Density Functional Theory Modelling of Intrinsic and Dopant-Related Defects in Ge and Si

Submited by Colin Janke to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics.

December, 2008

This thesis is available for library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material is included for which a degree has previously been conferred upon me.

Abstract

This thesis covers the application of the local density approximation of density functional theory to a variety of related processes in germanium and silicon. Effort has been made to use calculated results to explain experimentally observed phenomena.

The behaviour of vacancies and vacancy clusters in germanium has been studied as these are the dominant intrinsic defects in the material. Particular attention was paid to the annealing mechanisms for the divacancy as a precursor to the growth of the larger clusters, for which the electrical properties and formation energies have been studied. Some preliminary work is also presented on the germanium self-interstitial structure and migration paths.

Attention was then turned to a selection of dopant-vacancy defects in both silicon and germanium. An effort was made to explain recent experimental observations in silicon through investigating a number of defects related to the arsenic E-centre. Following this, the properties of donor-vacancy clusters in germanium were studied, and comparison with the results calculated for silicon suggest a significant parallel between the behaviour of the defects and dopants in the two materials.

Finally, extensive work was performed on the diffusion of phosphorus and boron in germanium. Diffusion of both dopants was studied via interstitial and vacancy mediated paths as well as by a correlated exchange path not involving any intrinsic defects. The results obtained confirmed current theories of the mechanisms involved in the diffusion of the two defects, while also expanding the knowledge of other paths and giving Fermi level dependences for the energy and mechanism for diffusion of the two defects. Boron diffusion was found to exhibit strong Meyer-Neldel rule effects, which are used to explain the unusually high diffusivity prefactors and energy barriers calculated from experimental measurements for this dopant.

Acknowledgements

The research presented between these covers owes its existence to many people, and I would like to take this space to express my gratitude.

First and foremost, my supervisor of the past three years, Prof. Robert Jones, whose enthusiasm, insight and guidance have been a great benefit, and who has always had time for my questions and puzzles.

Secondly, my family, especially my parents, Susan and Eric Janke, who kindled my interest in science and the natural world so many years ago, and without whose support and encouragement this thesis would never have been completed.

Various members of the extended AIMPRO group are due a mention here, too: Patrick R. Briddon for making the code available and working tirelessly to maintain and improve it, Alexandra Carvalho and Naomi Fujita for their friendship over the past three years, Steve Sque, Luke Hounsome and Thomas Eberlein for their patience and guidance with my interminable questions and mistakes, Sven Öberg for allowing us to use his computers and spending significant time and effort on getting my calculations running and José Coutinho for his guidance and encouragement, and for showing me that you don't *have* to wear a suit to a conference.

Derek W. Palmer, for many insightful discussions on the experimentalist's view of the field and invaluable time spent proof-reading this thesis.

The Engineering and Physical Sciences Research Council for the financial backing which has allowed me to perform this research and present it at several conferences.

Finally, to Mark Roberts-Mapp, my long suffering house mate for helping me remain connected to the real world (and several less real ones) outside the walls of the Physics Department, and to my many other friends, particularly those involved with Heart of Pargon for making sure I didn't forget that there is more to life than solid state physics.

List of Publications

First Author

- Supercell and cluster density functional calculations of the thermal stability of the divacancy in germanium
 Janke, R. Jones, J. Coutinho, S. Öberg and P. R. Briddon, Mat. Sci in semicond. Proc. 9, 484 (2006)
- Ab initio investigation of boron diffusion paths in germanium
 C. Janke, R. Jones, S. Öberg and P. R. Briddon, J. Mater. Sci.: Mater. Electron. 18, 775 (2006)
- Supercell and cluster density functional calculations of the thermal stability of the divacancy in germanium
 C. Janke, R. Jones, S. Öberg and P. R. Briddon, Phys. Rev. B, 75, 195208 (2007)
- 4. Ab initio studies of arsenic and boron related defects in silicon mesa diodes
 C. Janke, R. Jones, S. Öberg and P. R. Briddon, Appl. Phys. Lett 90, 152103 (2007)
- Ab initio investigation of boron diffusion paths in germanium
 C. Janke, R. Jones, S. Öberg and P. R. Briddon, Phys Rev B, 77, 075208 (2008)
- Ab initio investigation of phosphorus diffusion paths in germanium
 C. Janke, R. Jones, S. Öberg and P. R. Briddon, Phys Rev B, 77, 195210 (2008)

 Ab initio investigation of phosphorus and boron diffusion in germanium
 C. Janke, R. Jones, J. Coutinho, S. Öberg and P. R. Briddon, Mat. Sci. in Semicond. Proc., in press

