms about their mutual bond-centre.

7.3 Phosphorus Diffusion

Diffusion of phosphorus via the three methods outlined above has been studied in

this work and will be reported below. It has long been believed that the fast diffu-

sion of phosphorus in germanium is due to a vacancy-mediated mechanism, and this

work will confirm this view and add a degree of additional detail to the atomistic un-

derstanding of all the mechanisms. Results found using neutral supercell-calculated

formation energies and marker-method-calculated energy levels are also compared

here with results found using the formation energy method to calculate energy levels.

There have been various experimental works previously published on phosphorus

diffusion in germanium. Tailing and out-diffusion of phosphorus implants have been

observed [74], and studies of diffusion profiles have been used to determine the dif-

fusion barrier for phosphorus in germanium. Measurements performed on the depth

of the p-n junction formed through phosphorus diffusion have yielded a diffusion

barrier of ∼2.5 eV [67]. Later work using spreading resistance probe techniques

and secondary ion mass spectroscopy (SIMS) yielded a barrier of 2.07 eV [57], while

other SIMS studies report diffusion barriers of 2.3 or 2.85 eV with a doubly or singly

negative diffusing species, respectively [72, 200]. Reference [72] also suggests possi-

ble evidence for transient enhanced diffusion (TED) effects. The PV defect, termed

the E-centre, has also been studied experimentally. The defect is observed to pos-

sess two acceptor levels, at Ev +0.35 and Ec − 0.23 eV and anneals out between 100

and 150◦C[50]. Previous supercell-based theoretical work has calculated the binding

energy of the related AsV defect as 0.6 eV in germanium [201]. This seems too low

in comparison with the E-centre in silicon which anneals out at similar temperatures

- around 150◦C for AsV and 125◦C for PV [52], and is calculated to possess binding
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energies for AsV of 1.09 [202], 1.21 [203] or 1.34 eV [201] according to a number

of previous studies. Diffusion via the PV defect has been studied with theoretical

methods in the neutral charge state, and is found to have a barrier of 2.98 eV [204].

The Pi and PI defects have not been so well studied in germanium.

The diffusion of phosphorus in silicon has also been studied previously by ab initio

and experimental methods. One theoretical study [205] on neutral defects found the

most stable structure to be one where the P atom lies at an interstitial site between

the bond centre and the centre of a hexagonal ring, dubbed the X2 configuration.

This structure was found to have a formation energy of 2.7 eV and a migration barrier

of 0.2 eV through motion around the hexagonal ring alongside reorientations between

them, although these energies are calculated with respect to the neutral rather than

positive substitutional P atom and thus no Fermi level dependence is discussed. A

second study [63], which included singly charged defects, found larger energies of

3.5 eV − µe for formation and 0.6 eV for migration in the neutral charge state via a

very similar path, with respect to singly positively charged substitutional P, where

µe is the Fermi energy as measured from the valence band top. In the positive charge

state, the 〈100〉 split interstitial - dubbed the S interstitial - and Hexagonal- (H-)

site interstitial were found to be degenerate with formation energies of 3.1 eV and

with a migration barrier of 0.3 eV by motion between the H-site and S interstitials.

In the negative charge state, the structure and path were found to be as in the

neutral case, but the energies rose to 4.1 − 2µe eV for formation and 1.4 eV for

migration, and so this charge state was considered unimportant for the diffusion of

the defects. The latter study is in excellent agreement with experimental studies

giving 3.68 and 3.43 eV diffusion barriers for the P0
i and P+

i defects respectively [75].

Most of the following work on phosphorus diffusion has been published in Physical

Review B [206].
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7.3.1 Vacancy Mediated Diffusion

The mechanisms for vacancy-mediated diffusion as well as many of the pertinent

calculations have already been presented in the discussion of PxV migration in Sec-

tion 6.4. In this Section, the work presented there will be extended to describe the

diffusion of phosphorus via the formation of these defects. The diffusion process

is considered to commence with the formation of the PxV defect and then proceed

as the defect migrates. To discuss this process, we therefore begin by investigating

the PxV defects before the migration calculations presented previously are included.

In addition, we present in this Section formation energies calculated directly from

charged supercells and energy levels calculated from these, for comparison with the

marker method calculations presented earlier.

Formation energies relative to P+
Ge and energy levels of the PV complex calculated

via both methods are reported in Table 7.1. The binding energy between the P+
Ge

and V= in the PV− defect is calculated to be 0.6 eV by the supercell method.

Using the singly negatively charged cluster, the total energy rises by 0.33, 0.64 and

0.82 eV with respect to the bound defect as the component defects are moved to the

second, third and fourth neighbour positions respectively. Thus the binding energy

is calculated in the cluster to be at least 0.82 eV. It can also be seen that the energy

levels calculated by relying on formation energies found in charged supercells and

those calculated by relying on energy levels found in the cluster using the marker

method are not in agreement. Using the experimental germanium band gap of

0.66 eV, the marker method results for energy levels, calculated using clusters, are

in good agreement with experimental values of Ev + 0.35 and Ec − 0.23 eV [50] for

the first and second acceptor levels of the PV defect, while the formation energy

method results, calculated in supercells, are not in agreement. In addition, it should

be noted that while the first acceptor level is calculated to lie above the second in

the marker method, the energy difference between the two is too small to say that

it contradicts the experimental data.

The same calculations were performed for the P2V defect, and the results are detailed

in Table 7.2. As with the PV defect, there is significant difference between the results



CHAPTER 7. DOPANT DIFFUSION IN GERMANIUM 122

Table 7.1: Formation energies relative to P+
Ge (Ef) and energy levels (E(n−1/n)) in

eV of the PV defect as calculated using neutral PV supercells and charged cluster

calculations (cluster) or from the formation energies calculated for charged defects

in the supercell (supercell).

