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Abstract

Experimental studies presented in this thesis have shown the first realisation of

resonant tunnelling transport through two impurities in a vertical double-barrier

tunnelling diode; have proved the chiral nature of charge carriers in graphene by

studying ballistic transport through graphene p-n junctions; have demonstrated

significant differences of 1/f noise in graphene compared with conventional two-

dimensional systems.

Magnetic field parallel to the current has been used to investigate resonant tun-

nelling through a double impurity in a vertical double-barrier resonant tunnelling

diode, by measuring the current-voltage and differential conductance-voltage char-

acteristics of the structure. It is shown that such experiments allow one to obtain

the energy levels, the effective electron mass and spatial positions of the impurities.

The chiral nature of the carriers in graphene has been demonstrated by com-

paring measurements of the conductance of a graphene p-n-p structure with the

predictions of diffusive models. This allowed us to find, unambiguously, the con-

tribution of ballistic resistance of graphene p-n junctions to the total resistance of

the p-n-p structure. In order to do this, the band profile of the p-n-p structure has

been calculated using the realistic density of states in graphene. It has been shown

that the developed models of diffusive transport can be applied to explain the main

features of the magnetoresistance of p-n-p structures.

It was shown that 1/f noise in graphene has much more complicated concen-

tration and temperature dependences near the Dirac point than in usual metallic

systems, possibly due to the existence of the electron-hole puddles in the electro-

neutrality region. In the regions of high carrier concentration where no inhomogene-

ity is expected, the noise has an inverse square root dependence on the concentration,

which is also in contradiction with the Hooge relation.
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Introduction

Due to miniaturisation trends in semiconductor technology, interest in mesoscopic

physics research has risen over the last three decades. Nanotechnology has grown

into a separate field of modern science, which will have wide applications in the fu-

ture. The state of the art in the field is to control the movement of a single electron

through a nanodevice such as a resonant tunnelling diode. Different methods of tun-

nelling spectroscopy are an important tool for investigating the electronic structure

of these nanodevices in the energy, and momentum space. Studies have been done

on such systems as quantum dots, quantum wells, and ballistic transistors. Zero-

dimensional structures where electrons are confined in all three dimensions have

been used to investigate properties of the surrounding contacts, including studies

of local-density-of-states (LDOS) fluctuations, Landau-level formation, and Fermi

edge singularities. The aim of this work is to study resonant tunnelling through a

double impurity in a vertical double-barrier resonant tunnelling diode and to find

some physical models to describe the behaviour of the system in magnetic field.

When conductance occurs via single-electron transport, fluctuations of the elec-

tron current are important to study. In this case we not only look at the average

current through the system, but also noise. When we talk about noise we usually

think of the ways to reduce it in any device applications. The importance of the

physics of fluctuations stems from the fact that the ultimate accuracy of measure-

ment of any physical quantity is limited by the fluctuations in this quantity, and the

sensitivity of many devices is also limited by these fluctuations. Interest continues

to grow in understanding the fundamental processes underlying different types of

noise, in particular 1/f noise and shot noise. Some of such studies in a double-

barrier resonant tunnelling diode and graphene transistor structures are presented

in this thesis.
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Introduction

Recently, graphene, a new two-dimensional material has attracted much atten-

tion because of its unusual and counterintuitive properties not seen in the con-

ventional two-dimensional systems. Graphene is a single atomic layer of graphite,

successfully isolated from graphite only in 2004. This material previously existed

only as a theoretical concept but has now become a hot research topic due to its pos-

sible electronic application. For instance, graphene is considered to be the successor

of silicon in nanoelectronics because of its high room temperature carrier mobility.

Also the charge carriers in graphene have a property called chirality, which is similar

to spin and opens an interesting field for fundamental research. Little is currently

known about the noise properties of graphene and it is one of the aims of this thesis

to address this. The first study of 1/f noise in graphene is presented which reveals

a new mechanism of noise in the Dirac region when both electrons and holes are

present.

The First Chapter contains a brief introduction to the main concepts used to

describe transport properties of conventional low-dimensional systems: transport in

a two-dimensional electron gas, and resonant tunnelling through a quantum well. In

this chapter noise as a useful tool to investigate properties of a conductive system

not seen in conductance is introduced.

In the Second Chapter a description of the samples is given with a brief intro-

duction describing the technology used in the sample preparation. The circuitry for

current, conductance, and voltage noise measurements is discussed.

The rest of the thesis describes the experimental results. At the beginning of

each experimental chapter an introduction to the theoretical results and experimen-

tal observations related to the topic of the chapter is presented. After this, the

experimental and theoretical results of this work are given.

The Third Chapter is devoted to electron transport in a double-barrier resonant

tunnelling diode. Experimental results on resonant tunnelling through two impuri-

ties are discussed and the main parameters of these impurities are derived using a

model describing a diamagnetic shift of their energy levels.

The results of measurements of transport properties of chiral particles (electrons

and holes with a linear dispersion relation) in ballistic graphene p-n junctions are

given in Chapter Four. Preliminary results are also given on oscillatory behaviour

of the resistance in p-n-p structures which can be a result of the Klein paradox and
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wave interference of the chiral particles in graphene.

Chapter Five describes an experimental study of 1/f noise in graphene and

multi-layer graphene where a dip in the (normalised) noise is observed in the Dirac

point which shifts together with the Dirac point shift due to doping. The influence

of the temperature on 1/f noise in graphene reveals that the dip in 1/f noise as

a function of gate voltage can only be observed at high temperatures, but at low

temperatures (0.26 K) there is no such a dip.

Finally, in the Conclusion all the main results obtained in this work are sum-

marised and suggestions for further work are given.
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Chapter 1

Basic concepts

1.1 Introduction

In this chapter the basic concepts behind the properties of low-dimensional systems

used in this thesis are introduced.

The experimental part of this thesis is mainly devoted to graphene, a 2D layer

of carbon atoms with unusual electronic properties, so the difference between con-

ventional two-dimensional electron systems and graphene will be emphasised. The

Boltzmann kinetic equation will be introduced which is a widely used description

of the transport properties of two-dimensional systems. The Landauer-Büttiker for-

malism used in mesoscopic physics will also be introduced, which is important in

small-sized systems.

An introduction to the physics of noise is given in the second part of this chapter.

Four types of noise are discussed, together with the measurements which have to

be done in order to distinguish them and to characterise the noise properties of the

systems.

1.2 Low-dimensional systems

1.2.1 Two-dimensional electron gas

A two-dimensional electronic gas (2DEG) is an electronic gas in which particles

can move freely only in two dimensions (2D), but in the third dimension are con-

fined in a potential well. Restricted movement of the electrons can be achieved by
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imposing a confining potential, for example, by electric field from a ‘gate’ in a field-

effect transistor structure or by a specially constructed conduction band profile of

GaAs/AlGaAs based heterostructure. The latter is called a modulation-doped field-

effect transistor (MODFET) and is shown in Fig. 1.1. The 2DEG is formed near

the interface GaAs/AlGaAs because the potential εc(z) has a band-offset ∆εc ∼ 0.3

eV. The electrons in the 2DEG fill the energies from the ground state ε0 to the

chemical potential in the bulk µs and form (in the triangular well) a distribution

of electron density proportional to the probability |u0(z)|2 (square of wave function

for the ground state in the quantum well). In a Si-based metal-oxide field-effect

transistor (Si-MOSFET) with SiO2 as a dielectric layer the gate is used as one plate

of the capacitor to which a voltage is applied to produce a finite concentration of

carriers in the 2DEG, which plays the role of the second plate. The relation between

the carrier concentration of the 2DEG, n, and the gate voltage, Vg, is well known:

n =
εoxεvac

d
(Vg − VT ), (1.1)

where εox is the dielectric constant of the oxide, εvac is the permittivity of free space,

d is the distance from the gate to the 2DEG, and VT is the threshold voltage at which

the 2DEG is created under the oxide layer. In a MODFET with a quantum well the

concentration can be nonzero at zero applied gate voltage (i.e. the 2DEG is already

present), because electrons transfer from the doped layer to the well.

Because of the confinement, the movement of carriers perpendicular to the plane

is quantised. At some position of the Fermi level only one subband can be occupied,

Fig. 1.1, and the ground state of free carriers in the 2DEG is shifted up above the

bottom of conduction band

ε = ε0 +
h̄2(k2

x + k2
y)

2m∗ , (1.2)

where kx and ky are the components of the wavevector and ε0 is the subband shift

from the bottom of the conduction band. When the bottom of the first subband (ε0)

is taken as the reference energy, electrons in the 2DEG behave as free particle with

effective mass m∗ in two-dimensions resulting from the usual parabolic dispersion

relation (last term in RHS of Eq. 1.2). The total carrier concentration depends on
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Figure 1.1: (a) Cross-section through a high-frequency GaAs-AlGaAs MODFET.
(b) Self-consistent solution of the conduction band εc(z) through modulation-doped
layers with a positive gate bias Vg = µs − µm = 0.2 V (the difference between bulk
and metal chemical potentials) and n = 3×1015 m−2 in the 2DEG. Adapted from [1].

the density of states, which, for the parabolic dispersion relation in 2D, Eq. 1.2, is:

ν(ε) = gsgv
m∗

2πh̄2 , (1.3)

where gs and gv are the spin and valley degeneracies, respectively. For GaAs, for

example, gs = 2 and gv = 1. It can be seen that ν(ε) is independent of energy for 2D

systems. To find the total concentration we have to integrate this density of states

with the Fermi-Dirac distribution function (the probability for a particle to occupy

a state at temperature T ):

n(εF ) =

∫ ∞

0

gsgv
m∗

2πh̄2

(
1 + exp

ε− εF

kBT

)−1

dε, (1.4)

where εF is the Fermi energy, and kB is the Boltzmann constant. At low tem-

peratures where the electron gas can be considered as a degenerate Fermi gas
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(kBT << εF ) the Fermi-dirac distribution becomes a step function and Eq. 1.4

can be simplified to get a linear dependence of the concentration on the Fermi en-

ergy: n(εF ) = gsgvm
∗εF /2πh̄2. If the Fermi energy is equal to zero the concentration

at a finite temperature will not be equal to zero: n(0) = ln 2gsgvm
∗kBT/2πh̄2.

1.2.2 The Boltzmann equation

Transport properties of electrons in a diffusive 2DEG with applied electric or mag-

netic fields can be described by a Boltzmann equation, which describes the evolution

of a nonequilibrium distribution function, f(k, r, t) in a 5-dimensional phase space,

where k = (kx, ky) is the 2D wavevector, r = (x, y) is the coordinate vector, and

t is time. The nonequilibrium distribution function gives the probability to find a

particle with wavevector k in a unit volume near the point r at time t. This func-

tion describes the statistical properties of the system when it can not be described

by the Fermi-Dirac distribution function, which works only at thermodynamical

equilibrium. An electric field, E0, and external magnetic field, B, both move the

electron gas away from equilibrium. The differential equation for the nonequilibrium

distribution function is written as [2]

∂f

∂t
+ v(k) · ∇rf − e

h̄
(E0 + [v(k)×B]) · ∇kf =

(
∂f

∂t

)

scat

, (1.5)

where v is the velocity of the electron, ∇r = (∂/∂x, ∂/∂y) and∇k = (∂/∂kx, ∂/∂ky).

The term (∂f/∂t)scat is called the collision integral which describes how the distri-

bution function changes under the influence of scattering processes by, for example,

Coulomb impurities, phonons. There is no general solution of Eq. 1.5, but an ana-

lytical solution is possible to obtain in certain cases, if some simplifications are used.

In the linear regime of conduction the current does not affect the conductivity of the

2DEG. In this regime one can assume that deviation from the equilibrium state is

weak and we need to find a small correction, f1(k, r, t) = f(k, r, t)− f0(k, r, t), from

the equilibrium Fermi-Dirac distribution function, f0. In the absence of magnetic

field the stationary kinetic equation is written as [2]

v(k) · ∇rf − e

h̄
E0 · ∇kf = −

(
f − f0

τ(k)

)
, (1.6)
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where the collision integral is written in a different form, using τ(k), which is called

the momentum relaxation time. This time describes how fast the system returns

to the equilibrium state if all external forces are switched off. If we take into ac-

count only scattering processes where the energy of the particle is conserved (elastic

scattering), then the relaxation time can be written as [2]

1

τ(k)
=

∑

k′
W (k,k′)

(
1− k · k′

|k|2
)

, (1.7)

where W (k,k′) is the probability per-unit-time for an electron to be scattered

from the state with a wavevector k to a new one with wavevector k′, and

(1− (k · k′)/|k|2) = 1 − cos θ, where θ is the angle between the two wavevectors.

This quantity has to be calculated separately, usually using quantum mechanics.

If there are two independent scattering mechanisms in the system with relaxation

times τ1(k) and τ2(k), then the total relaxation time is

τ(k) =
(
τ1(k)−1 + τ2(k)−1

)−1
. (1.8)

Eq. 1.6 can be solved if we assume that τ(k) is independent of the electric

field (there is no overheating of the electron gas by the current) and there is no

temperature gradient in the system. The solution is given by

f(k) = f0(k) +
τ(k)

h̄
eE0

(
∂f0(k)

∂k

)
. (1.9)

This solution is used to obtain the current density through the system:

j = − 2e

(2π)2

∫
v(k)f(k)dk =

e2

2π2

∫
τ(k)v(k)(v(k) · E0)

(
∂f0(k)

∂k

)
dk. (1.10)

Because the kinetic equation (Eq. 1.6) is semiclassical there are several limita-

tions as to where it can be used. The electron wavelength, λ must vary slowly. This

condition is written as λ|F| = λ|eE0| ¿ ε, which means that the energy gained due

to force F over distance λ has to be much smaller than average electron energy, ε.

There is also a limitation for the strength of magnetic field: for a nondegenerate

electron gas (kBT À εF ) this is h̄ωc ¿ kBT , and for degenerate one (kBT ¿ εF )

it is h̄ωc ¿ εF , where ωc = eB/m∗ is the cyclotron frequency. Finally, there is a
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condition for the relaxation time: l = |vF |τ À λ, which states that the mean free

path, l, has to be much larger than the wavelength (vF is the Fermi velocity).

The coefficient of proportionality (in general it is a tensor) between the current

density and electric field (j = σE0) is called the conductivity and can be written as

σ = e2nτ/m∗, (1.11)

where τ is the momentum relaxation time which in a degenerate system depends

on the Fermi energy. We can introduce the mobility, µ, which describes how easily

electrons are affected by an electric field:

µ = vd/|E0| = eτ/m∗, (1.12)

where vd is the drift velocity, which shows an average directional drift of the carries

under an influence of the electric field. The mobility is directly related to the

relaxation time.

1.2.3 Landauer-Büttiker approach

We now discuss how the resistance of a narrow two-terminal sample with a 2DEG

can be calculated [3]. We consider a two-terminal sample, shown in Fig. 1.2 with

a bias voltage, V , applied at 0 K. The Fermi level in the left contact is higher by

eV than in the right contact. This creates a noncompensated current flow from

the left to the right contact. If the width W of the sample is small, the movement

of electrons perpendicular to the current is quantised into several modes M . (In

the x-direction the electron is a plane wave but in y-direction there are M -modes

described by standing waves, so that there is no current flow in the y-direction.)

The grey region in Fig. 1.2 is an impurity or disorder potential. We know about this

region only by the probability of a carrier to transmit through it, T , from the left

to the right contact. In our picture it is the only source of scattering in the system;

the contacts and leads are ideal. The current from the left contact to the sample, if

a voltage V = (µ1 − µ2)/e is applied, [3]

I+
1 = (2e/h)M(µ1 − µ2), (1.13)
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Figure 1.2: Top: A conductor with transmission probability T connected to two
large contacts through two leads. Bottom: subbands in the leads with Fermi levels
µ1 and µ2. “Zero” temperature is assumed such that the energy distribution of the
incident electrons in the two leads can be assumed to be step function. Note that
k = kx. Adapted from [3].

as it can be shown that each mode carries the same current. Here the factor of 2

accounts for the spin degeneracy of the electrons. (We assume that the transmission

for each mode is the same.) This is not the total current in the left lead. There

is also the current which reflects with probability R = 1 − T from the scatterer:

I−1 = (2e/h)MR(µ1 − µ2). These two currents produce the total current through

the sample:

I = I+
1 − I−1 = (2e/h)MT (µ1 − µ2). (1.14)

We can introduce the conductance as

G =
I

V
=

I

(µ1 − µ2)/e
=

2e2

h
MT. (1.15)

If the transmission depends upon the mode number, a simple product MT must be

replaced by a sum over all modes

G =
2e2

h

M∑
i=1

Ti, (1.16)

where Ti is the transmission of the ith propagating mode. When the transmission

is perfect for each mode T = 1, as in a ballistic device then the conductance has a
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finite universal value 2Me2/h.

