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Abstract

This thesis covers the application of the local density approximation of den-
sity functional theory to a variety of related processes in germanium and
silicon. Effort has been made to use calculated results to explain experi-

mentally observed phenomena.

The behaviour of vacancies and vacancy clusters in germanium has been
studied as these are the dominant intrinsic defects in the material. Partic-
ular attention was paid to the annealing mechanisms for the divacancy as a
precursor to the growth of the larger clusters, for which the electrical prop-
erties and formation energies have been studied. Some preliminary work
is also presented on the germanium self-interstitial structure and migration

paths.

Attention was then turned to a selection of dopant-vacancy defects in both
silicon and germanium. An effort was made to explain recent experimental
observations in silicon through investigating a number of defects related to
the arsenic E-centre. Following this, the properties of donor-vacancy clus-
ters in germanium were studied, and comparison with the results calculated
for silicon suggest a significant parallel between the behaviour of the defects

and dopants in the two materials.

Finally, extensive work was performed on the diffusion of phosphorus and
boron in germanium. Diffusion of both dopants was studied via interstitial
and vacancy mediated paths as well as by a correlated exchange path not
involving any intrinsic defects. The results obtained confirmed current the-
ories of the mechanisms involved in the diffusion of the two defects, while
also expanding the knowledge of other paths and giving Fermi level depen-
dences for the energy and mechanism for diffusion of the two defects. Boron
diffusion was found to exhibit strong Meyer-Neldel rule effects, which are
used to explain the unusually high diffusivity prefactors and energy barriers

calculated from experimental measurements for this dopant.
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