Ef E(n− 1/n)

Charge supercell cluster Level supercell cluster

+ 2.16 2.10 (= /−) Ev + 0.23 Ev + 0.38

0 2.23 − µe 2.23 − µe (−/0) Ev + 0.08 Ev + 0.43

− 2.31 − 2µe 2.66 − 2µe (0/+) Ev + 0.07 Ev + 0.13

= 2.54 − 3µe 3.04 − 3µe

Table 7.2: Formation energies relative to P+
Ge (Ef) and energy levels (E(n − 1/n))

in eV of the P2V defect as calculated from neutral P2V formation and the cluster-

based marker method (cluster) or from the formation energies calculated for charged

defects in the supercell (supercell).

Ef E(n− 1/n)

Charge supercell cluster Level supercell cluster

+ 1.79 + µe 2.04 + µe (= /−) Ev + 0.19 Ev + 0.57

0 1.78 1.78 (−/0) Ev + 0.20 Ev + 0.50

− 1.98 − µe 2.28 − µe (0/+) Ev − 0.01 Ev − 0.26

= 2.17 − 2µe 2.74 − 2µe

of the two methods. From both calculations, the P2V defect exhibits no donor level,

instead displaying two acceptor levels which show a slight negative-U behaviour, but

again as with PV, the difference between the levels is too small to be certain of that

assignment.

The migration paths considered and barriers calculated in Section 6.4.3 are used

here again. Combining them with the formation energies of the PV defects as given

in Table 7.1 yield total diffusion barriers reported in Table 7.4. These vary with

the position of the Fermi level and for a mid-gap value for µe, the diffusion barrier

is found to lie between 2.7 and 3.5 eV for PV, and 2.7 to 3.3 eV for P2V with the

barrier decreasing in more heavily doped material.
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7.3.2 Interstitial Mediated Diffusion

7.3.2.1 Phosphorus-Interstitial Structures

The phosphorus-interstitial pair was studied, in configurations described as a sub-

stitutional P atom along with a T -site and H-site Ge self interstitial (PIT,H); T -

and H-sited P interstitials (PiT,H) and 〈110〉 and 〈100〉 split interstitials. From all

these initial structures,the neutral defect relaxed without barrier to a structure with

the P atom lying between a hexagonal and bond-centred site, labelled PiX2
. This

structure was also the most stable in the singly negative charge state, while in the

singly positive, the distorted bond-centre relaxes to a 〈100〉 split interstitial with

the P atom distorted towards an adjacent H site (PiS). In the positive state, the

PiS structure is degenerate with the PiH within the limits of the calculations. The

stable structures are shown in Fig 7.1 and their formation energies with respect to

P+
Ge and energy levels are given in Table 7.3.

The nearest neighbour distances between P and adjacent Ge atoms are 2.44 Å(101%

of the P+
Ge-Ge distance) for the P+

iH , 2.21 Å(91%) for the P0
iX2

and 2.20 Å(91%) for

the P−
iX2

defects. In the P+
iS defect, there is a separation of 2.18Å(90%) between the

P atom and the Ge that forms the other half of the split interstitial, 2.32Å(96%) for

the other two neighbours of the P atom, and 2.36Å(97% of the bulk Ge-Ge separa-

tion) between the split-interstitial Ge and its neighbouring Ge atoms. All of these

structures are very similar to those previously published for silicon [63]. The binding

energy for the dissociation of the P+
i defect into P+

Ge and a neutral 〈110〉 Ge self

interstitial was calculated within the supercell to be 0.7 eV. In a positively charged

cluster, the total energy rose to 0.34, 0.54, 0.58, 0.70 then 0.77 eV above that of the

stable bound defect as the component defects were moved from first through fifth

nearest neighbour positions. The energy levels exhibit a normal level ordering within

the band gap when calculated with the marker method and a possible negative-U

behaviour with the formation energy method. Using different markers leads to dif-

ferences in the level positions of 0.2-0.3 eV. There are no known experimental results

to compare with for the PI defect, and so it is not possible to determine which set
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Figure 7.1: Structures of the phosphorus interstitial complex, as viewed along a

〈111〉 direction. The smaller, lighter grey balls represent Ge atoms, and the larger,

darker grey ball represents the P. Each structure has been superimposed on a lighter

grey image of perfect Ge, as an aid to the reader. a) The distorted bond centre struc-

ture PiX2
. b) The distorted 〈100〉 split interstitial PiS. c) The H-site phosphorus

interstitial PiH .

Table 7.3: Formation energies relative to P+
Ge (Ef) and energy levels (E(n − 1/n))

in eV of the PI defect as calculated using neutral PI supercells and charged clus-

ter calculations with different sets of markers (cluster Se/VO or SbV) or from the

formation energies calculated for charged defects in the supercell (supercell).

Ef E(n− 1/n)

Charge supercell cluster Level supercell cluster

Se/VO SbV Se/VO SbV

+ 2.88 3.12 2.90 (−/0) Ev + 0.28 Ev + 0.39 Ev + 0.68

0 3.27 − µe 3.27 − µe 3.27 − µe (0/+) Ev + 0.39 Ev + 0.15 Ev + 0.37

− 3.55 − 2µe 3.66 − 2µe 3.95 − 2µe

of marker defects are more accurate. It will be seen, however, that the difference in

energy calculated here has little effect on the diffusion properties of phosphorus.