1.2.4 Quantum dots and shallow donors in GaAs

If an electron is confined in a small box, then a discreet energy spectrum is formed.

Such a box is called a quantum dot (QD). In QDs quantum effects are more signifi-

cant than in 2DEGs, because no classical approach can be applied to a system with

a fully discreet energy spectrum. One can estimate the ground state energy of a QD

from the uncertainty principle, ∆x∆px ≥ h̄/2, as

εdot ∼ 3h̄2

8m∗d2
, (1.17)

where d ∼ ∆x is a characteristic size of the QD, m∗ is the effective mass of the

electron. A parabolic potential is usually a good approximation for the confining

potential for the electrons in QD.

Zero-dimensional states can not only be created artificially using a QD but they

can naturally be present in the system because semiconductors are never pure ma-

terials. Impurities or defects in crystal lattice are common in GaAs structures. If an

alien atom replaces an atom in the GaAs crystal, then it is called a substitutional

defect, which can be a donor or acceptor. The energy levels of these impurities are

shallow and the charged-impurity potential can be described by an effective Coulomb

potential which takes into account the dielectric constant, εr, of the crystal and the

effective mass of an electron or hole, m∗. The quantitative model for such impurities

is a modified hydrogen atom model and the energy spectrum of these impurities is

given by

εl = − m∗e4

8h2ε2
rε

2
vac

1

s2
, (1.18)

where εvac is the vacuum permittivity, and s is the number of the level. The energy

in Eq. 1.18 is calculated from the bottom of the conduction band. The ground state

has s = 1. This binding energy of a shallow donor in GaAs is ∼ 10 meV and is

three orders of magnitude smaller than the Rydberg energy (13.6 eV). This energy

also has the meaning of the ionisation energy, because when an electron gains this

energy it will move freely in the conduction band.

In a quantum well the bottom of the conduction band is shifted up by the value

31



Chapter 1: Basic concepts

of the energy of the ground state in the well. In the limit of an infinitely narrow

quantum well an impurity placed in it becomes effectively two-dimensional and the

energy spectrum of the impurity has energy levels that are deeper by a factor of

4 [4].

If the impurity is placed exactly on the edge of an infinite potential barrier then,

due to symmetry considerations, its energy spectrum will change in such a way that

only odd states survive, namely the new ground state is formed from the first exited

state of the initial symmetric potential without the infinite potential barrier.

1.2.5 Semimetals

Semimetals are chemical compounds with electronic properties in between metals

and dielectrics. The most known semimetals are bismuth, tin, and graphite (an

allotrope of carbon). Semimetals, unlike semiconductors have finite electrical con-

ductivity at absolute zero. The change in their conductivity with temperature is

distinct from that of a metal. The characteristic feature of semimetals is a small

overlap between the valence and the conductance bands with a carrier concentration

of 1018 − 1020 cm−3, or 10−3 per atom. This means that there are accessible states

at zero temperature for electrons to scatter to and also that increase in the number

of free carriers with increasing temperature is small. Charge carriers in semimetals

have larger mobility than in metals and low effective mass. Due to small overlap of

the bands it is easy to change it by applying, for example, a magnetic field, which

can trigger a semimetal-dielectric transition by the formation of an indirect band

gap.

1.2.6 p-n junctions

When two pieces of silicon doped with acceptors (p) and with donors (n) are con-

nected, electrons transfer between them in such a way that the Fermi energy will

be constant through the whole system. At the junction between the pieces a region

of the order of the screening length without charges in it is formed that creates a

barrier (eφc) to charge flow. This diode has a strongly nonlinear I-V characteristic.

Usually diodes work in the regime when a positive potential applied to the n part

of the structure produces exponential growth of the current. Here we are interested
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Figure 1.3: (a) p-n diode structure at zero bias. The Fermi level has the same value
in the p and n regions of the structure. (b) p-n diode structure at a negative bias
applied to produce a tunnel current of holes from the p to n region and current of
electrons from the n to p region.

in the opposite regime when a sufficient negative voltage (required to align the top

of the valence band of the p-region with the bottom of the conduction band of the

n-region) applied to the n-region produces a tunnelling current from the p-region to

the n-region, as shown in Fig. 1.3.

1.2.7 Resonant tunnelling diode

A GaAs resonant tunnelling diode (RTD) is based on a GaAs quantum well sepa-

rated from the contacts by two AlGaAs barriers. The quantum well states are the

subbands in the narrow GaAs layer. In Fig. 1.4 the I-V characteristic of a double-

barrier RTD is illustrated. When a subband has energy εs is larger than the Fermi

level in the left contact (at small biases) there is no current flow, Fig. 1.4(a). If

a larger bias is applied, εs drops below this Fermi level and the current increases,

Fig. 1.4(b). It reaches a maximum value when the resonant level is aligned with

the bottom of the conduction band in the left contact, Fig. 1.4(c). The current be-

comes small again if the bias is increased further, because less number of electrons

can tunnel when the energy and the lateral components of the wavevectors have to

be conserved.

The current in 3D has to be integrated not only over different energies of the

electrons, but also over the direction of tunnelling. The total current is given by [1]

I = 2e

∫
dk

(2π)2

∫ ∞

0

dkz

2π
f0(ε(K, µL))vz(K)T (kz), (1.19)

where K is the 3D wavevector, k is the 2D wavevector in the direction perpendicular

33



Chapter 1: Basic concepts
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Figure 1.4: Profile of a resonant-tunnelling diode at different bias voltages V . The
bias increases from (a) to (d), giving rise to the I-V characteristic shown in (e).
The shaded areas on the left and right are the Fermi seas in the contacts. Adapted
from [1].

to the current, vz is the projection of the electron velocity on the z-direction (where

current flows), µL is the Fermi level in the left contact, and T (kz) is the energy-

dependent transmission coefficient. We can rewrite this current in a much simpler

way when the integration over k is made:

I =
e

h

m∗

πh̄2

∫ µL

UL

(µL − ε)T (ε)dε, (1.20)

where UL is the potential of the conduction band bottom of the left contact, and

ε = UL + h̄2k2
z/2m

∗ is the “longitudinal component” of the total energy. (Zero

temperature is assumed.)

For resonant tunnelling, the transmission can be approximated by the Breit-

Wigner formula [1] T (ε) ∼ T0(1 + (ε − εs)/(Γ/2))−1, where Γ is the full width at

half-maximum which stems from the fact that there is no bound state in the well but

electrons can tunnel to the contacts, and T0 is the maximum transmission observed

in the resonance. If we substitute this expression in Eq. 1.20 we obtain

I =
e

h

m∗

πh̄2 (µL − εs)
π

2
ΓT0, (1.21)

where εs = ε0
s − βseVsd, where ε0

s is the subband energy without voltage applied,

and βs is the coefficient between energy and voltage, which depends on Vsd and the

position of the state between the contacts. The last expression explains the shape
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in Fig. 1.4(e). The current grows as the subband level is shifted down in energy

with increasing voltage until UL is reached when current stops flowing.

1.3 Basics of noise

1.3.1 General noise characteristics

When one measures the resistance by the voltage drop along a resistor for a fixed

current, the voltage is not constant in time but fluctuates in a random way.

Consider a signal which fluctuates as a function of time, V (t), Fig. 1.5(a). If

we specify a period ∆t the set of measurements will be seen as a set of values of

{Vi} measured at specific moments ti with frequency 1/∆t. To find the real average

resistance of the sample the averaged value, V , over several measurements, N , are

taken:

V =
1

N

N∑
i=1

Vi. (1.22)

If only the average resistance needs to be known then the average in Eq. 1.22

is enough; but is there any useful information in the set {Vi}? Theoretical and

experimental study of noise tell us that the answer is “yes”. Moreover the noise gives

information which is difficult or impossible to determine from the resistance, such

as the concentration of defects, interaction of carriers, and correlations in electron

transport [5, 6]. The noise theory helps to find a way to characterise noise and

analyse its properties, and to remove it if required.

Eq. 1.22 can be rewritten in terms of a probability distribution function. This

distribution function is simply a histogram where the set of voltage values are dis-

tributed into bins of size ∆V . The probability for a value to be in the range Vj±∆V/2

is pj = Nj/N where Nj is the number of values in the bin and N is the total number

of values (
∑

pj = 1). The distribution of the considered signal is shown in Fig.

1.5(c). For M bins we can rewrite Eq. 1.22 as

V =
M∑

j=1

Vjpj. (1.23)

This expression is also called the first moment of the distribution, and the set of

probabilities {pj} = {f(Vj)} can be called a discreet probability function. From this
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Figure 1.5: (a) A random variable V as a function of time (1024 points are shown).
(b) Zoom-in of the time domain signal shown in (a). (c) Spectral density, SV , on
a log-log scale as a function of frequency. The largest spikes correspond to 50 Hz
harmonics. (d) Distribution of the values in the signal presented in (a) into bins.

we can introduce a useful relation for the average of a general function g(Vj) as

g(V ) =
M∑

j=1

g(Vj)pj. (1.24)

Another characteristic of a random signal is how far it deviates from its average

value, the variance (the second central moment):

var V = V 2 − (V )2. (1.25)

The time domain signal contain all possible information about the noise. But

usually noise is studied in the frequency domain where a real signal is interpreted as

the sum of many harmonics in some frequency range. Fourier analysis is the most

powerful method for noise analysis. The time domain signal is approximated by a
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Fourier series sum

V (j∆t) =

TV /∆t∑

n=−TV /∆t

an exp (i2πfnj∆t). (1.26)

where TV is the time of measurements, fn = n/TV is the frequency, and Fourier

coefficients

an =
∆t

TV

∑
j

Vj exp (i2πfnj∆t). (1.27)

Another characteristic of noise can be introduced, called the spectral density, Fig.

1.5(c), by [5]

SV (f) = lim
TV →∞

2TV ana∗n, (1.28)

where the asterisk denotes the complex conjugation of the coefficient. SV (f) de-

scribes the square of the amplitude of the signal in the range of frequencies with a

bandwidth of ∆f centered around f divided by ∆f . One can distinguish between

different types of noise by studying the dependence of SV on the frequency. For ex-

ample, thermal noise has a flat spectrum where the spectral density is independent

of frequency, and 1/f noise has spectral density inversely proportional to frequency.

These types of noise are described below.

In some cases it is more mathematically convenient to work with continuous

signals, V (t), where all discreet sums should be replaced by integrals. We can say

that noise is characterised by [6]

SV (f) = 2ψV (ω) = 2

∫ +∞

−∞
eiω(t1−t2)ψV (t1 − t2)d(t1 − t2), (1.29)

where ψV (τ) is the correlation function, t1−t2 is the difference between two moments

in time. Thus the spectral power is directly related to the correlation function, which

can be determined by averaging of the product of two functions δV over a long time

period:

ψV (t1 − t2) = ψV (t1, t2) = lim
TV →∞

1

TV

∫ +TV /2

−TV /2

δV (t1 + t)δV (t2 + t)dt. (1.30)

where δV (t) = V (t)− V (t).

We have discussed fluctuations of voltage only, but in general current and resis-
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tance can also fluctuate. These fluctuations lead to the four most common types of

noise. The first type is thermal noise of a resistor which appears at nonzero tem-

peratures [5]. The others are nonequilibrium types of noise, which appear when a

bias is applied to the resistor. These types of noise include random telegraph noise

(RTN), 1/f noise or flicker noise, and shot noise.

1.3.2 Thermal noise

The noise generated by thermal agitation of electrons in a resistor is called thermal

or Nyquist-Johnson noise. The spectral density of the current for this type of noise

is independent of frequency:

SI = 4kBTG, (1.31)

where kB is Boltzmann’s constant, T is the temperature of the resistor and G is the

conductance of the resistor. Eq. 1.31 can be converted to voltage by substitution

SV = SIR
2. Thermal noise can be used as a thermometer, because it is generic for

all resistors. The only parameter that is required is the resistance of the sample

which is usually easy to measure. In general thermal noise is the lowest possible

noise in any device as it cannot be suppressed.

1.3.3 Random telegraph noise

Random telegraph noise (RTN) or burst noise can be described by a random switch

model [5]. The power spectrum Su(ω) has the shape of a Lorentzian function:

Su(ω) = (u1 − u2)
2p1p2

4τ

1 + ω2τ 2
. (1.32)

where the variable u describes a two-level system and changes between the values

u1 (high energy state) and u2 (low energy state), p1 is the probability to find the

value u1, p2 = 1−p1 is the probability to find the value u2, respectively, and τ is the

“relaxation time” (the average time spent in each state before making a transition to

another state, or the inverse of the total rate of the transition, backward and forward,

in the process). One of the reasons that RTN occurs is the process of charging and

discharging of impurities in an oxide or dielectric close to the conducting channel.

Usually RTN is an undesirable effect in measurements and applications where stable
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behaviour of devices is required.

1.3.4 1/f noise or flicker noise

When a constant voltage is applied to a resistor the current will exhibit fluctuations.

The spectral density of these fluctuation is frequency dependent. It is proportional

to 1/fα where α is close to unity. This kind of noise is often called flicker noise or

‘one over f ’ noise. Analysis of these fluctuation has revealed that they come from

fluctuations of the sample resistance [7, 8].

Fluctuations with 1/f spectra have been observed in a wide variety of physical

systems. Its exact physical origins are still unclear in most systems and the dispute

over the origin of 1/f noise is still unresolved [9]. Usually for similar systems there

is a specific mechanism which produces 1/f noise [10]. There are several models to

describe 1/f noise in solids, which are based on the carrier number fluctuations [11]

and mobility fluctuations [12].

Several models of 1/f noise emerge by using the superposition of Lorentzian spec-

tra with widely distributed relaxation times. A random process with characteristic

time has a Debye-Lorentzian spectrum [13] (cf. Eq. 1.32):

S(ω) ∝ τ

1 + ω2τ 2
. (1.33)

The resulting spectrum may be generated by postulating an appropriate distribution

D(τ) of the characteristic times within the sample. Then

S(ω) ∝
∫

τ

1 + ω2τ 2
D(τ)dτ . (1.34)

In particular, if D(τ) ∝ τ−1 for τ1 < τ < τ2 then

S(ω) ∝ ω−1 for τ−1
2 ¿ ω ¿ τ−1

1 . (1.35)

It was shown that 1/f noise in metals is produced by the movement of defects

or impurities [6]. Defects in these experiments were generated by radiation damage

from an electron beam. The noise was related to the mobile defects only, as was

shown by annealing experiments where noise reduced significantly (by two orders of
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magnitude as these defects were decreased). Nevertheless the type of these defects

still remains unknown [6].

1.3.5 Shot noise

Shot noise is the result of random fluctuations of the electric current in a conductor.

These fluctuations are caused by the fact that the current is carried by discrete

charges. In the case of totally uncorrelated current, when the events of arriving of

electrons are independent of each other, shot noise has the so-called full Poissonian

behaviour, with noise power SI which depends linearly on the current: SI = 2eI.

The transition of the noise from thermal noise (at zero current) to shot noise at

nonzero temperature for a sample with N propagating modes is described by [14]

SI = 2
e2

2πh̄

N∑
n=1

[2kBTT 2
n + Tn(1− Tn)eV coth(eV/2kBT )], (1.36)

where T is the temperature, and Tn is a transmission coefficient of the nth channel.

The prefactor of 2 is due to spin degeneracy. In the linear regime when the applied

voltage is small compared to the temperature T , (eV << kBT ) one can observe

thermal noise with conductance given by Eq. 1.16.

When a source of negative correlation is introduced, for example, due to the

Pauli-exclusion principle an electron can not go through the system because of the

Coulomb repulsion, the noise amplitude was shown to be reduced. For a reso-

nant tunnelling (RT) through a double-barrier structure this is attributed to the

finite dwell time of the resonant state [15]. Theoretical models for purely coherent

transport and for sequential tunnelling have been developed for this suppression.