Collaborative Work

- Early stage donor-vacancy clusters in germanium
 J. Coutinho, V. J. B. Torres, S. Öberg, A. Carvalho, C. Janke, R. Jones and P. R. Briddon, J. Mater. Sci: Mater. Electron., 18, 769 (2006)
- Strong compensation of n-type Ge via formation of donor-vacancy complexes
 J. Coutinho, C. Janke, A. Carvalho, V. J. B. Torres, S. Öberg, R. Jones and
 P. R. Briddon, Phys. B, 401, 179 (2007)
- Self-interstitial in germanium
 A. Carvalho, R. Jones, C. Janke, J. P. Goss, P. R. Briddon, J. Coutinho,
 S. Öberg, Phys. Rev. Lett., 99, 175502 (2007)
- 4. Limits to n-type doping in Ge: Formation of donor-vacancy complexes
 J. Coutinho, C. Janke, A. Carvalho, S. Öberg, V. J. B. Torres, R. Jones,
 P. R. Briddon, Defects and Diffusion Forum, 273, 93 (2008)
- Primary defects in n-type irradiated germanium: a first-principles calculation
 A. Carvalho, R. Jones, C. Janke, S. Öberg and P. R. Briddon, Sol. Stat.
 Phen., 131-133, 253 (2008)
- 6. First-principles study of the diffusion mechanisms of the self-interstitial in germanium

A. Carvalho, R. Jones, J. P. Goss, C. Janke, S. Öberg and P. R. Briddon, J. Phys.: Cond. Mat., 20, 135220 (2008)

Contents

\mathbf{A}	bstra	\mathbf{ct}							ii
A	cknov	wledgen	ients						iii
Li	st of	Publica	tions						iv
Li	st of	Figures							xii
Li	st of	Tables							xv
1	Intr	oductio	n						1
	1.1	Introdu	ction		•		•		1
	1.2	Silicon a	and Germanium		•				1
	1.3	Uninten	tional Defects	•	•		•	•	3
		1.3.1 l	ntrinsic Point Defects		•		•	•	3
		1.3.2 l	Dislocations	•	•				10
		1.3.3 l	Donor-Vacancy Complexes	•	•				11
	1.4	Doping			•				13

		1.4.1	Implantation of Dopants	13
		1.4.2	Dopant Activation	14
		1.4.3	Dopant Diffusion	15
	1.5	Aims	and Chapter Summaries	16
2	$\mathrm{Th}\epsilon$	eory Ba	ackground	19
	2.1	The N	Iany Body Problem	19
		2.1.1	Born-Oppenheimer Approximation	20
		2.1.2	Variational Principle	22
		2.1.3	Hartree's Method	23
		2.1.4	Hartree-Fock Theory	25
	2.2	Densit	ty Functional Theory	26
		2.2.1	Kohn-Sham Equations	28
		2.2.2	Exchange and Correlation Energies	29
		2.2.3	Pseudopotentials	30
		2.2.4	Choice of Boundary Conditions	32
	2.3	Chapt	er Summary	33
3	$\mathrm{Th}\epsilon$	eoretic	al Methods	34
	3.1	AIMI	PRO	34
		3.1.1	Supercell AIMPRO	34
		3.1.2	Cluster AIMPRO	37

CONTENTS

	3.2	Cluste	er and Supercell Comparison	38
		3.2.1	Introduction	38
		3.2.2	Results	40
	3.3	Calcu	lation of Observables	42
		3.3.1	Defect Structure	42
		3.3.2	Formation Energies	44
		3.3.3	Binding Energies	46
		3.3.4	Energy Levels	47
		3.3.5	Diffusion Barriers	50
	3.4	Calcu	lation Parameters	52
	3.5	Chapt	ter Summary	54
4	Exp	erime	ental Methods	56
	4.1	Introd	luction	56
	4.2	Deep	Level Transient Spectroscopy	56
		4.2.1	Deep Levels	57
		4.2.14.2.2	Deep Levels	57 59
		4.2.14.2.24.2.3	Deep Levels The Junction Capture and Emission	57 59 60
		4.2.14.2.24.2.34.2.4	Deep Levels	57 59 60 63
	4.3	 4.2.1 4.2.2 4.2.3 4.2.4 Positr 	Deep Levels	57 59 60 63 65

		4.3.2	Annihilation	66
		4.3.3	Vacancy Clustering in ZnO	68
	4.4	Secon	dary Ion Mass Spectroscopy	69
		4.4.1	Basic Principles	70
		4.4.2	Primary Ion-Sample Interactions	71
		4.4.3	Nitrogen Incorporation in GaNAs	72
	4.5	Spread	ding Resistance Profiling	73
		4.5.1	Evolution of Boron Interstitial Clusters in Silicon	73
	4.6	Trans	mission Electron Microscopy	74
		4.6.1	Controlling the Electron Beam	74
		4.6.2	Sample Restrictions	75
		4.6.3	Real-Time Imaging of Gold Nanowire Evolution	76
	4.7	Scann	ing Tunnelling Microscopy	78
		4.7.1	Self Assembly of Ordered Bi Patterns on InAs	78
	4.8	Summ	nary	79
5	Intr	rinsic I	Defects in Germanium	80
	5.1	Introd	luction	80
	5.2	Model	lling Method	81
	5.3	Divac	ancy Annealing	81
		5.3.1	Results	83
			· · · · · · · · · · · · · · · · · · ·	