7.3.2.2 Phosphorus-Interstitial Migration Barriers

In the neutral and singly-negative charge states, phosphorus migration was consid-

ered to take place by a combination of three movements relating to the six-membered

ring on which the defect is considered to lie: a movement of the P across the H-site

to the Ge-Ge bond opposite its original location (Trans-H), a movement of the P
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Figure 7.2: Migration steps for the PiX2
structure of the phosphorus interstitial. The

smaller, light grey balls represent Ge atoms, and the larger, dark grey ball represents

P. The central structure is a starting point, repeated behind the other two as an aid

to the reader. To the left is the Trans-H migration step, whereby the P atom moves

across the adjacent H-site, and to the right is the Trans-S step, where the P moves

around the six-membered ring.

atom around the six-membered ring from one Ge-Ge bond to the next (Trans-S)

and a rotation about the Ge-Ge bond the phosphorous atom interrupts to a different

six-membered ring (Rot). The Trans-H and Trans-S steps are shown in Fig 7.2. In

the positive charge state, the migration was considered to take place via exchange

between the H-site and split interstitial structure along with migration of the phos-

phorous along 〈110〉 channels linking H sites. Therefore, migration steps between H

sites (HH), between the PiS structure and the adjacent H site (Short-SH) and an

H site one step removed from the initial position (Long-SH) as well as the rotation

of the PiS structure into a different 〈100〉 direction (Rot) were considered.

In the singly negative charge state, the Rot step was calculated to have a small

barrier of around 0.08 eV, with a saddle point at a bond-centre structure distorted

towards an adjacent tetragonal interstitial site (PiBC−T ). The Trans-S step was then

found to exhibit the lowest barrier of the translation steps, with a saddle point of

the PiS structure and a barrier of 0.80 eV. In the neutral charge state, the same

path is followed, but the barrier for Rot is a little more complex, and the Trans-S

barrier drops to 0.34 eV. In the singly positive charge state, the Short-SH barrier

is calculated to be 0.04 eV, the Long-SH barrier 0.84 eV, the HH barrier 0.76 eV,
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Figure 7.3: Migration barriers for the Pi defect in various charge states, relative

to the most stable Pi structure for that charge state. a,b) singly negative and

neutral charge states, showing the Trans-S migration step preceded and followed

by a Rot step. c) singly positive charge state migration, with the Short-SH step

preceding and following the Rot step. In this case, the Rot migration step consists of

a series of three peaks as the defect moves through several different high-symmetry

configurations during its motion.

and the Rot barrier 0.42 eV. This suggests a migration path where the PiS defect

rotates with a saddle-point of a split interstitial in the 〈111〉 direction (Pi111), and

two lower barriers with 〈110〉 split interstitial (Pi110) structures. The P atom then

migrates across the adjacent hexagonal ring via the H-site and rotates again. The

barriers for all these paths are detailed in Fig 7.3.

Combining these barriers with the formation energies for the Pi defect as calculated

above, we find total diffusion barriers as reported in Table 7.4. Again, the barrier

depends on the position of µe, and lies between 3.3 and 4.2 eV for a mid-gap Fermi

level.
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Table 7.4: Total migration energies in eV for the PV and PI defects as calculated

through the supercell based formation energy (supercell) and cluster based marker

(cluster) methods.
PV P2V

Charge supercell cluster Charge supercell cluster

0 3.8 − µe 3.8 − µe 0 3.6 − 2µe 3.6 − 2µe

− 3.6 − 2µe 4.0 − 2µe − 3.7 − 3µe 4.0 − 3µe

= 3.6 − 3µe 4.0 − 3µe = 3.9 − 4µe 4.5 − 4µe

PI

Charge supercell cluster

Se/VO SbV

+ 3.3 3.5 3.3

0 3.6 − µe 3.6 − µe 3.6 − µe

− 4.4 − 2µe 4.5 − 2µe 4.8 − 2µe

7.3.3 Correlated Exchange (CE)

The CE migration path was found to be essentially the same as that proposed by

Pandey for self-diffusion in silicon [199]. The barrier for this process was calculated

in the singly positive charge state, as this is the state that the substitutional P is

expected to possess, and is found to be 6.2 eV.

7.3.4 Discussion

The CE mechanism is observed to have a very high diffusion barrier of 6.2 eV,

strongly suggesting that it is not an important process in the diffusion of phosphorus

in germanium.

The PV defect was examined in charge states ranging from the neutral to the doubly

negative. Calculated electrical levels, given in Table 7.1 combined with experimental

values of Ev + 0.35 and Ec − 0.23 eV [50] for the acceptor levels suggest that the

cluster-based marker method is the most reliable method, providing further support

for the decision to rely on clusters. The binding energy between positively charged

P+
Ge and the double negative V= to form the singly negative PV− defect was calcu-

lated in the supercell to be 0.6 eV. This agrees with previous theoretical work using
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similar methods [201], but is not congruent with work in silicon. Similar annealing

temperatures have been measured experimentally for annealing of the PV defect in

the two materials [52] but significantly higher binding energies of 1.1-1.3 eV have

been calculated in silicon [201, 202, 203]. Cluster calculations of the binding energy

between P and V in germanium show a moderate increase in the energy to 0.82 eV

when the component defects are separated to the fourth neighbour positions. This

result is not converged with defect separation, but limited by the size of the clus-

ter and may be expected to converge to a value close to the results for silicon if

sufficiently large clusters could be used. P2V was not studied in such detail, but

migration barriers for the defect were seen to vary little with charge state, leaving

the formation energy to determine the relationship between the diffusion energies

via P2V formation.