This suppression of the shot noise was also observed for resonant tunnelling in

zero-dimensional systems. To characterise the relative amplitude of shot noise, the

dimensionless Fano factor, F is used, being defined as F = S/2eI. In metallic diffu-

sive system independent on shape and concentration SI = 2eFI, with Fano factor

F equal to 1/3 [15].

An enhancement of shot noise (in this case the Fano factor is larger than 1) in

the case of RT via localized states have been observed in [16]. This enhancement

originates from Coulomb interaction between two localized states which imposes
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correlations between electron transfers.
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Samples and experimental

techniques

2.1 Introduction

The aim of this chapter is to describe the samples used and to show how resistance,

current, and noise have been measured.

In the first part of this chapter the structure of the vertical double-barrier reso-

nant tunnelling diode (DBRTD; chapter 3) and an introduction to the method of its

fabrication is given. The geometry of the graphene samples (chapter 4 and chapter

5) is given and the basic characteristics such as the resistivity ρ(Vg) and the position

of the Dirac point are described.

The second part of this chapter is devoted to the circuitry used to measure small

resonant currents in DBRTDs and noise measurements in graphene (chapter 5).

The 3He cryostat used to control the temperature and magnetic field in many of

experiments in this thesis is also briefly described.

2.2 Samples

2.2.1 Double barrier resonant tunnelling diode

In chapter 3 the results of the study of resonant tunnelling through a double impu-

rity in a DBRTD are presented. The study was performed on a single sample en-

titled K110Re23b supplied by Giancarlo Faini from the Laboratoire de Photonique
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Component Layer Material Doping level (Si) Thickness (nm)
Source GaAs 2× 1017cm−3 200
Spacer Layer GaAs 0 30
Bottom Barrier Al0.33Ga0.67As 0 8.7
Quantum Well GaAs 0 5.1
Top Barrier Al0.33Ga0.67As 0 8.7
Spacer Layer GaAs 0 20
Drain GaAs 2× 1017cm−3 200
Top GaAs 1× 1018cm−3 500

Table 2.1: The profile of heterostructure M240 (with doping levels and thicknesses)
on which K110Re23b sample is based.

et Nanostructures, CNRS in Marcoussis, France. This sample was fabricated by

molecular beam epitaxy (MBE) on a GaAs substrate and its profile is given in Ta-

ble 2.1. A GaAs quantum well of 5.1 nm width is grown between two barriers (8.7

nm of Al0.33Ga0.67As) with a band gap offset of 0.3 eV. There are two undoped GaAs

spacers of 30 nm and 20 nm between the Si-doped (about 2×1017 cm−3) source and

drain contacts, respectively. To confine the current carriers in two lateral dimensions

a plasma etching was used. Ni was deposited on top of the structure to serve as

a mask for high energy (50 keV) Ga ions. A cylindrical pillar of 70 nm diameter

was formed. Then the Ni layer was removed to re-grow a GaAs top electrode. (A

polyimide layer was deposited between the pillar and the rest of the structure to

make the structure more rigid.) Finally a top Au-Ni-Ge contact of several micron

lateral size was deposited and annealed. The sample was electrically bonded in a

ceramic package. A more detailed explanation of the fabrication procedure is given

in [17].

Without applied source-drain voltage (Vsd) the bottom of the conduction band

in the quantum well lies above the Fermi level. If a sufficiently high Vsd voltage is

applied (when the first subband level in the quantum well aligns with the Fermi level

in the source) the current can flow from the source to drain via resonant tunnelling,

Sec 1.2.7. The estimated energy of the first subband is 100 meV with respect to the

bottom of the conduction band (from 1D model with finite potential barriers).

Fig. 2.1 shows an example of a self-consistent 1D model of the conduction

band profile of the structure at 67 mV applied between source and drain (the tem-

perature is 1 K). The calculations are performed by means of the heterostructure
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Figure 2.1: The calculated conduction band profile, εc, of the DBRTD structure
with Vsd = 67 mV. The dashed line is the electron concentration as a function of
x-coordinate. The Fermi level is at zero energy.

modelling program HETMOD using the nominal doping level and composition of

the heterostructure from Table 2.1. It can be seen that the left part of the structure

(before the barrier) is filled with an electron gas and the bottom of the conduction

band is equal to -13 meV. On the other side of the structure a depletion region is

formed. The total length of the structure between contacts with high electron con-

centration is 42 nm at Vsd = 67 mV. If Vsd is increased the length of the depletion

region will also increase.

2.2.2 Graphene samples for noise measurements

In this thesis six graphene and one multilayer graphene sample have been used.

These samples were fabricated by Roman Gorbachev from the laboratory of Quan-

tum Transport in Nanostructures at Exeter University. All of them were produced

by a mechanical exfoliation technique [18]. Highly ordered pyrolytic graphite for

samples ML2 and SL4 or natural graphite for sample SL6 (formed from a stack

of graphene flakes) is split by means of adhesive tape into several thinner flakes.

These flakes are deposited on a Si/SiO2 substrate. Among them are flakes of single-
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ML2 SL4 SL6
Length, µm 4.29 3.5 22.5
Width, µm 0.6 1.5 1.5
ρD, kOhm 1.4 1.7 3.5
VD, V 0 V or 15 V 0 3.3 V

Table 2.2: Characteristic of graphene samples for noise measurements.

atom thickness which can be identified optically. (The interference of light from

the 300 nm SiO2 layer creates a contrast difference between single-layer and multi-

layer flakes.) As soon as the flakes are found, standard electron beam lithography

is used to define electric contacts to the flake (the contact material is Cr/Au). The

technology is more elaborate for the samples with top-gates and will be explained

below.

Three samples for noise measurements have been studied. The two samples,

SL4 and SL6, are single-layer graphene. This was proved by means of quantum Hall

effect measurements. Sample SL6 has length 22.5 µm and the highest mobility away

from the Dirac point (∼ 20000 cm2V−1s−1). The third sample, ML2, is multilayer

graphene of more than 2 layers thickness (established using optical contrast). The

geometrical sizes (the samples have approximately rectangular shape) are presented

in Table 2.2. In this table the resistivity in the Dirac point, ρD, and the position of

the Dirac point in the gate voltage are shown.

The two single-layer samples for noise measurements have the width which is

larger than 1 µm and therefore have practically zero bandgap. If the width of the

flake is small, then the edges make a significant contribution to the band structure,

forming a band gap of size increasing approximately linearly as a function of inverse

width [19]. Such narrow graphene stripes are called nanoribbons. It was shown that

the band gap of 20 nm width graphene nanoribbon is approximately 26 meV [20].

Thus if we take a stripe with 1.5 µm width, the band gap will be 75 times smaller

than 26 meV (∼ 0.35 meV corresponds to 4 K).

Fig. 2.2(a) shows a SEM image of sample SL4. The electrical contacts are shown

as outlines in the figure. Fig. 2.2(b) shows the resistivity of the sample as a function

of gate voltage at T = 0.25 K, where the characteristic peak in the Dirac point (0

V) can be clearly seen. In the inset one can see the first quantum Hall plateau

in Gxy(ν), which is observed at 2e2/h in agreement with experiment [21, 22] and
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theory [23] for single layer graphene.

Sample SL6 has six terminals with the distance between two Hall contacts of

about 0.5 µm, and the area of the sample under the potential contact is about

∼ 0.5 × 0.5 µm2. The distance from the potential contacts to the nearest current

contact is about 1 µm.
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Figure 2.2: (a) SEM image of sample SL4, where the positions of the contacts are
shown as outlines. The inset shows a diagram of a graphene sample on n+Si substrate
(purple), covered by 300 nm SiO2 (blue) and contacted by Au/Cr (yellow). Control
of the carrier density, n, is achieved by varying Vg. (b) Resistivity of the sample as
a function of Vg at T = 0.25 K. The mobility is 10000 cm2V−1s−1 outside the Dirac
region. The inset shows the first quantum Hall plateau in the conductance, where
the filling factor ν = nh/4eB. Adapted from [24].

Figure 2.3: (a) Three stages of the air-bridge fabrication: electron beam lithography
with two exposure doses, development, and deposition of the metal film. (b) A false-
colour SEM image of a graphene flake with a metal air-bridge gate (image is tilted
by 45◦).
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S1 S2 S3 S5
Width, µm 0.3-0.15 0.6 0.15 0.35
Length, µm 5 4.3 1.45 5
ρD, kOhm 6.9 4.87 6.36 14
VD, V 0.05 1.11 1.68 -0.75

Table 2.3: Characteristic of graphene p-n-p samples.

2.2.3 Graphene p-n-p samples

To fabricate the p-n-p structures, we have chosen graphene flakes of rectangular

geometry on SiO2/Si substrates with a 300 nm oxide layer. The samples have the

following dimensions, in µm: L=5, W=0.24 (sample S1); L=4.3, W=0.6 (sample

S2) and L=1.45, W=0.15 (sample S3). The mobility of these samples away from the

Dirac point (at a carrier density of 3× 1011 cm−2) is 13, 11 and 6 × 103 cm2V−1s−1,

respectively. The procedure of the top-gate fabrication is illustrated in Fig. 2.3(a).

Two layers of PMMA with different molar masses are spun on the flake: a soft resist

(495K) on top of a hard resist (950K). They were then patterned using low-energy 10

keV, e-beam lithography (to achieve larger undercut in the top PMMA layer). Two

different exposure doses were used in the areas of the span and pillars of the bridge,

while the area outside the bridge was not exposed. The dose in the span is just

enough to expose the soft resist, but too small to affect the underlying hard layer.

Both layers are exposed at a larger dose in the areas of the pillars (and contacts).

The structures are then developed and covered with 5/250 nm of Cr/Au. The ‘lift

off’ removes PMMA leaving the bridge with a span up to 2 µm supported by two

pillars. Figure 2.3(b) shows an SEM image of sample S2 with a suspended top-gate

and two Ohmic contacts. The carrier mean free path in our samples l ≈ 45−100 nm

and the distance between the top-gate and the flakes is 130–210 nm. In the attempt

to produce a p-n-p structure with ballistic properties, the top-gate is made short,

100–170 nm, in the direction of the current flow.

The parameters of four samples used in the thesis are presented in Table 2.3. All

the samples are too narrow (less than 0.6 µm) to make a multiple-terminals, thus

only two-terminal samples are made and the quantum Hall effect to characterise the

sample was measured using a two-terminal geometry.
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2.3 Circuitry and methods

2.3.1 I-V characteristics

A resonant current through single impurities in a DBRTD can be very small (down

to ∼ 10 pA). Thus to measure small signals a low-noise preamplifier was used and

all circuit elements were placed inside a screen room to minimise ambient noise.

An EG&G 181 current preamplifier was used to detect DC and AC currents of the

order of a few pA. The circuit we have used to measure simultaneously the current,

I(Vsd), and differential conductance, dI(Vsd)/dVsd, of the DBRTD is shown in Fig.

2.4. There are two sources of voltage: AC of 0.1 mV at 17 Hz (oscillator output

of EG & G Lock-in amplifier model 5110) and DC (DAC of a CIL Microsystem

PCI 6380). The DC signal was filtered using a low-pass RC-filter with cut-off

frequency fcut = 4 Hz. The output signal of the current preamplifier contained both

DC and AC components. The DC component was filtered with a low-pass filter

(fcut = 1 Hz) and passed to an ADC input of the PCI 6380. The AC component was

measured by the Lock-in amplifier with a time constant of∼ 1 s. The experiment was

automatiated using the software CryoMeas written for Acorn computer by Dr. C. J.

B. Ford from the Cavendish Laboratory, University of Cambridge. Instruments were

connected through IEEE-bus, except the Lock-in amplifier, because of interference

which comes from the IEEE bus. The output DC signal of the Lock-in amplifier

proportional to the AC input of the Lock-in amplifier was measured by PCI 6380.

2.3.2 Resistance measurements

Graphene structures were measured using a constant current circuit with a 100 MΩ

ballast resistor shown in Fig. 2.5. This current was ∼ 1 − 10 nA. The voltage

along the sample was measured using a low-noise voltage LI-75A amplifier of a NF

Corporation. DC voltages applied to the gates were filtered with RC-filters with

fcut = 1 Hz.
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Figure 2.4: The circuit used for measurements of I(Vsd) and dI/dVsd.

Figure 2.5: The circuit used for measurements of G(Vbg) and G(Vtg).

Figure 2.6: The circuit used for measurements of voltage noise.

50



Chapter 2: Samples and experimental techniques

2.3.3 Noise

The circuit for noise measurements is shown in Fig. 2.6. A constant current regime

was used for both resistance and noise measurements (AC signal from the Lock-in

was set to zero during noise measurements). Resistance was measured before and

after noise measurements. Two low-noise voltage amplifiers were used simultane-

ously, connected to the opposite pairs of potential contacts. The output voltage

signals of these two amplifiers were paired by a cross-correlation technique using

double-channel spectrum analyser SRS785 (Stanford Research).

The cross-correlation method is used to remove the voltage noise of preampli-

fiers. By detecting only the correlated signals in both channels the analyser also

suppresses the uncorrelated noise which comes from the thermal noise of the wires

connected to the potential contacts. This technique does not suppress the current

noise of the preamplifiers. However, if the sample has the same resistance at differ-

ent source-drain voltages, the current noise (which depends only on this resistance)

gives the same contribution to the noise spectrum at any Vsd. The background

noise will therefore contain the thermal noise of the sample and some contribution

from the current noise of the preamplifiers. In the analysis presented in this thesis

the background noise is subtracted from the noise measured at a finite Vsd applied,

which leaves only non-equilibrium voltage noise of the sample.

2.3.4 Temperature and magnetic field control

For the low temperature work the current-voltage and conductance-voltage mea-

surements were carried out in a liquid Helium-4 dewar and using Helium-3 system

HelioxTL Oxford Instruments. The Helium-3 system, Fig. 2.7, allows one to mea-

sure the temperature dependence of the current in a wide range of temperatures

from 0.26 to ∼ 200 K. A superconducting magnet can generate fields up to 12 T in

the sample space.

The sample is mounted on a probe which is lowered down to the sample space.

In order to reach base temperature, 3He is released from the sorption pump and

condensed into the bottom of the sample space (the “3He pot”) by cooling it by the

1K pot. (The 1K pot contains a small volume of liquid Helium-4 and is cooled by

pumping the vapour from its surface.) When the sample is placed into the liquid
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3He, the sorption pump is cooled down to the temperature of the 1K pot and it

starts pumping the 3He vapour. This pumping cools the liquid Helium-3 down to

0.26 K. (This temperature is stable for about 100 hours.) In order to change the

temperature, a heater is used to heat the sorb and the 3He pot to achieve a stable

temperature from 0.26 K to 3.2 K when the liquid 3He is evaporated. Above this

temperature the sample is in a gaseous rather than liquid surroundings. The heating

power can be controlled to reach temperatures up to 200 K.
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Figure 2.7: Scheme of Helium-3 cryostat.
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Transport through impurities in a

vertical double-barrier resonant

tunnelling diode

3.1 Introduction

In this chapter we describe transport measurements in a double-barrier resonant

tunnelling diode (DBRTD). We have observed resonant tunnelling through single-

impurity states and through double-impurity states. The effect of magnetic field on

resonant tunnelling through double-impurity states is studied.

The first part of this chapter is an introduction to the physics of resonant tun-

nelling in a DBRTD. The theoretical models used previously for analysis of resonant

currents are introduced. Some experimental results on resonant tunnelling via a sin-

gle impurity or localised states in quantum dots (QD) embedded into DBRTDs are

discussed.

In the second part, the experimental results on transport at low temperatures and

high magnetic fields are discussed in detail using a new theoretical model. Random

telegraph noise (RTN) has been observed in transport through DBRTD at 4.2 K

and analysed.
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3.2 Theory of resonant tunnelling

3.2.1 Resonant tunnelling via a quantum well in a DBRTD

One of the most studied devices in semiconductor physics is the resonant tunnelling

diode. The current-voltage characteristics of the resonant tunnelling diode have been

investigated widely in the last three decades. All possibilities of tunnelling paths

and experimental conditions (such as temperature and external magnetic field) were

investigated both experimentally and theoretically [25].