		5.3.2	Discussion	88
	5.4	Vacan	cy Clustering	90
		5.4.1	Results	91
		5.4.2	Discussion	93
	5.5	Self In	terstitial Diffusion	95
		5.5.1	Results	95
		5.5.2	Discussion	97
	5.6	Chapt	er Summary	97
6	Dor	ant - R	elated Defects	99
U	Dop			00
	6.1	Introd	uction	99
	6.2	Model	ling Method	100
	6.3	Arseni	c-Boron-Vacancy defects in Silicon	100
		6.3.1	Defect Structures	101
		6.3.2	Energy Levels	104
		6.3.3	Formation Energies	105
		6.3.4	Migration Energies	105
		6.3.5	Discussion	107
	6.4	Donor	-Vacancy Clusters in Germanium	109
		6.4.1	Energy Levels	111
		6.4.2	Formation Energies	112

		6.4.3 Migration Energies
		6.4.4 Discussion
	6.5	Chapter Summary
7	Dop	ant Diffusion in Germanium 117
	7.1	Introduction
	7.2	Modelling Method
	7.3	Phosphorus Diffusion
		7.3.1 Vacancy Mediated Diffusion
		7.3.2 Interstitial Mediated Diffusion
		7.3.3 Correlated Exchange (CE)
		7.3.4 Discussion
	7.4	Boron Diffusion
		7.4.1 Interstitial Mediated Diffusion
		7.4.2 Vacancy Mediated Diffusion
		7.4.3 Correlated Exchange
		7.4.4 Discussion
	7.5	Chapter Summary

Conclusion

List of Figures

1.1	Three possible configurations of an interstitial atom in a diamond	
	structure crystal.	4
1.2	Schematic diagram of dislocation structures	11
3.1	Diagram showing the relationship between formation energy and en-	
	ergy levels of a defect.	48
3.2	Schematic diagram of the marker method	49
4.1	Digram showing the band bending present at a p^+n junction	59
4.2	Schematic diagram illustrating the action of a filling pulse in majority	
	carrier DLTS	61
4.3	Schematic diagram illustrating the double boxcars measurement used	
	in DLTS	62
4.4	PAS results showing V_{Zn} void evolution in ZnO with annealing time.	69
4.5	TEM images of void growth in Au nanowires	77
5.1	Diagram depicting the shape of the diffusion barrier of the divacancy.	84
5.2	Divacancy band structure as calculated between the Γ point and two	
	L points	85

5.3	Diagram describing the two types of Jahn-Teller distortion of the
	divacancy
5.4	Diagram showing the structure of clusters of up to 14 vacancies 92
5.5	Graph of the formation energy and number of dangling bonds per vacancy for clusters of up to 14 vacancies
5.6	Graph showing the calculated first and second acceptor states of clus- ters of up to ten vacancies
5.7	Diagram describing the 'short' and 'long' diffusion steps of the I_{110} defect
6.1	Examined structures for the AsBV defect complex
6.2	Diffusion path taken by AsV in silicon
6.3	Diagram of the diffusion path taken by As_2V in silicon
6.4	Diagram of the diffusion barriers for the P_2V defect
7.1	Structures of the phosphorus interstitial complex
7.2	Diagram describing the migration steps for the P_{iX_2} structure of the phosphorus interstitial
7.3	Migration barriers for the P_i defect in the singly negative, neutral and singly positive charge states
7.4	Diffusion barrier dependence on Fermi level position for phosphorus complexes as calculated using the formation energy and marker meth- ods for energy levels
7.5	Interstitial-mediated boron diffusion steps along the $\langle 110\rangle$ chain 133

LIST OF FIGURES

7.6	Interstitial-mediated boron diffusion steps for the singly positively
	charged structure
7.7	Diagrams showing the barriers for BI complex migration in the singly negative, neutral and singly positive charge states
7.8	Diffusion barrier dependence on Fermi level position for boron com-
	plexes

List of Tables

3.1	Binding energies, migration barriers and energy levels of V and V_2 in
	Si
5.1	Binding energy of V_2 in germanium with increasing separation 86
5.2	Binding (E_b) , migration (E_m) and symmetry constrained saddle point
	(E_{scsp}) energies, in eV, of the divacancy in germanium
5.3	Inter-atomic distances for atoms surrounding the divacancy 89
6.1	Relative energies of different AsBV structures
6.2	Inter-atomic separation around the $\mathrm{As}_x\mathrm{B}_y\mathrm{V}$ defects in silicon 103
6.3	Energy levels of $As_x B_y V$ defects in silicon
6.4	Formation energy of $As_x B_y V$ defects in silicon
6.5	Total diffusion barriers for As via the formation of AsV and As_2V
	defects in silicon
6.6	Energy levels of $P_x V_y$ clusters in germanium
6.7	Formation energies calculated of $\mathbf{P}_x\mathbf{V}_y$ clusters in germanium 112
7.1	Formation energies and energy levels of the PV defect

7.2	Formation energies and energy levels of the P_2V defect
7.3	Formation energies and energy levels of the PI defect
7.4	Total migration energies for the PV and PI defects
7.5	Energy change upon separation of the BI ⁻ defect along a $\langle 110 \rangle$ chain. 132
7.6	Energy change upon separation of the BV^- defect along a $\langle 110\rangle$ chain.137
7.7	Total diffusion energies in eV for the BV, BI and boron CE mechanisms138