The phosphorus-interstitial structures found here are very close to those calculated

previously in silicon [63]. The energy levels were found to depend on the method

used to calculate them. The cluster-calculations give a donor level at Ev + 0.15 or

0.37 eV and an acceptor level at Ev + 0.39 or 0.68 eV depending on the marker

used. The errors in the method are worse in this case than normal. We do not have

experimental results to compare these with. The binding energy between the neutral

〈110〉 Ge self-interstitial and P+
Ge to form the stable form of Pi+ was calculated in the

supercell to be 0.7 eV, and 0.77 eV in the cluster calculation, when the component

defects were moved to fifth neighbour positions. In contrast with the vacancy case,

the cluster-calculated value is quite close to the supercell value, and seems that

it may be nearly converged by this distance, but cluster size restrictions prevent

further tests.

The total barriers obtained depend on the method used to calculate the formation

energies of the defects. Fig 7.4 compares the barriers obtained from formation

energies as calculated from charged supercells with those calculated using neutral

phosphorus defects and marker method calculated energy levels with Se/VO used

as a marker for the interstitial defects. Using the SbV marker for the interstitial

defects lowers the total energy for PI+ migration, such that it is the most favourable

diffusion path up to µe = 0.15 eV. This is the only difference to the diffusion paths,
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Figure 7.4: Diffusion barrier dependence on Fermi level position for phosphorus

complexes as calculated from a) charged supercell formation energies and b) neutral

supercell formation energies and marker method calculated energy levels with Se

and VO as markers for the interstitial defects. Energies are given relative to singly

positively charged substitutional P. Only the barriers which are most favourable for

some Fermi level positions are displayed. Arrows and labels on the graphs indicate

the most favourable defect in the indicated regions.

and since P-doped material is unlikely to be p-type, it does not make a significant

difference to the diffusion of P.

These results suggest that phosphorus diffuses via a vacancy-mediated mechanism

for almost all values of the Fermi Energy. For µe .Ev +0.4 eV, the most favourable

diffusing species is the neutrally charged P2V complex, then for µe between 0.4 and

0.5 eV, diffusion would occur either via the formation of singly negative P2V or

doubly negative PV defects. Above 0.5 eV, the doubly negative P2V will dominate.

It is also possible that, for Fermi levels below 0.4 eV, the doubly negative PV= defect

would be dominant in phosphorus diffusion, as the lower concentration makes P2V

formation less likely.

In n-type material, these results would support experimental studies reporting a

doubly negative diffusing species, either PV or P2V [72]. For a µe of around 0.5 eV,

a diffusion barrier of ∼ 2.5 eV is calculated, in good agreement with previous ex-

perimental data [67, 57, 72]. Comparing our results with those suggesting singly

negative PV as the diffusing species and a diffusion barrier of 2.85 eV [200], this

barrier is in good agreement with our results for diffusion via P2V
0 with a µe of
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around 0.4 eV, which would exhibit the same dependence on carrier concentration.

The results are also in good agreement with parallel non-AIMPro theoretical work

using only uncharged supercells [204], and suggest that phosphorus diffusion could

be enhanced by supersaturation of either interstitials or vacancies, supporting the

idea that phosphorus might experience TED effects [72].

7.4 Boron Diffusion

As presented above for phosphorus diffusion, the diffusion of boron is studied in

detail via the same three methods. In the case of boron, it is believed that the

diffusion in germanium occurs via an interstitial-mediated mechanism, explaining

the low diffusivity. This will again be confirmed by the work presented below.

Diffusion of boron in germanium is seen to be very slow experimentally [58, 68], and

unlike in silicon, transient enhanced diffusion (TED) is very weak and has only re-

cently been observed [207]. Diffusion barriers of 4.5 to 4.65 eV have been measured

experimentally, but these are accompanied by unusually large pre-factors ranging

from 6×108 down to 1.97×105 cm2s−1 [58, 66, 67]. In silicon, boron diffusion is seen

to progress with a barrier of ∼3.5 eV [75], with pre-factors close to ∼0.9 cm2s−1.

In both silicon and germanium, boron diffusion is expected to proceed via an inter-

stitial mechanism [58, 208, 209], and the differences in the diffusion behaviour are

believed to stem from the differences in the behaviour of the self-interstitial in the

two materials.

Theoretical studies of boron in silicon have produced a number of possible diffu-

sion paths, most of which are in good agreement with the experimentally obtained

barriers. One study [70] finds a diffusion path proceeding from the positive boron

interstitial (BI+) complex whose formation energy is about 3.2 eV. This on chang-

ing its charge state to neutral then migrates via the H-site without true kick-out,

and with a barrier of 0.6 eV, leading to a total diffusion barrier of 3.8 eV. Another

study [61] proposed different charge-state-dependent paths with energy barriers of

2.9 eV+µe in the neutral and 3.4 eV in the negative charge states. A third investi-
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gation [71] found a formation energy of 1.8 eV+2µe for BI+ relative to the charged

substitutional defect, and a kick-out migration path with a total barrier of 1.2 eV

giving a net diffusion barrier of 3.0 eV+2µe. Taking µe to be at mid-gap ∼ 0.6 eV

yields a diffusion barrier of 4.2 eV.

There has also been previous modelling work carried out on boron diffusion in ger-

manium [69]. The calculated formation energy of BI+ was found to be 2.77 eV+2µe,

relative to B−
Ge and the defect was found to migrate with a barrier of 0.9 eV via bond

centres, followed by a subsequent reorientation with a barrier of 0.5 eV. The diffu-

sion barrier is then 3.7 eV+2µe, which if µe ∼ 0.35 eV gives a barrier of 4.4 eV. The

authors quote a barrier of 4.5 eV although their reasoning is unclear. Somewhat

similar barriers are found for other charge states. However, this work does not ac-

count for the large prefactors found experimentally, and so the agreement with the

experimental barrier does not answer all the questions around the diffusion. The

question of the high prefactors will be discussed later in this Chapter.

Most of this work has been published in Physical Review B [210].