The region between the barriers, Fig. 1.4, of a DBRTD contains several subbands

due to quantum well confinement. These diodes conduct at some applied source-

drain bias, Vsd, when the bottom of the first subband aligns with the Fermi level

in the source, Fig. 1.4(a). This bias is called the threshold voltage. If larger Vsd

is applied, the Fermi level crosses the second subband and the current increases

further.

The general behaviour of the I-V characteristic of DBRTD with negative differ-

ential resistance (NDR), Fig. 1.4(e), was discussed in [26]. Lets consider a DBRTD

with one subband only, Fig. 3.1. The tunnelling current between the 3D regions via

a 2D quantum well disappears at large applied Vsd when the bottom of the conduc-

tion band in the source aligns with the bottom of this subband. The resulting shape

of the current peak is triangular, with a gradual growth at smaller bias voltages and

a rapid decrease at larger Vsd, Fig. 1.4(e). This simple model explains the presence

of NDR, see Sec. 1.2.7. If only energy subbands are considered to contribute to the

current through the DBRTD, its value below the threshold voltage should be very

small, but more detailed measurements [27] have revealed the existence of current

peaks below this voltage. These current peaks are associated with resonant tun-

nelling through zero-dimensional bound states formed by shallow donor impurities

in the quantum well.

3.2.2 Tunnelling through one impurity

The presence of impurities with energies below the first subband in a DBRTD dra-

matically increases the transparency of the structure due to resonant tunnelling

(RT) which occurs when the energy of the tunnelling electrons coincides with the
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Figure 3.1: Tunnelling through a resonant state with energy Es in a double-barrier
structure. ΓL and ΓR are the tunnelling rates from the source to the resonant state
and from the drain to the state, respectively. I2 is the total current.

impurity level, Fig. 3.1. RT through a single impurity in a barrier has been studied

in different structures, both in lateral transistors and vertical diodes [27–31]. In [27]

a vertical DBRTD based on GaAs/Al0.4Ga0.6As was investigated. The lateral size of

the structure was changed electrostatically by a lateral gate (effective cross-section

area reduced from 0.7 to 0.1 µm2). In this confined structure the authors observed

a tunnelling via single-impurity state by measuring current dependence on source-

drain voltage and side gate voltage.

In the case of resonant tunnelling from a 3D source to a 3D drain via a 0D state

in the barrier one can see a peak in I-V characteristic [32]. Due to the conservation

of energy in tunnelling, the shape of the peaks has to be triangular. A resonant

current appears when the energy Es lies between the Fermi level and conduction

band edge in the source, i. e. 0 < εs < εF . Because the density of states decreases

towards zero energy in 3D, the maximum current occurs when the impurity energy is

equal to the Fermi energy in the source contact. By applying bias one can effectively

move the impurity energy level εs from εF to zero energy (defined as the bottom of

conduction band in the source) where current is zero. At intermediate biases the

current decreases linearly with source-drain bias.

If tunnelling via a 0D impurity occurs from a 2D source, a triangular shape of

the current peak is observed with a rapid increase of the current when the impurity

energy level crosses the Fermi level in the 2DEG [33]. The current slowly decreases

if larger bias voltages are applied.

We now consider sequential tunnelling through a single resonant level as shown

in Fig. 3.1, when electron loose their phase after tunnelling from the source to the

state. An electron tunnels from the source through the resonant state with energy

Es inside DBRTD with the rate ΓL/h̄. This state can exist due to unintentional
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doping or can be a quantum dot formed during growth of the structure, Section

1.2.4. Then the electron tunnels to the drain with the rate ΓR/h̄. We can write a

system of rate equations for the currents

I1 = 2e
ΓL

h̄
[fs(1− f)− f(1− fs)], (3.1)

I2 = −2e
ΓR

h̄
[fd(1− f)− f(1− fd)],

where fs and fd are the Fermi-Dirac distribution functions in the source and drain,

respectively, f is the probability that the resonant level is occupied and the factor of

two accounts for the two spins. For current conservation we must have I1 − I2 = 0.

Hence we have expression for the sequential current

I1 =
2e

h̄

ΓRΓL

ΓR + ΓL

, (3.2)

where we assumed that T = 0 and there is a finite bias. This equation shows that

to get the largest current we have to have ΓL = ΓR, which corresponds to an equal

distance from the impurity to the drain and to the source. Therefore, impurities

placed in the middle of the structure can be more easy detected. If this impurity is

placed near one of the contacts then the tunnelling rate between them will be large

but the current through the structure will be determined by the smaller tunnelling

rate.

3.2.3 Tunnelling through two states

The theory of RT via two impurities was proposed in [34] and this effect was observed

experimentally on a short lateral transistor [35]. It is difficult to distinguish between

one- and two-impurity RT in the ohmic regime of conduction – at zero bias both

effects give peaks in the conductance as a function of impurity energy. However,

their I-V characteristics are quite different. Single-impurity RT produces a step-like

I-V characteristic, with the threshold of the current corresponding to the impurity

level coinciding with the Fermi level in the contact [32]. In comparison, the I-V

characteristic of two-impurity RT has a distinct peak at the voltage, corresponding

to the alignment of the two impurity levels [35] below the Fermi level in the source.

In [36] an impurity state in a RTD was used to detect the electronic structure of
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Figure 3.2: a) Conduction-band profile of a device used to probe the states of a QD
with an impurity state in a DBRTD. The inset shows a schematic overview of the
structure, indicating the depleted region around the tungsten wires. The quantum
dot is formed between the two DBRTDs. b) I-V characteristics measured at B = 0 T
and Vg = −50 mV for different temperatures. The solid line is for 0.3 K, the dotted
4.2 K, and the dashed 10 K. For Vc < 0.12 V the current is less than 0.1 pA and has
no fine structure. Note the emitter corresponds to source and the collector to drain
in my text. Adapted from [36].

an electrostatically defined quantum dot, Fig. 3.2a. The impurity state localised in

the DBRTD moved in energy with applied voltage and at several values of Vsd sharp

resonances occurred. These resonances are only possible when the energy level of

the impurity aligns with an energy level in the QD. If we denote the energy state of

the impurity by εi and the energy state in the QD by εdot then the corresponding

shift of the states with Vsd are given by linear relations:

εi = ε0
i − eVsdηi, (3.3)

εdot = ε0
dot − eVsdηdot,

where ε0
i and ε0

dot are the energy states of the impurity and QD, respectively, at

Vsd = 0, and ηi and ηdot are the leverage factors (coefficients of proportionality

between energy and Vsd which are dependent on the position of the impurity and

dot along the RTD). The values of ηi and ηdot can change from 0 (state placed near

the source) to 1 (placed near the drain). The position of the resonance can be found

from the equality Ei = Edot, where the energies are taken from Eq. 3.4. The voltage

where the resonance occurs is

V r
sd =

ε0
dot − ε0

i

e(ηdot − ηi)
. (3.4)

The results of measurements with several peaks in the I-V characteristic for
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different temperatures are presented in Fig. 3.2(b). It is seen that current peaks

occur, with a finite background due to the overlap of the tails of the nearest peaks.

In [37] tunnelling via two QDs formed by GaAs quantum wells between AlAs

barriers (triple barrier structure) in series was studied. The barrier between the two

QDs was small in comparison to the barriers between the QDs and the contacts.

This helped to form a strong coupling between two electron states in QDs to form

a new molecular state. The authors observed steps, but not peaks, in the I-V

characteristic which they attribute to the tunnelling via a state in the quantum-dot

molecule. The current through this molecular state was described by the Eq. 3.2

for a single state in the well.

3.2.4 Effect of magnetic field

Impurity energy levels are affected by an external magnetic field, B, when the spread-

ing of the wavefunction of the state becomes comparable to the magnetic length,

lB =
√

h̄/eB. Magnetic field acts as an additional confining potential on the elec-

tron wavefunction and hence causes a (diamagnetic) shift of the energy level. It has

been shown in [38], Fig. 3.3(a), that for a parabolic potential in the XY -plane

V (x, y) =
1

2
m∗ω2

0(x
2 + y2), (3.5)

the energy spectrum in magnetic field oriented in the z-direction (direction of the

current) is given by

εN,l = (2N + |s|+ 1)h̄

√
ω2

0 +
ω2

c

4
− s

2
h̄ωc, (3.6)

where m∗ is the effective mass of electrons, ω0 determines the curvature of the poten-

tial, N is the radial quantum number (N = 0, 1, 2, ...,), s is the angular momentum

quantum number (s = 0,±1,±2, ...,), and ωc = eB/m∗ is the cyclotron frequency.

The potentials of a shallow impurity and QD can be (in the first approximation)

taken as parabolic potential with an effective parameter ω0. The influence of mag-

netic field on the ground state, ε0,0, is the smallest. If ωc À ω0 then we have a

linear dependence of energy on B-field, as for a zero Landau level, ε0,0 = h̄ωc/2.

In the opposite case, ω0 À ωc, a deep level (or weak magnetic field) will not be
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Figure 3.3: (a) Several energy levels of the impurity with h̄ω0 = 5 meV as a function
of magnetic field, Eq. 3.6. (b) Oscillations of the Fermi level in magnetic field, Eq.
3.7.

weakly affected by the magnetic field and we can expand the ground state energy as

ε0,0 ≈ h̄ω0(1+ω2
c/8ω

2
0), which is quadratic in B. If we consider an anisotropy in the

potential, for example, the well has a different size in x and y direction, then the

magnetic field effect on the energy state will be more complicated than that given

by Eq. 3.6.

The Fermi level in the source shifts as a function of magnetic field. The movement

of the Fermi level at fixed concentration, n, of the 3D electron gas in the source can

be determined from [2]

n =

√
2(m∗)3/2

π2h̄3 µBB
∑
N, σ

√
EF − (2N + 1)µBB + σgµBB (3.7)

where µB = eh̄/2m∗ is the effective Bohr magneton, spin number σ takes values

±1/2, and g is the Lande g-factor of electrons. At a fixed concentration the Fermi

level oscillates as a function of magnetic field, Fig. 3.3(b). In high magnetic fields

spin splitting has to be taken into account (the last term in Eq. 3.7).

From an experimental point of view, a parabolic potential is a good approxima-

tion of the confinement potential of a QD. Many authors [33,36,37,39] used Eq. 3.6

to explain the shifts of the peaks or steps in the tunnelling current as a function of
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Figure 3.4: Schematic presentation of the double-barrier resonant tunnelling
GaAs/Al0.33Ga0.67As structure with an applied bias. The two dots indicate im-
purities in resonance.

Vsd and magnetic field.

Because tunnelling is sensitive to the local density of electron states in the source,

the local structure of the Landau levels in GaAs has been studied by a tunnelling

with magnetic field applied [40], where a single impurity of radius 10 nm (esti-

mated from the expression r ∼
√

2h̄/m∗ω0) was used as a detector. In magnetic

field parallel to the current the local density of states can be detected, because the

maximum current occurs in the region of the impurity and using magnetic field the

effective impurity size can be changed (in strong magnetic field this size is given by

r ∼
√

2h̄/m∗ωc). The authors have also observed a diamagnetic shift of the ground

state (N=0, s=0) described by Eq. 3.6.

In [39] resonant tunnelling from a 2DEG via InAs QDs embedded in an AlGaAs

barrier was studied. Two orientations of magnetic field with respect to the current

were used to estimate the size of the resonant state. When magnetic field perpen-

dicular to the current was applied, the variation in the voltage corresponding to the

current peak is determined by

e∆V = −βe2B2

2

(〈z2
e〉

m∗ − γ
〈z2

d〉
md

)
, (3.8)

where
√
〈z2

e〉 is the spatial extent of the electron wave function in the emitter,

estimated using self-consistent numerical calculations,
√
〈z2

d〉 is the spatial extent

of the barrier state, m∗ and md are the electron masses for the electron and the

electron in the well, β is the leverage factor, and γ is a geometric factor related to

the shape of the confinement potential.
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3.3 Experiment and analysis

3.3.1 General I-V characteristic of DBRTD

Our experiments have been performed on a vertical GaAs/AlGaAs diode structure

(KIIORe23b, supplied by Giancarlo Faini from the Laboratoire de Photonique et

Nanostructures, CNRS in Marcoussis, France) at temperatures down to T = 0.25 K.

Two AlGaAs barriers of width 8.7 nm confine a 5 nm wide GaAs quantum well.

The GaAs contacts contain doped regions which are separated from the barriers

by spacers of 20 nm and 30 nm thickness. Fig. 3.4 shows the band diagram of

the structure with a positive bias applied to the right contact. In the lateral (XY)

direction the sample is etched into a pillar with a diameter of 70 nm [41]. The small

cross-sectional area of the device allows one to detect the presence of individual

impurities in the current through the structure [42].

We have studied sample KIIORe23b in a helium dewar at 4.2 K by measure-

ments of I-V characteristics at different ranges of Vsd. Measurements of the signals

below 100 nA were performed using a low-noise current preamplifier EG & G 181

(which can detect DC currents as small as 0.25 pA. A general picture of the I-V

characteristic of this sample is shown in Fig. 3.5. The I-V characteristic has a

diode-like behaviour with threshold voltages at 0.17 V and -0.15 V. Negative dif-

ferential conductance (NDC) has been observed in the regions around ±0.1 V. The

experiments below concentrate on the region below the threshold voltage, to study

the resonances that cause this NDC.

3.3.2 Random telegraph noise in DBRTD at 4.2 K

The I-V characteristic measurements below 0.1 V have shown several current peaks

which are due to tunnelling through localised states inside the DBRTD. Around

these peaks the current is observed to switch between two states with an approximate

period of 1 s. This RTN at 4.2 K is shown in Fig. 3.6. On the graph increasing and

decreasing sweeps of the bias voltage are shown. It appears that the direction of

the sweep has no effect on the RTN, that is there is no hysteresis effect. The most

intense noise occurs in the range from 60 mV to 80 mV in Vsd around the current

peak of 20 pA. It can be seen that there are two main states for the current indicating
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Figure 3.5: The I-V characteristic (solid line) of the KIIORe23b sample from -0.15
V to 0.17 V at 4.2 K. The dotted line shows the simultaneously measured differential
conductance, G, as a function of Vsd. Negative differential conductance near ±0.1
V corresponds to the presence of peaks in the I-V characteristic.

that noise originates from the switching of a single impurity (however, there are also

small-amplitude switchings with much lower rate). The two states look identical

when shifted along Vg. RTN can be produced by charging and discharging of an

impurity in one of the contacts or in the barrier close to the drain. In this case

charging this impurity does not change the amplitude of the peak, but it creates

an effective source-drain bias, which shifts the peak position by a constant voltage.

In the insert of Fig. 3.6 a slow voltage sweep is shown. The peak at 70.7 mV is

shifted by the change in occupancy of the impurity state to a new position 73 mV.

This fluctuating peak has good reproducibility with time and from one cool-down

to another (the amplitude varies between 19 and 22 pA).

To analyse this RTN we have divided the Vsd region from 56 mV to 78 mV

around the peak (with 27500 data points) into 50 smaller regions (with 550 point in

each). Then we have calculated the distribution of the current in each region. The

resulting histogram was fitted by a double Gaussian function to find the maxima of

the distribution. The results of the analysis are shown in Fig. 3.7(a,b). The solid

circles represent the first state which is populated at smaller Vsd, and the empty

circles are related to the second state, which is populated at the larger biases. The
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with sweep rate 600 mVh−1. One can see switching between two states. Inset: the
I(Vsd) characteristic measured with sweep rate 4 mVh−1 with results presented as
individual points. The shift in Vsd between the two states is about 2.4 mV.

position of the minimum between the two peaks in the histogram can be used to

distinguish the two states from each other. The total number of counts from this

minimum to the left represents the total time of population of the low-current state.

We can find the probability to find an electron in state 2 as a function of Vsd by

dividing this number by the total number of counts, Fig. 3.7(c), which shows an

approximately a linear dependence on Vsd.

It is expected that RTN rate has an exponential increase with increasing tem-

perature [6] because it is easier to occupy an impurity at higher temperature. Thus

to get a more stable system without RTN lower temperatures are required.