7.4.1 Interstitial Mediated Diffusion

7.4.1.1 Boron-Interstitial Structures

Calculations were performed within the cluster method to establish the most stable

configuration for the BI complex in germanium. As with PI above, several structures

were studied: substitutional boron with T - and H-sited Ge self-interstitials, T - and

H-sited boron interstitials, and 〈110〉 and 〈100〉 split interstitials (BI110 and BI100).

The calculations gave the BI110 defect as the most energetically favourable in the

neutral and singly negative charge states, while the singly positive charge state

exhibited a structure with a substitutional boron atom and an adjacent tetrahedral

Ge interstitial (BIT ). The defect structures are in agreement with previous work

[69] and are also very similar to those found for BI complexes in silicon [211]. The

formation energy of BI0 relative to B−
Ge is calculated to be 3.2 eV + µe.
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Table 7.5: Energy change, in eV, upon separation of the BI− defect along a 〈110〉
chain. The last column indicates the component moved with respect to the previous

separation.
Separation Energy Component

(Steps) (eV) Moved

0 0.00 -

1 0.27 I

2 0.54 B

3 0.54 B

4 0.66 I

5 0.67 B

The binding energy for the singly negative defect was calculated by separating the

defect within the cluster. Table 7.5 gives the difference in energy of the cluster

as the component BGe and I defects are moved apart, along with an index showing

which component defect was moved to increase the separation each step. The lack of

increase when moving the B atom beyond the two-step separation suggests that the

defect is separated at this stage, and that the increase on moving the I defect is due

to interaction with the surface of the cluster, rather than a bulk effect. Therefore,

a binding energy of 0.54 eV for the BI− defect is calculated.

Energy levels were calculated using the marker method and charged clusters as

described. The BI donor level is found to lie at Ec − 0.10 eV and the acceptor level

at Ev + 0.29 eV. This implies that the structural changes indicated above give rise

to a negative-U [14] system in which the neutral charge state is not stable for any

Fermi Energy position, similar to BI in silicon [212]. Using the experimental band

gap of 0.66 eV, the (−/+) transition is found to lie at Ev + 0.43 eV.

Using these energy levels, formation energies of 2.6 eV + 2µe and 3.5 eV were

calculated for the singly positive and singly negative charge states, respectively.

7.4.1.2 Boron-Interstitial Migration Barriers

For the BI110 structure, the B atom is considered to migrate by the same mechanism

as the I110 defect described in Section 5.5. The B atom moves along the 〈110〉 chains
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Figure 7.5: Diagram showing the mechanisms involved in the migration of singly

negative BI110. The smaller, light grey balls represent Ge atoms and the larger,

black balls B. In the centre is the initial configuration, showing the distorted 〈110〉
chain containing the split interstitial. The faded chains on each side are the central

image repeated as a guide to the reader. To the left is shown the ‘short’ migration

step, where the B atom moves from one Ge to the next along the chain. To the right

is shown the ‘long’ migration step, where the B atom skips a Ge atom, and forms a

split interstitial with the next atom along.

in the crystal, and rotates between different chains. Migration along the chain occurs

by steps of one or two atoms, termed ‘short’ and ‘long’ steps respectively, where the

B atom forms a new split-interstitial structure with the atom to which it moves. This

path is depicted in Figure 7.5. The BIT structure migrates by movement of the B

atom to an adjacent crystal site. The interstitial atom drops into the substitutional

site just vacated, and the Ge atom at the site to which the B atom is moving is

displaced to a T -site. This path is depicted in Figure 7.6. Kick-out mechanisms

were also calculated, wherein the B atom jumps into and migrates along the 〈110〉
channels in the crystal.

For BI−110, the migration of the defect as a complex is calculated to have barriers

of 0.78 eV for the long, 1.50 eV for the short and 0.31 eV for the rotation steps.
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Figure 7.6: Diagram showing the proposed mechanism for migration of BIT . The

light grey balls represent Ge atoms while the large black ball represents the B atom.

The arrows indicate the direction of atomic movements, and the numbered Ge atoms

are used to clarify the atomic movement. Interstitial Ge atoms are at T -sites, with

three of the surrounding atoms shown.

The migration would therefore proceed through long and rotation steps only, with

a saddle point along the 〈110〉 chain lying at bond-centre sites distorted towards an

adjacent tetragonal site (BBC−T ). The kick-out path is a little more complicated.

The defect first reorients with a barrier of 0.31 eV to a dumbbell lying in a 〈110〉
direction perpendicular to the chains (B∗

110), lying 0.1 eV above the more stable B110

defect. Diffusion can then proceed to an adjacent B∗
110 position via a metastable BH

defect. The migration barrier for the kick-out mechanism was found to be 0.68 eV,

similar to the barrier for migration without kick-out.

In the neutral charge state, the migration as a complex is calculated to have barriers

of 0.76 eV for the long, 0.63 eV for the short and 0.16 eV for the rotation steps. It

would therefore proceed via the short and rotation steps with a barrier of 0.63 eV

and a saddle point structure of a bond-centre boron interstitial (BBC). The kick out

path proceeds with first a reorientation to a B∗
110 structure via a structure with a

substitutional B atom adjacent to a 〈111〉 self-interstitial structure (BGeI111). From

the B∗
110 structure, the B is kicked out into the interstitial channels, where it migrates

between H-site configuration (BH) saddle points and interstitial minima at a site
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Figure 7.7: Diagrams showing the structure of the barriers for BI complex migration

in three charge states. a),b) Diffusion in the negative charge state as a complex and

via B kick-out, respectively. c),d) Diffusion in the neutral charge state as a complex

and via B kick-out. e) f) Diffusion in the singly positive charge state as a complex

and via B kick-out.

between the H and the T site (BH−T ). No barrier is observed for kick-in from the

BH−T to B∗
110, and the total migration barrier is calculated to be 0.43 eV.

In the positive charge state, the migration proceeds as shown in Figure 7.6, with a

barrier of 0.60 eV. The saddle point for this path is a split interstitial in the 〈111〉
direction, after which the defect relaxes into a B∗

110 structure, 0.28 eV above the

stable BIT structure. The migration continues with the defect passing through a

BBC structure before arriving at the final BIT position. For the kick-out mechanism,

the barrier to kick-out is calculated to be 0.89 eV, with the B atom moving to a

tetrahedral interstitial position (BT ) 0.45 eV above the BIT structure. It then faces

a 0.70 eV barrier for further migration through the BH site, or a 0.44 eV barrier to

return to a BIT position. This gives a total barrier for kick-out migration of 1.15 eV

above the BIT structure.
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The barriers for all the charge states are illustrated in Figure 7.7. All these results,

both the paths and the calculated barriers lie close to equivalent calculations pre-

viously performed for boron in silicon [61, 71]. When compared with the earlier

non-AIMPro theoretical work in germanium, the barriers calculated here are lower

in all cases, but the paths taken are the same [69].

Total energy barriers for the diffusion of boron through an interstitial-mediated

mechanism can be calculated by summing the migration barriers presented here

with the formation energies presented in Section 7.4.1.1. These results are given

in Table 7.7. For a µe of around mid gap, as expected in the high temperature

experiments, the diffusion barriers become 3.8, 3.9 and 4.2 eV for the singly positive,

neutral and singly negative charge states respectively.

7.4.2 Vacancy Mediated Diffusion

Vacancy mediated diffusion is the method associated with most fast-diffusing im-

purities and self-diffusion in germanium. Using the marker method with SbV as a

marker, the (−/0) level of the BV defect is calculated to lie at Ev − 1.29 eV. The

position of this level below the valence band is a matter of some suspicion, but as

with the PI defect, it will be seen that this does not have an effect on the migration

barrier for any Fermi level position.

The formation energy of the neutral BV defect as calculated in the supercell is found

to be 3.0 eV+µe relative to the negatively charged B−
Ge. From the energy level above,

the formation energy for the negative defect is calculated to be 1.7 eV. The binding

energy for the defect is calculated in a negatively charged cluster using the same

method as for the BI defect above. The results are given in Table 7.6. As can be

seen, the BV− defect is not bound. This would therefore suggest a formation energy

for BV− of around the V0 formation energy, 2.5 eV from Section 5.4. Therefore,

the formation energy calculated form the energy level method is taken to be a lower

bound for the energy of the BV− defect.
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Table 7.6: Energy change, in eV, upon separation of the BV− defect along a 〈110〉
chain. The last column indicates the component moved with respect to the previous

separation.
Separation Energy Component

(Steps) (eV) Moved

1 0.00 -

2 0.02 V

3 0.14 B

4 0.08 V

5 0.07 B

The path considered for BV migration is the same as for PV migration discussed in

Section 6.4.3. Calculations were performed in the singly negative and neutral charge

states. These give an exchange barrier for the B atom to cross the vacancy of 2.6

eV in the negative charge state, and 2.8 eV in the neutral state. When combined

with the formation energy of the BV complex, this gives a total diffusion barrier for

boron by the vacancy mediated path of >4.3 eV for the negative and 5.8 eV+µe in

the neutral charge states. These values are found in Table 7.7.

These energies imply that vacancy related mechanisms are unlikely to compete with

the interstitial-mediated diffusion mechanism.

7.4.3 Correlated Exchange

The migration path for CE diffusion of boron was found to be essentially the same as

found for phosphorus. The barrier was calculated for the negatively charged system,

as the B dopants are expected to be in this charge state for the temperatures at

which diffusion takes place, and was found to be 4.1 eV.

7.4.4 Discussion

Vacancy mediated diffusion of boron in germanium is found in these calculations

to possess a high energy barrier, 5.8 eV + µe in the neutral charge state. This

suggests that this path is not important for boron in germanium, in contrast to
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Table 7.7: Total diffusion energies in eV for the BV, BI and boron CE mechanisms

BV BI CE

Charge Energy Charge Energy Charge Energy

0 5.8 + µe + 3.2 + 2µe − 4.1

− >4.3 0 3.6 + µe

− 4.2

results suggesting it as the method for self-diffusion and some some fast-diffusing

species in germanium [44, 171, 213].

Boron interstitial structures were found to be in agreement with previous theoretical

work in germanium [69], and also very similar to those found in silicon [71, 211].

Boron interstitial complexes were seen to migrate either as a unit or through kick-

out mechanisms. In the positive charge state, the migration as a unit exhibited a

lower energy barrier of 0.6 eV, while in the neutral and singly negative, the kick-out

mechanism was slightly more favourable at 0.4 and 0.7 eV respectively. Total energy

barriers, including the formation energies of the BI with respect to B−
Ge for diffusion

in the +, 0 and - charge states were then given as 3.2 + 2µe, 3.6 + µe and 4.2 eV

respectively.

Correlated Exchange has been investigated, and is observed to have a large diffusion

barrier, of 4.1 eV, in the singly negatively charged case. Therefore, for most values

of the Fermi energy, the interstitial-mediated diffusion path would remain the most

favourable.

Figure 7.8 shows the Fermi level dependence of the diffusion barrier of boron in ger-

manium as calculated here and indicates the most favourable diffusion mechanisms

for the relevant Fermi level ranges. The results suggest that for µe below ∼0.5 eV,

the diffusion of boron will proceed via an interstitial-mediated mechanism, while for

Fermi levels above this, the diffusion could proceed without any mediating defect,

though it is unlikely that B-doped material will be sufficiently n-type for this to

occur.