3.3.3 I-V characteristics at T=0.25 K

Fig. 3.8 shows an I-V characteristic of sample KIIORe23b at 0.25 K measured in

a Helium-3 cryostat. The threshold voltage has not changed in comparison to that

observed in a dewar at 4.2 K, Fig. 3.5. One can distinguish several regions in the

I-V characteristic: a region with small peaks of amplitude less than 0.1 nA and

64



Chapter 3: Transport through impurities in a vertical double-barrier resonant
tunnelling diode

Figure 3.7: (a) Current as a function of Vsd of sample KIIORe23b for two separated
states at 4.2 K. State 1 is shown by filled circles and state 2 by empty circles. (b)
Distribution of the currents at Vsd = 64.122 mV (shown in (a) by dashed vertical
line). Arrow shows current value (5.45 pA) taken to separate two states. Solid line
shows fit using sum of two Gaussian functions. (c) Probability to find an electron
in state 2 as a function of Vsd. The solid line is a linear fit.

small background; a region with larger peaks with amplitudes of about 0.1 nA on

a background of about 0.1 nA; and a larger Vsd region where the current increases

rapidly at the threshold voltage of 0.15 V. We are interested in the first region with

small well resolved peaks of 10 pA amplitude.

We have focused our attention to the range of voltages from 55 mV to 70 mV,

where several peaks are seen. This region of the source-drain bias (with the current

of the order of 10 pA) below the threshold voltage corresponds to transport via

impurities in the structure. At the beginning of the experiment, the I-V charac-

teristic was not stable and many RTN signals which not only shifted the current

peaks but also changed their amplitudes were observed. The structure of the peaks

was stabilised by sweeping the voltage in this range of Vsd for two weeks at base

temperature. Fig. 3.9(a) shows the I-V characteristic of sample KIIORe23b where

65



Chapter 3: Transport through impurities in a vertical double-barrier resonant
tunnelling diode

0.00 0.05 0.10 0.15

0

2

4

6

8

0.08 0.10 0.12

0.0

0.2

0.4

 

 

KIIRe23b
T = 0.26 K

I, 
 n

A

Vsd, V

 I,
 n

A 

 

Vsd, V

Figure 3.8: General view of the I-V characteristic of sample KIIORe23b at 0.25
K. Inset: zoomed in region before threshold voltage with many small current peaks
with the amplitude of 50 pA.

both current peaks with small RTN and a quite stable peak near at 67.8 mV are

present.

The peak at 67.8 mV is of Lorentzian shape and it was studied in detail. It is

not well separated from the nearest current peaks from which we conclude that the

background (in the first approximation) comes from the tails of these peaks. This

is demonstrated by the fact that the I-V characteristic in this range can be fully

described by the sum of several peaks of Lorentzian shape, Fig. 3.9(b).

The observed peak in the I-V characteristic is interpreted as a result of two-

impurity RT. The position of the peak on the voltage scale contains information

about the energy levels of the two impurities, and the peak amplitude and its width

are determined by the spatial position of the impurities (the overlap of the two

wavefunctions with each other and the contacts, as well as the relative shift of the

two energy levels with bias).

We have seen that the shape of the peaks in the pre-threshold region is tempera-

ture independent, which is in agreement with RT through two levels placed between

the Fermi levels in the right and left contacts, Fig. 3.4, and not affected by temper-

ature smearing of the distribution functions in the contacts. The shape of the peak
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Figure 3.9: The I-V characteristic of sample KIIORe23b at 0.25 K from 55 mV to
79 mV. (a) Several sweeps with small RTN. (b) Fitting of the I-V characteristic
(empty circles) using seven Lorentzian peaks (dashed curves). The resulting fit is
shown by a solid thick line.

is described by a Lorentzian [35]:

I(∆Vsd) =
2e

h̄

ΓLΓR|HLR|2
(βLRe∆Vsd/2)2ΓLΓR/(ΓR + ΓL) + (ΓR + ΓL)(ΓRΓL + |HLR|2) , (3.9)

where ΓL(ΓR) is the tunnelling rate from the left (right) impurity to the left (right)

contact, HLR is the overlap integral between the wavefunctions of the two impurities,

βLR = βR − βL, βL,R = dεL,R/deVsd is the leverage factor related to the shift of the

impurity level with a voltage applied, εL and εR are the energies of two levels (with

respect to the Fermi level in the left contact), ∆Vsd is the bias voltage with respect

to the resonant value V r. The amplitude of the peak

I0 = I(∆Vsd = 0) =
2e

h̄

ΓLΓR|HLR|2
(ΓR + ΓL)(ΓRΓL + |HLR|2) , (3.10)

and the half-width at half-height is determined by

W1/2 =
2

βLRe
(ΓL + ΓR)

√
1 +

|HLR|2
(ΓL + ΓR)2

. (3.11)
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Figure 3.10: (a) Grey-scale of the current as a function of Vsd and B of sample
KIIORe23b at 0.25 K (first measurement). The darkest region represents the largest
current. The black line at B = 1.6 T is RTN. (b) Grey-scale of the conductance as
a function of Vsd and B measured simultaneously with the current. NDC is seen as
white regions on the graph.
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3.3.4 Effect of magnetic field on the current peak

To understand more about the properties of these two impurities, a magnetic field

parallel to the current has been applied. Fig. 3.10(a), shows how the I-V charac-

teristic changes as a function of magnetic field. The differential conductance, Fig.

3.10(b), shows the position of the current peak more distinctly. The reproducibility

test (Fig. 3.11) performed confirmed that there was no effects on the shift of the

peak due to RTN.

The dark line near 1.6 T in Fig. 3.10(a) is indeed the second state of a RTN in

the I-V characteristic, which has a larger current. The studied peak in the current

was stable during several days when magnetic field dependance experiments have

been performed. This is confirmed by repeated experiment, Fig. 3.11, where no

RTN at B = 1.6 T was detected (one has to notice though that the RTN seen

in Fig. 3.10 around B = 1.6 T is not associated to a special B-field, and it only

occurred in that moment of time during the long term experiment).

Fig. 3.11 shows the current characteristics for the peak at Vsd = 67 mV in

magnetic fields up to 10 T. The main feature is a shift of the peak to smaller

voltages in weak magnetic fields. From 0 T to 2 T the amplitude of the current

peak does not change, but above 2 T the amplitude decreases linearly as a function

of magnetic field and becomes zero at 4 T, Fig. 3.12. In the range of magnetic

fields from 4 T to 8 T there are two current peaks with a random switching between

them. In this region the amplitudes of the peaks can both increase or decrease with

Vsd and B. Another region begins at 8 T, when another current peak is seen, whose

amplitude increases monotonically and the position of the peak shifts to smaller

voltages, indicating a similar origin for this peak shift as for the peak observed at

small magnetic fields (below 4 T). To analyse the shift of the peak seen below 4 T

we have used a fitting procedure with a Lorentz shape function (analogous to Eq.

3.9 but with a background):

I = y0 +
ALω2

4(x− xc)2 + ω2
, (3.12)

where y0 is a background current which probably comes from the tails of the nearest

peaks, xc is the position of the maximum of the peak in Vsd-scale, AL is a current

amplitude, and ω is the full width at half maximum.
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Figure 3.11: Grey-scale of the current as a function of Vsd and B of sample KI-
IORe23b at 0.25 K (second measurement).

Figure 3.12: Current as a function of bias at different magnetic fields. The curves
are shifted vertically from the curve at B = 0 T for clarity.
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Figure 3.13: The position of the current peak as a function of magnetic field from 0
T to 3 T for two sets of experiments.

Figure 3.13 shows the shift of the current peak due to magnetic field. On the

graph two sets of experimental data are presented, taken a day apart. One can see

a good agreement in the shift of the current peak position as a function of magnetic

field, which can be described as a linear dependence from 0.7 T to 3 T:

V r
sd[V] = 0.06734− 1.784 · 10−4B[T]. (3.13)

This (diamagnetic) shift has different sign to be explained in terms of single impurity

diamagnetic shift. Indeed, according to Eq. 3.6 in strong magnetic field one should

see a liner diamagnetic shift up with increase of the energy state ε0,0 = h̄ωc =

h̄eB/2m∗ and it is required a larger Vsd to achieve a new resonant level of the

impurity. For the two-impurity RT the shift of the current peak comes from the

difference of the shift of the two levels (if for example both levels are shifted with B

by exactly the same energy, no shift of the peak in I-V will be detected). On the

other hand, if the left impurity (close to the source) shifts faster in B-field than the

right impurity we will observe a shift of the current peak to lower voltages as seen

in experiment.
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Figure 3.14: Conductance as a function of electron energy and overlap integral;
Γ = 0.1 meV; εr = 1 meV, Eq. 3.19.

3.3.5 Analysis of the current peak in the presence of mag-

netic field

Let us consider the situation of tunnelling through two impurities inside a resonant

tunnelling diode at zero temperature. From [34] the conductance

G =
e2

h
T (ε, ε1, ε2) =

e2

h

4ΓLΓR|HLR|2
|(ε− ε1 + iΓL)(ε− ε2 + iΓR)− |HLR|2|2 , (3.14)

where T (ε, ε1, ε2) is the transmission probability for an electron with energy ε

through two localised states at ε1 and ε2. (The leak rates and overlap integral

can change with applied voltage, but at the low voltages we neglect these changes.)

If we assume that ε1 = ε2 = εr and ΓL = ΓR we can plot the conductance (Eq.

3.14) as a function of the electron energy ε and overlap integral, Fig. 3.14. One can

see that if HLR ¿ ΓL one gets a single peak in the conductance, which splits into

two in the case when HLR À ΓL.

The energies of the impurities as a function of bias can be written in the following

form

ε1 = ε0
1 − βLeV , (3.15)

ε2 = ε0
2 − βReV , (3.16)

where ε0
1 and ε0

2 are the localised state energies without bias, and V is an applied

voltage. In this vertical double-barrier structure we do not have a gate to vary the

energy levels of the impurities (which would be the case in lateral structures with
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Figure 3.15: Normalised amplitude of the current peak as a function of resonance
level position εr and overlap integral H; Γ = 0.3 meV; µ = 4 meV, Eq. 3.19.

double quantum dots). However, we can use an external magnetic field which will

similarly shift the energy levels. If the potential energy of the localised states can

be presented by a parabolic potential, then we can rewrite expressions (3.15) and

(3.16) taking into account the diamagnetic shift of each impurity level [38]:

ε1 =

√
(ε0

1)
2 +

(
h̄ωc

2

)2

− β1eV, ε2 =

√
(ε0

2)
2 +

(
h̄ωc

2

)2

− β2eV, (3.17)

where ωc = eB/m∗ is the cyclotron frequency of an electron with effective mass m∗ =

0.067m0 in bulk GaAs. Here we assume that the leak rates do not depend on applied

magnetic field and the magnetic field orientation is parallel to the current. This

means that magnetic field does not change the size of the impurity wave function

in the direction of current flow and thus the leak rates and the overlap integral are

not changed significantly by magnetic field.

As we are interested in the amplitude of the current, we need to discuss the

situation at resonance, which happens when the energies of the two impurities are

equal. The resonant energy of the two impurities (counted from the bottom of the

conduction band in the source) is

εr =

(
1 +

β1

β2 − β1

) √
(ε0

1)
2 +

(
h̄ωc

2

)2

− β1

β2 − β1

√
(ε0

2)
2 +

(
h̄ωc

2

)2

. (3.18)

This is found from the condition ε1 = ε2 using Eq. 3.17. Integration of Eq. 3.14 over

energy with infinite limits can be replaced by integration over a semi-finite interval

due to the step-function shape of the Fermi-Dirac distribution function. (The full

procedure of integration is presented in Appendix A.) The resulting expression for

73



Chapter 3: Transport through impurities in a vertical double-barrier resonant
tunnelling diode

the maximum current is

Imax =
e

h

ΓLΓR|HLR|2
H(H2 + Γ2)

[
1

2
ln

(
(µ + H − εr)2 + Γ2

(µ−H − εr)2 + Γ2

)
+

+
H

Γ

[
tan−1

(
µ + H − εr

Γ

)
+ tan−1

(
µ−H − εr

Γ

)
+ π

]]
, (3.19)

where H =
√
|HLR|2 − 1

4
(ΓL − ΓR)2 and Γ = 1

2
(ΓL + ΓR).

Fig. 3.15 shows the dependence on resonant level position εr and overlap integral

H of the current amplitude normalised over the current magnitude at εr = 0. In the

figure one can see the transition from a smooth ’single-step’ monotonic dependance

for H ¿ Γ to a ’two-step’ dependence in the case when H À Γ.

3.3.6 Diamagnetic shift and current amplitude

The fact that the amplitude of the current peak does not depend on magnetic field

(from 0 T to 2 T), Fig. 3.16, tells us that the overlap of the wave functions is not

affected by magnetic field. This means that in Eq. 3.19 HLR is not affected by B-

field, that is the impurities are spatially aligned along the direction of the magnetic

field (i.e. the distance between the impurities in the XY-plane is smaller than the

magnetic length, 18 nm at 2 T).

We interpret the shift of the peak by the diamagnetic shift of impurity levels,

caused by squeezing the electron wavefunctions in the XY-plane of the structure. If

two impurities were shifting equally in magnetic field, the position of the resonance

would remain unchanged. The shifts towards smaller Vsd means that the shift of the

left impurity is stronger than that of the right impurity (Fig. 3.4). (The fact that

the resonance is observed at a positive bias also means that the original (zero bias)

position of the left energy level is lower than that of the right level.)

The position of the current peak in voltage, V r, can be written analytically for

a simple model of two parabolic confining potentials of the two impurities (one can

show that the results of this approximation are close to that obtained for Coulomb
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Figure 3.16: (a) The ratio of the current amplitudes as a function of magnetic field
from 0 T to 3.5 T. Four curves generated from Eq. 3.18 with different overlap
parameter, HLR are presented. (b) Current as a function of bias, Vsd, for two
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impurities [4]):

V r =
1

eβLR




√
(εR − ε0R)2 +

(
h̄ωcR

2

)2

−
√

(εL − ε0L)2 +

(
h̄ωcL

2

)2

+ ε0R − ε0L


 ,

(3.20)

where εL and εR are the energies of the two levels, ε0R and ε0L are the energies

of the bottoms of the parabolic potentials, ωcR,L = eB/mR,L. The difference in

the diamagnetic shifts of the two impurities, controlled by the difference in their

cyclotron masses, can be easily obtained from the linear shift seen above 1.5 T, Fig.

3.17, given by Eq. 3.13. (The linear dependence in Eq. 3.20 corresponds to the

situation when the diamagnetic shifts are stronger than the ground state energy of

the impurities. In other words, the parabolic potential in the XY plane is weaker

than the magnetic field potential at B > 1.5 T.) This gives us directly the relation

between the two cyclotron masses (m∗ is the bulk electron mass in GaAs), with
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Figure 3.17: Position of the current peak as a function of magnetic field, with a
fitting curve, Eq. (3.20).

mL < mR:
m∗

mR

− m∗

mL

= −0.2βLR. (3.21)

We can obtain a self-consistent picture by assuming that the two impurities are

positioned in the AlGaAs barriers, close to the interfaces with the GaAs quantum

well, Fig. 3.4. The geometry of the structure will then give the value of βLR ∼ 0.1

and therefore the difference between the two masses of about 2%. The fitting of the

whole curve in Fig. 3.17 gives then the values of the ground state energies of the

impurities in the parabolic potential: εR − ε0R ' εL − ε0L = 1.5 meV. This value

is about four times smaller than the value obtained from the comparison of the

Coulomb potential (with the bulk mass) with the parabolic potential. Positioning

of the impurities at the AlGaAs/GaAs interfaces accounts for the difference, as half

of the Coulomb potential is now replaced by a high potential wall.

Let us now discuss the origin of the decrease in the current in Fig. 3.16(a) from

B = 2 T to 4 T. One possibility is that the level of the left impurity is shifted

up with magnetic field and at B ∼ 2 T it becomes higher than the Fermi level

in the left contact, Fig. 3.4. Then the range of fields where this decrease occurs

(∼ 1 T) is related to the width of the resonance. There is a problem, however, in this

explanation because the width of the resonance determined from the current peak,

Fig. 3.16(b), appears to be two times smaller than expected for such a scenario. This

fact requires further investigation: it is possible that other effects (such as a decrease

of the overlap in magnetic field, or slowing down of the energy level shift near the

Fermi level) are responsible for the decrease of the current peak in magnetic field.
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The result of fitting using Eq. 3.18 for different overlaps (HLR) are also presented.

We can conclude that the best fit is observed for the parameter HLR < 0.1 meV,

which implies small overlap between the two resonant states.