Prior theoretical work on boron diffusion in silicon has concentrated on the inter-

stitial mediated diffusion method, using a kick-out mechanism to create interstitial
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boron impurities which then diffuse within the 〈110〉 channels with low diffusion bar-

riers. A total activation energy for this process of 3.2-3.6 eV dependent on charge

state is reported [61, 70, 71]. This is close to the energy barriers reported here.

Experimental studies of boron diffusion in germanium have been carried out at high

temperatures, where the Fermi level is expected to lie around mid gap. The results

presented above give a diffusion barrier for boron of around 3.8-3.9 eV for this value

of µe. This is significantly lower than the experimental values of ∼4.5 eV and the

theory presented here can also not explain the high experimental pre-exponential

factor of 6×108 down to 1.97×105 cm2s−1 [58, 66, 67]. It is seen that both the

barrier and path calculated here are similar to that found experimentally [75] and

theoretically [61] in silicon, suggesting that the processes observed in silicon and

calculated in germanium may be similar. It was therefore decided to try using

the pre-factor of 0.87 cm2s−1 measured in silicon with the barriers calculated here

to calculate a diffusivity for boron in germanium. This leads to a diffusivity of

∼ 10−18 cm2s−1 for a temperature of 800 ◦C. For that temperature, the experimental

studies in germanium give diffusivities of 3 × 10−17 cm2s−1 [58], 6 × 10−15 cm2s−1

[66], and 4 × 10−13 cm2s−1 [67]. The calculated value is seen to be lower than the
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smallest value found from experiment, but not excessively so. This may suggest

that the diffusion observed and calculated in silicon follows the same or similar

path to that calculated for germanium and the experimentally observed diffusion in

germanium may not be very far removed either.

An explanation for these discrepancies in pre-exponential factors and diffusion bar-

riers between theory and experiment in germanium can be drawn from an earlier

theoretical study of the effect of high temperature electronic excitations on observed

diffusion processes in germanium and silicon [214]. In that paper, calculations were

performed for a general migration process, for temperatures approaching the melting

point. The excitations were found to increase both the energy barrier experienced by

the diffusing species and also the entropy of the process, leading to an increase in the

pre-exponential factor. The two effects were found to compete with each other and

result in a diffusivity which was almost unaffected. This is presented by the authors

as an explanation of the empirical compensation effect or Meyer-Neldel rule [215].

In germanium, the excitations were calculated to lead to an increase in the energy

barrier of ∼ 1 eV, and an increase in the pre-exponential factor of ∼ 105 cm2s−1.

Applying these temperature-induced modifications to the results of the calculations

here would then bring the modelling results in line with the experimental results

described.

7.5 Chapter Summary

Phosphorus and boron diffusion have been studied in germanium with a variety

of diffusion paths. Vacancy and interstitial-mediated diffusion have been studied at

length as well as a correlated exchange mechanism for diffusion without the presence

of a mediating defect.

For phosphorus, the vacancy-mediated diffusion path was found to be the most im-

portant, particularly for n-type material. For material with a sufficient phosphorus

concentration, the P2V defect is expected to be the dominant diffusing species, while

the PV defect will be dominant for less strongly doped material. The results calcu-
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lated here give a diffusion barrier of ∼ 2.5 eV for n-type material, in good agreement

with experiment.

For boron, the picture is complicated, apparently by high-temperature effects beyond

the scope of the theory being employed. Calculations give BI0/+ as the most mobile

species for material with a Fermi level in the middle or lower half of the band gap.

The calculated diffusion barriers for boron in germanium are around 3.8 eV, more

than 1 eV above those for P, but well below experimental results of around 4.5 eV.

This discrepancy may be resolved by including the effect of temperature induced

electronic excitations on the defect migration. Earlier work, studied these for

an arbitrary diffusion process in germanium, and found that the diffusion barrier

would be increased by ∼ 1 eV, while the pre-exponential factor would increase by

∼ 105 cm2s−1 [214]. Applying these values would bring the theoretical and experi-

mental results into agreement. This treatment does not appear to be necessary for

the phosphorus diffusion results.



Conclusion

With interest in germanium-based technology growing, demand for extending and

updating the understanding of defects in germanium crystals and the behaviour of

germanium devices is driving a great deal of research in the area. To best further

the understanding of these devices, a combination of theoretical and experimental

studies is required. Only experimental studies can investigate the full complexity

of real devices and processes in germanium, while theoretical work can investigate

individual defects or other clearly-defined effect within the more complex whole.

Thus the theoretical work presented in this thesis has been related to experimental

studies wherever possible.

The choice of supercell or cluster-based calculations to calculate the properties of

defects will be an issue for any study using DFT, and some effort was devoted to

ascertaining the best method for the studies performed here. Preliminary work on

the vacancy and divacancy in silicon, the results and discussion of which was pre-

sented in Chapter 3, suggested that the supercell approach gave the best agreement

between theory and experiment, and that 216 atom supercells and clusters with 329

Si atoms terminated with 172 H atoms are sufficient to achieve convergence with

system size. For later work on silicon the 216 atom supercell was therefore used.

For germanium, the picture is complicated by the combination of low experimen-

tal band-gap and LDA underestimation of the energy of excited states. This was

found to lead to defect-related levels crossing erroneously into the bulk bands of

the supercell for the divacancy, and a calculated insensitivity of the properties of

the divacancy on the charge state of the system. Cluster calculations, on the other

hand, have a wider band-gap, due to quantum confinement effects, and as such al-
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low defect-related energy levels to fall within the band gap more reliably. For the

germanium-based work presented in this thesis, then, clusters of 329 Ge and 172 H

atoms were used where possible, with supercells of 216 atoms used only where nec-

essary. Comparison was made between the supercell- and cluster-based calculations

in Chapters 5 and 7, and in both cases, the results supported the decision to rely

on cluster calculations over supercell ones.