3.4 Conclusions

Resonant tunnelling through two impurities has been observed for the first time in

a vertical double-barrier resonant tunnelling diode structure. The current-voltage

characteristic has been studied in parallel magnetic field and analysed with the help

of the developed model. It was shown that resonant tunnelling in magnetic field gives

information about the properties of the impurities: the energy levels, the effective

electron mass and spatial positions of the impurities in the structure.
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Charge carrier transport in

graphene

4.1 Introduction

The aim of this chapter is to describe the diffusion model and simplifications we

have used to model carrier transport in graphene. The model is used successfully to

predict the energy dependence of the resistance in top-gated structures in graphene

flakes with low mobility. There is a striking deviation from the model when a p-n

junction is formed in graphene flakes where the carriers have a higher mean free

path. This is discussed with the help of a ballistic transport model by Cheianov and

Fal’ko [43].

Transport through p-n and p-n-p junction has been calculated numerically both

in the diffusive and ballistic regime. For all calculations we have used Comsole

FEMLab software, which uses a similar programming language to MatLab often

used for scientific computations. (All source codes with comments are placed in

Appendixes.) The code for the ballistic model was written by F. Guinea (Instituto

de Ciencia de Materiales de Madrid, CSIC, E28049 Madrid, Spain). To describe os-

cillatory behavior observed in the transmission probability through a p-n-p junction

we have used a code also provided by F. Guinea.
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4.2 Graphene

Graphene is a two-dimensional crystal of carbon atoms connected in a honeycomb

lattice. This single atom thick crystal was first created experimentally in 2004 by

a University of Manchester research group lead by Andre Geim [18, 44]. Graphene

has attracted considerable interest after its discovery, most notably because of its

unusual, linear dispersion relation for the charge carriers [45], which emulates high

energy relativistic physics in table-top experiments. Such phenomena as Klein tun-

nelling [46] and Zitterbewegung [47] which have analogues in quantum electrody-

namics were theoretically predicted in 2006 in graphene.

The vast majority of experiments to date have been carried out on graphene

made by a mechanical exfoliation technique [18] where a graphite monocrystal is

repeatedly split into thinner and thinner slices using an adhesive tape. These slices

may contain many layers of graphene and also single atomic layers. Then the slices

are deposited on an oxidised Si wafer. As soon as graphene has been deposited, the

problem of finding a monolayer in the deposit arises. It was found experimentally

that the graphene layer affects the resonant backscattering of light through the

SiO2 on the Si surface, and the visibility of single/few layer graphene problem has

been solved by means of thin-film optics theory [48, 49], where the dependence of

reflected light intensity from the structure on angle of light beam incidence, thickness

of substrate, and dielectric constant of the substrate has been calculated. It was

discovered that single-layer graphene is better seen on top of Si wafer with specific

thickness (100 nm and 300 nm) of SiO2.

In spite of a single-atom thickness, graphene is chemically stable [18] and able

to withstand lithography processing. In order to verify the single atomic nature of

graphene, quantum Hall effect [21,22] and Raman spectroscopy [50] are used. High

quality samples with a six-terminal Hall bar geometry have revealed, in quantising

magnetic fields, a peculiar half-integer quantum Hall effect in monolayer graphene

[21, 22]. In Raman spectra so-called D peak can help to distinguish a single-layer

from bilayer and triple layer graphene [50].

In the following subsections an introduction to the physics of graphene based on

a low energy approximation of transport on honeycomb lattice is presented.
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Figure 4.1: Graphene honeycomb crystal lattice. Two independent sublattices A
and B are shown by different colours.

4.2.1 Crystal lattice

All the unique properties of graphene emerge from its honeycomb crystal lattice

structure. The lattice of graphene consists of hexagons with carbon atoms placed

in their corners with angles of 120◦ between them. The distance between nearest

neighbours is d = 0.142 nm. In a unit cell of graphene, as shown in Fig. 4.1, there

are two atoms shown by different colours. All atoms of type A, shown in blue, form

a triangular sublattice where the atoms’ positions can be expressed in terms of unit

lattice vectors a1 and a2:

rA = ma1 + na2, (4.1)

where m and n take values 0,±1,±2.... The unit vectors in two-dimensional space

for the lattice shown in coordinate system (X, Y ) in Fig. 4.1 are

a1 =
d

2

(
3,
√

3
)

, a2 =
d

2

(
3,−

√
3
)

. (4.2)

The second sublattice made from B-type atoms is shifted by a vector δ3. A sublat-

tice, ΛA, has a set of all possible vectors rA and B sublattice, ΛB, contains vectors

rA − δ3. The vectors defining the nearest neighbours in sublattice B, shown by the
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Figure 4.2: Neighbouring atoms in the graphene crystal: nearest neighbours, next
to nearest neighbours, and third nearest neighbours in the same sublattice with
translating vectors between them indicated by solid, dashed, and dotted lines, re-
spectively.

solid lines in Fig. 4.2, are

δ1 =
d

2

(
1,
√

3
)

, δ2 =
d

2

(
1,−

√
3
)

, δ3 =
d

2
(−2, 0) . (4.3)

The vectors defining the second nearest neighbours in sublattice A, shown by

the dashed lines, can be expressed in terms of unit vectors a1 and a2:

n1 = −n4 = a1, n2 = −n5 = a2, n6 = −n3 = a1 − a2. (4.4)

Finally, the third-nearest atoms in sublattice A, shown by the dotted lines, are

defined by:

m1 = n1 + δ2, m2 = n3 + δ3, m3 = n5 + δ1. (4.5)

The choice of unit vectors and orientation of the cartesian coordinate basis is im-

portant because the form of the equation of motion for particles in such a lattice

will be affected by this choice. In the published literature, for example [45], instead

of a2 vector a vector with coordinates d =
(
0,−√3

)
has been used. Different choice

of basis will lead to different form of operators.

4.2.2 Band structure

The strong sp2 hybridised, in-plane covalent bonds do not contribute to the trans-

port properties of graphene, and only π orbitals oriented perpendicular to the plane
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do so. In the tight-binding approximation the many-particle Hamiltonian (in the ab-

sence of magnetic field) for non-interacting quasiparticles, using up to third-nearest

neighbours (see Fig. 4.2), can be written as [51,52]

Htb = −t
∑

ri∈ΛA

3∑
j=1

a†(ri)b(ri + δj)− t
∑

ri∈ΛB

3∑
j=1

b†(ri)a(ri + RIδj)

−t′
∑

ri∈ΛA

6∑
j=1

a†(ri)a(ri + nj)− t′
∑

ri∈ΛB

6∑
j=1

b†(ri)b(ri + RInj)

−t′′
∑

ri∈ΛA

3∑
j=1

a†(ri)b(ri + mj)− t′′
∑

ri∈ΛB

3∑
j=1

b†(ri)a(ri + RImj), (4.6)

where RI is an operator of rotation by π radians, a†(a) is an electron creation

(annihilation) operator on site ri ∈ ΛA and b†(b) is that on site ri ∈ ΛB. Index j

changes from 1 to 3 for nearest neighbours and for third nearest neighbours and from

1 to 6 for third-nearest neighbours. Vectors δj, nj mj are defined by expressions

4.3, 4.4, 4.5, respectively. The parameters t, t′, t′′ represent the hopping energy

between first, second, and third nearest neighbours respectively, and they are equal

to 2.8 eV, 0.1 eV, 0.07 eV, respectively [53]. This Hamiltonian takes into account all

hops between nearest neighbours in the lattice, ignoring many other contributions

like disorder and smaller hopping energies for more distant sites.

We can introduce the Fourier transform of creation and annihilation operators

by the following formulae:

a†(ri) =
1√
N

∑

k

e−ik·ria†(k), a(ri) =
1√
N

∑

k

eik·ria(k),

b†(ri) =
1√
N

∑

k

e−ik·rib†(k), b(ri) =
1√
N

∑

k

eik·rib(k), (4.7)

where N is the number of sites in sublattice A or B. If we substitute Eq. 4.7 into

Eq. 4.6 we have

Htb = −
∑

k

(
a†(k) b†(k)

)

 φ′(k) φ(k) + φ′′(k)

φ∗(k) + φ′′∗(k) φ′∗(k)





 a(k)

b(k)


 ,

(4.8)
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where

φ(k) = t

3∑
j=1

eik·δj , φ′(k) = t′
6∑

j=1

eik·nj , φ′′(k) = t′′
3∑

j=1

eik·mj . (4.9)

Here we have used the definition of the delta function

δ(k− k′) =
1

N

∑
ri∈ΛA

eik′ri−ikri .

Using Eq. 4.8 the dispersion relation ε(k) for the charge carriers is calculated from

the condition on the determinant

∣∣∣∣∣∣
φ′(k) + ε(k) φ(k) + φ′′(k)

φ∗(k) + φ′′∗(k) φ′∗(k) + ε(k)

∣∣∣∣∣∣
= 0. (4.10)

By solving this quadratic equation the energy of carriers is

ε1,2(k) = −<φ′(k)±
√
|φ(k) + φ′′(k)|2 −=φ′(k)2. (4.11)

where <φ′(k) and =φ′(k) are real and imaginary part of φ′(k), respectively. The

positive sign corresponds to the conduction band and negative to the valence band.

The latter expression can be simplified because imaginary part is cancels and the

final result for the dispersion relation is

ε1,2(k) = −φ′(k)±
√
|φ(k) + φ′′(k)|2.

A simpler approximation used in the literature, when |φ| ¿ |φ′| and |φ| ¿ |φ′′|, is

E1,2(k) = ±|φ(k)|. (4.12)

It takes into account the nearest neighbours only.

4.2.3 Effective Dirac equation

There are six points in the corners of Brillouin zone where the conduction band

touches the valence band, called Dirac points:

(
0,± 4π

3
√

3d

)
,

(
2π

3d
,± 2π

3
√

3d

)
,

(
−2π

3d
,± 2π

3
√

3d

)
. (4.13)
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The dispersion relation is linear around these points. There are two inequivalent

Dirac points K+ =
(
0, 4π

3
√

3d

)
and K− =

(
0,− 4π

3
√

3d

)
, which we choose in the opposite

points in the first Brillouin zone defined as shown in Fig. 4.3. We can rewrite the

tight-binding Hamiltonian (4.8) for nearest neighbours in the vicinity of K+ and

K− points [54]as

Htb+
1 ' h̄vF

∑

k

Ψ†
K+(κ)


 0 iκx + κy

−iκx + κy 0


 ΨK+(κ), (4.14)

Htb−
1 ' h̄vF

∑

k

Ψ†
K−(κ)


 0 iκx − κy

−iκx − κy 0


 ΨK−(κ), (4.15)

where vF = 3td/2 is a Fermi velocity. If we consider all contributions from nearest

neighbours, the following expression will appear in the first order expansion of Eq.

4.8 for a single particle by a wavevector near the Dirac points K+, K−:

H̃tb±
1 =


 3t′ h̄v∗F (iκx ± κy)

h̄v∗F (−iκx ± κy) 3t′


 , (4.16)

where the Fermi velocity is renormalised due to the presence of third neighbour

hopping integral t′′ as v∗F = 3d(t − 2t′′)/2, and ± indexes correspond to a specific

Dirac point K±. The second order expansion gives

H̃tb±
2 =


 −9

4
d2t′(κ2

x + κ2
y) α(κx ± iκy)

2

α(κx ∓ iκy)
2 −9

4
d2t′(κ2

x + κ2
y)


 , (4.17)

where α = 3h̄t(1 + 4t′′/t)d2/8. The diagonal terms of the Hamiltonian change the

position of the Fermi energy and break the symmetry between holes and electrons

can be absorbed in the chemical potential [51] as an additional term which shifts

the Fermi energy. These terms have circular symmetry and change slightly the

slope of the dispersion relation, but off-diagonal terms distort the spectrum and

are responsible for ’trigonal warping’ [55], so-called because of the triangular shape

of the Fermi surface. The resulting dispersion relations for electrons and holes are
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Figure 4.3: Band diagram for graphene in the nearest neighbours approximation
described by Eq. 4.12. Two nonequivalent Dirac points (K− and K+) are shown.

given by the following expressions with second order in κ:

εK±
e = 3t′ + h̄v∗F

√
κ2

x + κ2
y −

9

4
d2t′(κ2

x + κ2
y)±

ακy√
κ2

x + κ2
y

(3κ2
x − κ2

y),

εK±
h = 3t′ − h̄v∗F

√
κ2

x + κ2
y −

9

4
d2t′(κ2

x + κ2
y)∓

ακy√
κ2

x + κ2
y

(3κ2
x − κ2

y).

4.2.4 Rotation

A rotation of the coordinate system in Fig. 4.1 by an angle η changes the form of

the Dirac equation, but should not change the dispersion relation. Thus, a phase

factor can be added to the Dirac Hamiltonian to account for this. Calculations show

that a single-particle Hamiltonian changes under rotation by an angle η as [55]

H± = h̄vF


 0 e±iη(iκx ± κy)

e∓iη(−iκx ± iκy) 0


 , (4.18)

From this Hamiltonian, other Hamiltonians used in literature can be obtained. For

example, it can be transformed to a most common form when the rotation by −π/2

is made [52]:

H = h̄vF




0 κx − iκy 0 0

κx + iκy 0 0 0

0 0 0 −κx + iκy

0 0 −κx − iκy 0




. (4.19)
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where we exchange the sublattices A −→ B in the spinor for the K− Dirac point in

order to use a simple form for the Dirac equation

H±ψ± = ±h̄vF (σ1κ1 + σ2κ2)ψ
± = εψ±, (4.20)

where σ1 and σ2 are Pauli matrixes and ψ± are spinor wavefunctions for the two

valleys.

4.2.5 Chirality

The wavefunctions for K± points can be found by solving equation (4.20) as

ψK±
e =

1√
2


 1

± κx+iκy√
κ2

x+κ2
y


 ,

ψK±
h =

1√
2


 ±−κx+iκy√

κ2
x+κ2

y

1


 , (4.21)

where indexes e and h correspond to electrons and holes, respectively. One can

construct a pseudochirality operator [52] defined as

ĥ =
κxσx + κyσy√

κ2
x + κ2

y

, (4.22)

which has a specific eigenvalue if it acts on the wavefunctions in Eq. (4.21). Namely,

ĥψK±
e = ±ψK±

e , ĥψK±
h = ∓ψK±

h , (4.23)

where electrons and holes have opposite sign eigenvalue (chirality) in both valleys.

Electrons have +1 chirality in the K+ valley and −1 chirality for the K− Dirac

point. Conservation of this quantum number plays an important role in transport

properties of quasiparticles in graphene discussed in the next section.

4.3 Transport properties

Graphene is a semiconductor with zero band gap. When the resistance of graphene

placed on top of SiO2 is measured as a function of gate voltage, a single peak of
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large but finite resistance is observed. The Fermi energy (or gate voltage) at which

this peak occurs is called the Dirac or electroneutrality point. In ideal graphene

without doping the Fermi level should lie at the Dirac point (zero gate voltage) if

the dispersion relation is symmetric with respect to zero energy (crossing points).

This is correct only if transfer integrals to nearest neighbours are taken into account.

Doping shifts the Fermi level and thus the resistance peak from the zero gate voltage

position.

It has been observed experimentally that the resistance at the Dirac point is not

infinite (as one can expect because of zero concentration of free charge carriers) but

finite. Many samples have approximately the same resistivity in the Dirac point,

h/4e2. This can be due to layer of water formed during the mechanical cleavage. The

closeness of the value of the resistivity to h/4e2 in the Dirac point has suggested

it is a universal value [56]. However, it was recently shown that the amplitude

of the Dirac peak as well as mobility depends on doping and decreases [57] due to

scattering on Coulomb impurities. The amplitude of the peak is roughly independent

of temperature [58], but only in the case of graphene on Si/SiO2 substrate. Since

transport measurements of free standing graphene have been carried out, it has been

shown that the peak resistivity is not universal and has temperature dependence [59].

The Dirac point has more complications because at small carrier density graphene

becomes inhomogeneous due to disorder and electron-hole puddles are formed [60].

However, for transport properties in the diffusive regime not close to the Dirac

point, a standard Boltzmann transport equation is used [61]. The applicability of

the Boltzmann approach fails only close to the Dirac point where the wavelength

tends to infinity (because the energy goes to zero). Due to chirality of the carriers

in graphene the collision integral has to be revised, because this property prohibits

backscattering, as has been shown in all orders of perturbation theory by Ando [62].