Annealing of the divacancy in germanium was studied as mentioned above and the

results were presented in Chapter 5. The study started with supercell calculations,

but this method was revealed to be unreliable from band-structure analysis and an

insensitivity to charge states, and so the study was concluded using cluster calcula-

tions. The defect was predicted to anneal through migration to a trapping centre,

with a barrier of 1.0 to 1.3 eV, depending on charge state. This was translated into

a predicted annealing temperature of 200 to 290◦C, with the temperature for the

neutral defect in fair agreement with experimentally determined values of 150 or

180◦C[26, 27, 30].

Presented next were the results of a study on the properties of larger vacancy clusters

in germanium. The clusters were found to be bound at all sizes studied, and all sizes

yielded acceptor levels within or below the band gap, suggesting that larger clusters

are negatively charged for all values of the Fermi level. Smaller clusters, however,

may become neutrally charged in regions of high damage, allowing for the larger

clusters to grow without Coulomb repulsion, as has been suggested previously as an

explanation of experimental results [142].

Also of interest in this work was the self-interstitial in germanium. Less studied as

it had not been believed to be experimentally observed, and was not a dominant

defect in germanium, the self-interstitial is studied here to find its stable structure

in the neutral charge state and some of its diffusion paths. This preliminary work

has since formed the basis of much more extensive work by A. Carvalho [182, 183],

and has formed a section of her thesis [184].

Chapter 6 covered a study of dopant-vacancy defects in both silicon and germanium.

In silicon, the AsV E-centre and related As2V and AsBV defects were studied, in
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an effort to explain experimental results from mesa diodes containing these dopants

[187]. None of the defects studied exhibited a donor level at Ev+0.20 eV, as observed

in the experiment, but the AsBV defect was calculated to have an acceptor level at

Ev + 0.27 eV which may exhibit donor-like characteristics. No explanation could be

reached for a mechanism to form the AsBV defect without AsV being observed in

the experiment, however.

The migration barriers calculated for AsV and As2V lay in good agreement with

previous non-AIMPro theoretical work [53, 188], and predicted annealing temper-

atures for the two defects of ∼ 75 − 255◦C and ∼ 575◦C respectively, depending

on charge state. The first result is in fair agreement with experimental values of

∼ 175 − 225◦C while the result for As2V is rather higher than experimental values

of ∼ 420◦C.

Phosphorus-vacancy defects in germanium were investigated as a possible species

to explain the low activation ceiling for n-type doping in germanium. Calculations

showed that all the phosphorus-vacancy defects studied were stable with respect to

their component parts, and that all except for P4V inserted acceptor levels into the

band gap. P3V and P4V have been calculated previously to have negative formation

energies, and this was confirmed for these defects along with P5V2. A consideration

of migration paths for the defects along with a consideration of Coulomb forces

suggest that the P3V defect will be the dominant compensating centre in germanium,

in parallel with previous experimental observations in silicon [52]. Comparing the

migration barriers for As2V in silicon and P2V in germanium, it was calculated

that the defect in germanium will migrate at a temperature ∼ 100 K below that

for silicon. It was suggested that this could explain the ∼ 100 K difference in the

temperature of post-implantation carrier recovery between the two materials [51, 59],

as the annealing of D3V (D=As,P) is expected to start with the migration of the

D2V centre away from the third donor atom.

Chapter 7 covered two in depth studies into dopant diffusion in germanium. Phos-

phorus and boron diffusion were calculated to proceed via vacancy and interstitial-

mediated mechanisms respectively, in agreement with previous predictions based
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on experimental and theoretical works. The in-depth studies extend the previous

understanding of the various diffusion mechanisms.

Boron diffusion is particularly interesting, as the results calculated from ground-

state DFT cannot explain the large experimentally observed diffusivity prefactors.

The diffusion barrier was also found to be around ∼ 1 eV below that calculated from

experimental measurements. This was explained by invoking independent theoret-

ical work on the effect of thermal excitations on migration barriers in germanium

and silicon. That work calculated that these effects should raise the entropy of the

system, increasing the prefactor and should also raise the diffusion barrier. The

values that they calculated for these increases in high temperature germanium are

very similar to the differences between the experimental and theoretical calculated

results presented here.

Looking forwards, the state of research into germanium devices remains open to a

great deal of further research. Many questions are still unanswered and many works

previously published, especially those published in the very early days of semicon-

ductor devices, could benefit from the application of more modern techniques. Even

the work presented here could be refined in the future with the application of greater

computational resources and improved theoretical models. A number of advanced

techniques are being developed to overcome the band-gap problem of the LDA, and

as these are brought to maturity and computational resources grow to match the

higher requirements of these theories, much of the theoretical literature may be

re-examined with a greater accuracy and confidence.
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and P. R. Briddon, Phys. Rev. B 62, 158 (2000).

[107] L. Hoffmann, E. V. Lavrov, B. B. Nielsen, B. Hourahine, R. Jones, S. Öberg,
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125 (2008).

[143] D. A. Abdulmalik, P. G. Coleman, H. A. W. El Mubarek, and P. Ashburn, J.

Appl. Phys. 102, 013530 (2007).



BIBLIOGRAPHY 155

[144] X. D. Pi, C. P. Burrows, and P. G. Coleman, Phys. Rev. Lett. 90, 155901

(2003).
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Semicond. Proc., in press .
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