The conductivity is given by the conventional formula

σ = neµ, (4.24)

where n is the concentration of mobile carriers, e is elementary charge, and mobility

µ is given by [21]

µ =
ev2

F

εF

τ(εF ). (4.25)
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The relaxation time τ(εF ) is given by the collision integral [61]

h̄

τ(εF )
= 2π

∫
d2κ′

(2π)2
〈|Vκ,κ′|2〉(1− cos (θκ − θκ′))δ(εκ − εκ′), (4.26)

where θκ−θκ′ is an angle between incident κ and scattered κ′ wavevectors, δ(εκ−εκ′)

is the Delta function, and 〈|Vκ,κ′|2〉 is the average of the scattering potential matrix

element in momentum space over the distribution of scatters. The latter is changed

with the type of the defects that create the scattering potential. There are two

main defects in the lattice which are considered by theoreticians using the Born

approximation: short range disorder and Coulomb impurities [61].

Coulomb impurities are the most important source of scattering as they deter-

mine the constant mobility of graphene at high gate voltages (far from the Dirac

point) [61]. By replacing the Cartesian coordinate system with a polar one and

performing integration over energy in Eq. (4.26) we arrive at the expression

h̄

τ(εF )
= 2πniD(εF )

∫ π

0

dθ

2π
(1− cos (θ))(1 + cos (θ))

(
2πe2

κqε(q)

)2

, (4.27)

where D(εF ) is density of states in graphene at the Fermi energy, ni is the concen-

tration of impurities (about 1012 cm−2 for thermally oxidised Si), q = 2ε/γ sin θ/2,

γ is the band parameter equal to 6.5 eV·Å [61]. The factor (1 + cos (θ)) in the in-

tegral comes from the chirality of the particles which prohibits backscattering. The

latter integral can be evaluated and the conductivity due to scattering on Coulomb

impurities becomes

σ0 =
e2

4π2h̄

n

ni

H0, (4.28)

where H0 is a constant, and n is carrier concentration. This expression is linear as

a function of carrier concentration and it shows that the mobility is independent of

concentration.

For short range scatterers the picture is completely different. A short range

impurity is the one that acts on a particle only in a range less than the carbon-

carbon distance and is near an A or B site in the crystal lattice. The presence of

such an impurity means that the electron has different energies when it localised on

A site or on B site and the conditions for the applicability of a continuum model

(Dirac equation) with independent Dirac points are not satisfied [62]. It has been
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shown that the conductivity for short range scatterers is independent of energy [63].

Physically, this can be explained as follow. According to the Fermi’s golden rule

1/τ ∝ 〈|Vκ,κ′|2〉D(EF ), where D(EF ) ∝ E. Thus, the mobility is inversely propor-

tional to the carrier concentration, µ ∝ n−1 and the conductivity is independent of

the Fermi energy.

The total resistance can be viewed as a sum of two contributions: from scattering

on short range impurities ρS (lattice defects or screened Coulomb potential) and

long-range ρL (for example, nonscreened Coulomb potential). As soon as scattering

on Coulomb impurities is avoided (by suspending graphene over silicon dioxide) the

mobility can increase to 2 × 105 cm2 V−1 s−1 [59] because of the large intrinsic

mobility [58] related to internal (phonons) scattering processes. This large mobility

can be useful for production of ballistic structures to study some effects specific

to graphene. But there is another way to study ballistic transport in graphene,

by producing a sample that is small compared to the mean free path (or measure

transport in a small part of a larger sample) or producing a p-n junction.

4.3.1 p-n junction

A p-n junction can be created in a graphene flake by a top-gate. The top-gate can

change locally not only the conductance of graphene but also the type of carrier,

from electrons to holes or vice versa. By applying to the top-gate opposite to the

back-gate polarity under the top-gate one can have an electron region, while away

from the top-gate holes can be the charge carriers. Top gates have already been

made using a dielectric between the graphene flake and the gate [64–68].

Graphene is considered as a promising material for future electronic applications.

However, to replace the silicon technology graphene needs to overcome a serious

limitation. Because graphene is a semiconductor with zero band gap, the transistors

have leakage current and just producing top-gate is not enough to make a working

transistor. One of the possible ways to produce a band gap and reduce leakage is to

make a narrow ribbon about 10 nm width. In this case the spectrum of carries is

broken into several quantized subbands and a band gap between the lowest electron

subband and the highest hole subband is formed.

The type of dielectric between the top-gate and the graphene flake strongly
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affects the mobility of the carriers [65]. If the mobility is small, ballistic effects will

be suppressed. One of the possible solutions of this problem is to avoid the use of a

dielectric but make a suspended top-gate [69].

Due to the chirality of carriers, transport through a p-n junction in graphene has

its own specifics. The case of a rapid change of the potential in the p-n junction is

discussed in [46]. It has also been shown that ballistic quasiparticles can penetrate

a p-n junction without reflection at zero angle of incidence. At other angles there

is a probability for carriers to be scattered back. This result has been extended to

any smooth potential including a linear one where the quasiclassical approximation

is applicable [43].

A p-n junction can be diffusive, when there are scatterers in the region of the p-n

junction or ballistic when there are no scatterers there. In the first case, to predict

the resistance of the p-n junction a diffusive transport model should be used. In

the diffusive transport model the probability of the carriers to penetrate through

the p-n junction is independent of the angle of incidence, but in the case of ballistic

transport the theory by [43] should be applied. Due to the reflection at other than

zero degree angles, the resistance of a ballistic p-n junction in graphene is larger

than a diffusive one. This excess resistance above the prediction of the diffusive

model in a graphene structure with a p-n junction was observed in [65].

4.3.2 Ballistic transport in a p-n junction

Cheianov and Fal’ko [43] have studied penetration of chiral particles through ballistic

p-n junctions with a linear energy barrier as a function of coordinate x (in the current

direction):

u(x) = Fx, (4.29)

where F is an energy gradient. F is the main parameter which affects the transmis-

sion coefficient through the p-n junction and thus its resistance.Ballistic transport

through p-n junction means that electrons which approach the boundary of a p-n

junction penetrate from the p region into the n region without scattering on impu-

rities or defects. If the particle has a nonzero κy wave vector-component, there is

a region of classically unreachable space which the particle can penetrate only via

tunnelling (see Fig. 4.4). The total energy of electrons (with the assumption that
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Figure 4.4: (a) Momentum of an electron approaching a p-n junction at an angle
θ. (b) The gap in the spectrum E(κx) (highlighted) at θ 6= 0. (c) Band-structure
profile along the length of the p-n-p structure. The value of the gap determines the
tunneling length 2t(2θ).

graphene is undoped) is

εtot = ±h̄vF

√
κ2

x + κ2
y + u(x), (4.30)

where u(x) is the (in general, not linear) electrostatic potential energy produced by

the gates, or, in other words, the position of electroneutrality point. If the total

energy is assumed to be zero, then the momentum of a particle along the direction

of propagation is described by the following relation:

κx(x) = ± 1

h̄vF

√
u(x)2 − h̄2κ2

yv
2
F = ± 1

h̄vF

√
u(x)2 − ε2

F sin2 θ, (4.31)

where εF is the Fermi energy in the contacts.

At finite angles, there is a region where momentum has a complex value (this is

a classically unreachable region). The turning points ±t in space where the total

momentum is equal to zero are obtained by solving the following equation:

u(±t) = ±εF sin θ. (4.32)

A semiclassical model for tunnelling [70] tells us that the probability of penetration
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through a long and high potential barrier is described by the expression

wexact
pn (θ) ∼ e−2S/h̄ = exp

(
−2

∫ l

−l

|κx(x)|dx

)
. (4.33)

Here S is action. In general, the probability has to be small compared to unity to

make this quasiclassical model applicable, but Cheianov and Fal’ko have proved,

using a transfer matrix formalism, that this formula with a coefficient calculated

can be used to obtain the total angular dependance of probability of tunnelling.

Conductance of the p-n junction per unit width is given by

Gnp =
4e2

h

∫
dκy

2Wπ
wexact

pn (θ) =
4e2

h

∫
WkF cos θdθ

2π
wexact

pn (θ), (4.34)

where W is the width of the sample. For small angles (where the transmission is

not small) Eq. 4.34 can be simplified and the conductance of a p-n junction can be

calculated analytically (by integrating over the range of θ from −∞ to +∞):

Gnp =
2e2

πh
W

√
F

h̄vF

. (4.35)

One can see that the conductance is independent of the Fermi energy. In a real

sample, to see ballistic transport through a p-n junction we have to have the mean

free path l larger than tunnelling distance 2t, as shown in Fig. 4.4(a). An effective

band gap appears if the quasiparticle approaches the p-n junction at a non-zero

angle, due to a finite y component of the wavevector, Fig. 4.4(b). In this case there

is a region of the p-n junction where the quasiparticle has an imaginary wavevector:

this region has length 2t and depends on angle θ (Fig. 4.4(c)).

4.3.3 Ballistic transport in a p-n-p junction

Katsnelson [46] has discussed ballistic transport through a rectangular potential bar-

rier in graphene. It was predicted that a particle approaching with normal incidence

to a rapid barrier has perfect transmission, without backscattering for any height of

the barrier. This has an analogy in high-energy physics called ”the Klein paradox”.

The effect has not yet been observed experimentally.

The model of transport through a rectangular barrier is formed on the basis
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Figure 4.5: Total transmission as a function of height of a rectangular barrier. (a)
Different lengths of the barrier, using Eq. (4.40) for a single channel. Energy of
electrons ε=0.06 eV. The model potential u(x) is shown in the top left inset. (b)
Influence of the finite width of the ribbon for 50 nm barrier length. T tot for a single
channel, 100 nm, and 200 nm width is presented.

of a low energy effective Dirac Hamiltonian (Eq. 4.19). The barrier region with

potential of height V0 should have a Hamiltonian with an additional term: namely,

the Hamiltonian for the K+ valley with an external potential u(x) can be written

as:

Ĥ = −ih̄vF σ · ∇+ u(x), (4.36)

where h̄ is Plank’s constant, vF is Fermi velocity, σ = (σx, σy) is a vector consisting of

Pauli matrixes, and ∇ = (∇x,∇y) is a gradient operator. The potential is different

for the three regions shown in the inset in Fig. 4.5(a):

u(x) =





V0, 0 < x < D, region II

0, otherwise, regions I and III

.

Let D be the width of the barrier and ε the energy of a particle. Then if we

divide the space of the problem into three regions, we can write the solution of Dirac

equation for each region as

ψI(r) =
1√
2


 1

seiφ


 ei(kxx+kyy) +

r√
2


 1

sei(π−φ)


 ei(−kxx+kyy), (4.37)
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ψII(r) =
a√
2


 1

s′eiθ


 ei(qxx+kyy) +

b√
2


 1

s′ei(π−θ)


 ei(−qxx+kyy), (4.38)

ψIII(r) =
t√
2


 1

seiφ


 ei(kxx+kyy), (4.39)

where φ = arctan (ky/kx), θ = arctan (ky/qx), and wavevectors in the region I and

III are equal to kx = kF cos φ, ky = kF sin φ, for the region II under the barrier the

wavevector is qx =
√

(V0 − ε)2/v2
F − k2

y, s = sign(ε) and s′ = sign(ε−V0). There are

two unknown coefficients, r and t, which should be determined from the conditions

of continuity of the wave function at the boundaries of the rectangular potential. By

solving this problem the expression for the transmission probability as a function of

angle is calculated [53] as

T (φ) =
cos2 θ cos2 φ

[cos (Dqx) cos φ cos θ]2 + sin2 (Dqx)[1− ss′ sin φ sin θ]2
. (4.40)

Using this expression, the dependence of transmission on the height of barrier has

been plotted in Fig. 4.5(a). The form of the transmission for a single channel has

an oscillatory behavior as a function of height of the barrier, which follows from the

interference of transmitted and reflected waves within the barrier. In Fig. 4.5(a)

three lengths of the barrier are shown to demonstrate that the period of oscillations

as well as their amplitude decrease with increasing length. However, for a narrow

sample the calculation of the transmission should be revised because of the finite

number of propagating modes. The component of the wavevector parallel to the

barrier takes only quantised values which are determined by the width of the sample

and boundary conditions for an ideal ribbon [71]. The values are

κn =

(
n +

1

2

)
π

W
, n = 0, 1, 2, ..., (4.41)

where W is width of the sample. Thus, the total conductance is calculated from

the sum of the transmission probabilities of individual modes with wavevectors less
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than the Fermi wavevector

G =
4e2

h
T tot =

4e2

h

N−1∑
n=0

Tn, (4.42)

where N is total number of propagating modes. If we consider a finite width of the

ribbon, for example, 100 nm or 200 nm (see Fig. 4.5(b)), the relative amplitude of

the oscillations is conserved. The variation of the resistance is about 20 %.

In section 4.4.4, we will use this model for comparison with an experiment which

has been performed on top-gate graphene structures.

4.4 Experiment and analysis

4.4.1 Overview of the experimental results

The data and analysis for three two-terminal graphene samples with ’air-bridge’

top-gates are presented. The samples were fabricated by Roman Gorbachev from

the laboratory of Quantum Transport in Nanostructures at Exeter University using

the technology discussed in Section 2.2.3. Details of these samples are given in Table

4.1. The third sample S3 has been measured by the author and the data for the first

and second samples (S1 and S2 respectively) are provided by Roman Gorbachev.

The resistivity dependence on back-gate voltage for these three samples is shown in

Fig. 4.6(a). The samples have different mobilities, and it was expected that the first

sample, with the largest mobility, has to show some features of ballistic transport

through a p-n junction formed by the top-gate. (In this sample the mean free path

becomes comparable to the gate length.)

The top-gate dependence at fixed back-gate voltages for the three studied sam-

ples are shown in Fig. 4.6(b-d). On the same graphs the expected resistance as a

function of top-gate voltage is shown assuming purely diffusive transport dominates

(see Section 4.4.2). The difference between experiment and predictions are clearly

seen on the graphs.

We attribute the difference between experiment and diffusive theory to the bal-

listic transport through the two p-n junctions (but not through the whole p-n-p

structure) formed by the top-gate. To calculate the expected value for the resis-
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Figure 4.6: (a) Resistivity of the three samples as a function of the back-gate voltage,
at Vtg = 0, at T = 50 K. Points indicate the values of Vbg where the top-gate voltage
was swept to produce p-n-p junctions. (b) The resistance of sample S1 as a function
of top-gate voltage at different Vbg. (c,d) The resistance as a function of top-gate
voltage at different Vbg of samples S2 and S3, respectively. Points show the results of
the calculations of the expected resistance assuming diffusive transport of carriers.
(Dashed lines in b,c are guides to the eye.)

tance of a single p-n junction we have used theory [43] as described earlier (4.3.2).

This resistance is determined by the energy gradient F in the middle of the junction.

To find the energy profile, the density of states in graphene should be taken into

account. This has been done by solving the 2D electrostatic problem with correct

boundary conditions on graphene, as discussed in Section 4.4.2. The results of these

calculations are presented in Table 4.1 (last two entries).
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Characteristics S1 S2 S3
Width, µm 0.3-0.15 0.6 0.15
Length, µm 5 4.3 1.45
Dirac point, V 0.05 1.11 1.68
Resistivity in Dirac point, kOhm 6.9 4.87 6.36
Mean free path, nm 100 75 45
Top-gate length, nm 170 170 100
Top-gate distance, nm 140 210 130
Resistance difference, kOhm 3.8 (-9 V) -1.82 (-4 V) 0 (-14 V)
Efficiency of top-gate 0.35 0.24 0.4
Energy gradient, eV/m 1.5 · 106 0.8 · 106 2.4 · 106

Mobility, cm2V−1s−1 (n=3·1011 cm−2) 12.5 11 6-7
Fermi wave vector, 107 m−1 6.5 3.4 5.87
Fermi energy, eV 0.043 0.0225 0.038
Fermi wavelength, nm 96 188 109
Critical angle ∼ 25 ∼ 25 ∼ 30
Critical tunnelling distance ∼ 40 ∼ 40 ∼ 40
Number of modes 7 11 3
Resistance, kOhm (diffusive model) 2.17 0.62 1.85
Resistance, kOhm (Cheianov model) 3.6 1.95 4.4

Table 4.1: Parameters of graphene samples with ’air-bridge’ top-gates.

For sample S3, the resistance as a function of back and top-gate voltage, temper-

ature and magnetic field has been measured (see Fig. 4.7). The colour scale (4.7(a))

indicates the efficiency of the top-gate (how the energy changes with voltage) by

the slope of the dashed line, which shows the position of the peak in the resistance

corresponded to formation of two p-n junctions. The efficiency is equal to 0.4, which

makes the distance between the flake and top-gate found by modelling (for details

see Section 4.4.2) the smallest out of the three samples. This creates the narrowest

p-n-p junction in graphene. To see how ballistic the junction is, we need to estimate

the mean free path. Using the standard formula for conductivity

σ =
2e2

h
κF l, (4.43)

and taking into account that κF = εF /h̄vF = ±31 meV
√|Vbg|/h̄vF (where Vbg is

given in V) the mean free path

l = 2.7 · 10−4 σ√|Vg|
([m]). (4.44)
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Figure 4.7: Sample S3. (a) Colour-scale of the resistance as a function of top-gate
voltage and back-gate voltage at T=50 K. The dashed line shows the position of the
Dirac point under the top-gate and separates the p-p-p region from the region where
the p-n-p junction is formed. (b) Conductivity and mean free path as a function of
back-gate voltage at T = 50 K. The mean free path is calculated for two different
contact resistances 200 Ω/µm and 400 Ω/µm. (c) Temperature dependence of the
resistance fluctuations as a function of top-gate voltage. (d) Resistance as a function
of top-gate voltage at T = 80 K for different magnetic fields perpendicular to the
flake. The orange curve shows reproducibility of the result.

In Fig. 4.7(b) the conductivity and mean free path as a function of back-gate volt-

age for different contact resistances are shown. (Here the Dirac point is shifted to

zero back-gate voltage.) The total measured resistance also includes the contact

resistance between the flake and the two ohmic contacts. This contact resistance

should be subtracted before calculation of the mean free path. Typical values of

200 Ω/µm for two-terminal graphene samples have been determined by comparison

of the values of the resistance in quantum Hall plateaux with the expected ones [24].

The mean free path of sample S3 is smaller than that of S1 and S2 and is equal to

45 nm for the electron region and 50 nm for the hole region. It decreases slightly

with decreasing back-gate voltage, but increases dramatically near the Dirac point

due to the divergence which occurs at zero concentration. (In reality the concentra-
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tion of the carriers in the Dirac point is not zero, because of strong inhomogeneity

and formation of electron-hole puddles [60], hence the simple formula (4.43) is not

applicable in this region.) Thus, the increase of the mobility near the Dirac point

can be an artefact of using incorrect relation.

In Fig. 4.7(c) the resistance as a function of top-gate voltage is presented for three

temperatures (27 K, 50 K, 80 K). The first peak appears at Vtg = 13 V, when two p-n

junctions are formed. The resistivities of the two p-n junctions are higher than that

in other regions of the structure – this is the reason for the resistance increase. If the

top-gate voltage increases further, no big change of the resistance of the structure

at the formation of p-n junctions is seen. In this Vtg-range the resistance has shown

reproducible fluctuations as a function of top-gate voltage. These fluctuations have a

smaller ”period” and larger amplitude at low temperatures. We can suggest several

reasons for these fluctuations. The first is mesoscopic resistance fluctuations, as seen

in normal small MOSFET samples at low carrier densities [29]. The second reason

is a variation of unintentional doping in the flake which results in different position

of the Dirac point under the top-gate. In this case each resistance peak corresponds

to different Dirac points. Non-uniformity of the structure can be caused by non-

uniformity of the top-gate itself. Instead of a constant height across the flake, the

gate can contain areas with different distances from the flake. Then, even if the

2D gas is homogenous, the efficiency of different parts of the top-gate becomes a

function of x-coordinate. The third reason is ballistic transport through the whole

p-n-p structure which can produce oscillations in the resistance as a function of

top-gate voltage. This latter reason can be only applicable near the onset of p-n-p

structure where the length of the n-region can be comparable to the mean free path.

In Fig. 4.7(d) the resistance as a function of top-gate voltage at Vbg = −5

V measured at T = 80 K is shown for different fixed magnetic fields up to 5 T.

It is seen that the positive magnetoresistance is significantly stronger at large Vtg

when a p-n-p structure is formed. We attribute this magnetoresistance to geometric

magnetoresistance discussed in Section 4.4.5.

In the following subsections we introduce our electrostatic model and apply the

theory of ballistic transport through p-n and p-n-p junctions to explain the experi-

mental results.
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4.4.2 Electrostatic model

To find the resistance of a graphene flake at any voltage applied to the back-gate

and top-gate we have to know the distribution of the electrostatic potential along

the flake. Then, using the known relation between this potential and the back-gate

voltage, we can find the resistivity at a point along the flake for a specific value of

electrostatic energy. Finally, assuming a simple diffusive model, we can integrate

the resistivity over the length to obtain the total resistance of the sample or any

part of the p-n-p structure.

Solution of 3D electrostatic problem is complicated and time consuming, and we

have chosen a simple 2D model for our numerical calculations. We have assumed

that the sample has infinite size in the direction perpendicular to the current. This

assumption should not affect the final result as long as edge effects can be neglected.

The 2D coordinate system has the coordinate x along the length of the sample in

the direction of the current flow and z is the vertical coordinate perpendicular to

the flake.

The geometry of the electrostatic model is shown in Fig. 4.8. The total region of

the calculations is taken to be large enough to exclude the influence of the boundary

conditions at the outer boundaries: in this case the potential in the flake does not

depend on the boundary conditions on the ”box”. The length of the calculated

region is 25 µm and its height is 6 µm. (It was tested that the main result does not

change if we increase the ”box” by two times or take other than periodic boundary

conditions.) The length of a graphene flake placed in the middle of the region is 5

µm for the first sample, 4.3 µm for the second sample, and only 1.45 µm for the

third sample: this is much smaller than the size of the ”box”. The typical distance

from the flake to the top-gate is about 200 nm (see Table 4.1). The geometry shown

in Fig. 4.8(a) is for S2 sample where the distance from the flake to the top-gate is

250 nm. The metallic top-gate in Fig. 4.8(b) is shown as a rectangle with constant

potential along the boundaries. The flake has been modeled as a line placed on top

of a SiO2 substrate of 300 nm thickness, with specific boundary conditions discussed

below.

We have solved the Laplace equation,4φ = 0, in 2D (xz-plane), with a numerical

package FEMLAB, which uses a finite-element method to solve 2D problems. The
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Figure 4.8: Electrostatic model used to find the distribution of potential in a
graphene flake. It uses real size geometry and correct boundary conditions for
graphene (see Eqs. (4.45) and (4.46)). (a) Whole geometry of the model, (b) Zoom-
in region under the top-gate. An additional layer of impurities is shown by the
dotted line.

code has been used to obtain the distribution of electrostatic energy in the graphene

flake as a function of the x-coordinate by calculating the potential along the line

of the graphene flake. This code is given in Appendix 6. We have set potentials

on the back and top-gates to reproduce experimental conditions. The graphene

flake was modeled using charge surface density boundary conditions, assuming that

the temperature is zero. The displacement field has to have a discontinuity on the

graphene flake:

n · (D1 −D2) = ρs, (4.45)

where n is a unit vector normal to the graphene surface, D1 and D2 are displacement

field vectors above and below the flake, and ρs is charge density defined as

ρs = −e

∫ eφ

0

gsgv

2πh̄2v2
F

εdε = − gsgve
3

2πh̄2v2
F

φ2

2
sign(φ), (4.46)
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where sign(φ) determines the sign of the potential (sign(φ) = 1 if φ > 0, otherwise

sign(φ) = −1), gs is the spin degeneracy, and gv is the valley degeneracy. The charge

cannot move (there is no current) but is allowed to redistribute in a self-consistent

way over the flake. The carrier concentration can then be written as

n = gsgv

∫
dκxdκy

(2π)2
= gsgv

∫
2πκdκ

(2π)2
=

∫
gsgv|ε|
2πh̄2v2

F

dε. (4.47)

In this relation, the density of states gsgv|ε|/2πh̄2v2
F for graphene is used – it is linear

as a function of energy and disappears at zero energy.

The resistance as a function of back-gate voltage gives the dependance of resis-

tivity on potential in the graphene flake, ρ(φ), if the relation between φ and Vbg is

known. As soon as we know the potential distribution in the graphene flake obtained

from the modelling, the resistance of any part or whole structure can be found by

integration of the resistivity ρ(φ(x)) over the flake length. We used for calibration

the experimental resistance dependence on back-gate voltage to find ρ(φ(x)). The

calibration curve has been fitted by a piecewise polynomial function to get an an-

alytical expression which later has been used in numerical integration. Thus, the

resistance as a function of top-gate voltage at different fixed back-gate voltages can

be obtained from the integral

R =

∫ L

0

ρ(φ(x))dx. (4.48)

The position of the Dirac point in the three samples is shifted from zero Vbg

(see 4.6(a)) due to unintentional doping. In our calculations we assumed that the

Dirac point is at zero back-gate and top-gate voltages, by shifting the whole curve,

but adding a layer of charged impurities above the flake to the model has helped

to introduce the Dirac peak shift seen in experiment. (The shift of the Dirac point

occurs due to doping and the value of the shift gives us the concentration of these

impurities.) The charged impurities induce the same charge but of opposite sign is

added to the flake. The resistance dependence on back-gate voltage is reproduced

exactly by the model with this impurity layer. We have found that there is no

difference in R(Vbg) if the layer position is shifted from 1 nm to 10 nm above the

graphene flake.
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Figure 4.9: Position of the Dirac point, εD, for different top-gate voltages at -9
V applied on the back-gate as a function of coordinate for sample S1. Half of
the potential is presented. Top-gate voltage changes from 15 V to 40 V with 1 V
increment. Inset: zoomed in region.

To compare the model with the experimental dependence of the resistance of

the structure on top-gate voltage at different back-gate voltages (see Fig. 4.6(b-d))

we have had to find a specific doping level which should be introduced to make the

resistance R(Vtg = 0) in agreement with R(Vbg). In the range of Vtg corresponding

to accumulation (negative Vtg) and depletion (small positive Vtg) under the top-gate,

the resistance is well-described by the diffusive model, Fig. 4.6(b-d). Then we have

found the efficiency of the top-gate (in other words, how efficiently the top-gate can

change the concentration in comparison with the back-gate) which is determined by

the distance between the flake and the top-gate only, for our samples. This distance

was left as a free parameter in the model. We have found that the distance changes

from 130 nm to 210 nm for samples S3 and S2, respectively, Table 4.1.

The dependence of the length of the n-region for sample S1 when a p-n-p structure

is formed under the top-gate is presented in Fig. 4.9. This graph shows the position

of the Dirac point, or equivalently the potential in the flake as a function of distance

for different top-gate voltages. It is seen that the energy gradient (see the inset in the

same figure) of the electrostatic energy at zero energy (energy of mobile electrons)

changes very slowly as a function of top-gate voltage from 25 V to 40 V. Thus, from

the point of view of tunnelling through the junction, the resistance of a ballistic p-n
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junction, Eq. 4.35, should be constant as a function of top-gate voltage and we need

only calculate one point in top-gate voltage to estimate this resistance. (We have

not considered the strongly nonlinear regime near the point where p-n junction is

just formed.)

4.4.3 p-n junction

In the range of Vtg corresponding to accumulation (negative Vtg) and depletion (small

positive Vtg) under the top-gate, the resistance is well-described by the diffusive

model, Fig. 4.6(b-d). One adjustable parameter, the distance h between the top

gate and the graphene flake, was used in plotting the calculated values: h =140, 210

and 130 nm for samples S1, S2 and S3, respectively. The obtained values are close

to those expected from the fabrication process and agree with observed efficiency

of the top gate, Fig. 4.6(d). With larger positive Vtg and formation of the p-n-p

structures, samples S1 and S2 show significantly larger values of the resistance than

expected from the diffusive model: ∆R '4 and 2 kOhm, respectively. However, the

narrowest sample S3 with the lowest mobility shows agreement with the diffusive

model in the whole range of Vtg, Fig. 4.6(d).

To explain these observations, we find the characteristic thickness of the p − n

junctions in the three samples and compare it with the mean free path l. Accord-

ing to [43], the reason for the enhanced resistance of a junction is the decrease

of the transmission when the electron approaches the junction at an angle θ 6= 0,

Fig. 4.4(a). Conservation of the parallel component of the momentum ky produces

a gap in the energy spectrum E(kx) for the motion across the junction, Fig. 4.4(b).

The distance 2t is then defined as the classically inaccessible region which requires

electrons to tunnel along it, Fig. 4.4(c): t = h̄vF kF sin θ/F . The critical angle for

carrier transmission in the three samples varies in the range θc = 20−30◦, assuming

the length of the ballistic p-n junction to be l and taking the kF -value at a point

x = −l/2 from the barrier, Fig. 4.4(a). As the tunneling distance 2t depends on the

angle of incidence, we take for a typical value of the barrier thickness 2t(2θc) ' 40 nm

in our samples.

The mean free path l has been found using R(Vbg) of a uniform sample at Vtg = 0,

Fig. 4.6(a), and the relation σ = 2e2(kF l)/h. The value of l weakly depends on Vbg,
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and when extrapolated to the Dirac point (Vbg = 0 for an undoped sample) gives

l ' 100, 75 and 45 nm, respectively, for samples S1, S2 and S3. Comparing the

tunnelling length with the mean free path shows that the p-n junctions in S1 and S2

are ballistic (l À 2t), while in S3 they are less ballistic (l ∼ 2t). This can explain the

agreement of the resistance of S3 with the result of the diffusive model in Fig. 4.6(d).

To find the expected resistance Rpn of ballistic p-n junction in samples S1 and

S2 and compare it with the observed difference ∆R in Fig. 4.6, we first assume a

smooth potential barrier, 2kF t À 1, and by using the calculated value of electric

field F we get the tunneling probability wnp(θ) from

wnp(θ) = e−πh̄vF κ2
y/F . (4.49)

Equation 4.35 is then used to obtain the resistance of the ballistic p-n junction. We

have found that using summation rather than integration is more appropriate in

our case, as samples S1 and S2 have less than 12 modes (the narrowest sample S3

has only three modes). The value of the Fermi momentum kF in these calculations

is taken at a distance l/2 from the barrier using the values of the mean free path

found above; however, the result for Rpn hardly changes if the value of l is varied by

two times either way. This is clear as the tunneling probability wnp(θ) in Eq. 4.49

depends only on ky which takes specific, quantised values ky = πn/W . The obtained

values are Rpn =5 and 2 kOhm for samples S1 (at Vbg = −9V, Vtg = 40V) and S2

(at Vbg = −4V, Vtg = 30 V).

Taking into account the Fermi wavelength at the distance l/2 from the barrier,

we see that 2kF t '2 for the three samples. To examine the applicability of a smooth-

barrier approximation for this (not too large) value of 2kF t, we have calculated w(θ)

directly using numerical methods [72] and compared the result with that obtained

from Eq. 4.49. It shows less than 5% difference from the value of Rpn calculated

above.

In experiment, it is not the resistance of an individual ballistic p-n junction

which is measured but the resistance of the whole p-n-p structure. It can be different

depending on whether its middle, n-region is long or short compared with l (i.e.,

diffusive or ballistic). For a diffusive n-region with three independent contributions

(two junctions and middle region) Rpnp ≥ 2Rpn, while for a ballistic n-region, Rpnp '
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Rpn [43]. The resistance of a ballistic p-n-p structure should not increase with

addition of another junction as the electrons approaching the second junction have

already been selected by the first junction within the critical angle θc. Therefore,

they all will have high transmission probability wnp(θ) going through the second

junction.

Fig. 4.6(b,c) shows clearly that the resistance of S1 and S2 is larger than that

expected in the diffusive model by ∆R, because of the ballistic transport of chiral

carriers through two p-n junctions. To find their resistance, we assume that they

are independent; that is, the n-region is diffusive. Then the observed difference

∆R = 2(Rpn−RD
pn), where RD

pn is the resistance of the diffusive p-n junction on the

length l which was taken into account in the diffusive-model calculation shown in

Fig. 4.6. With the values l =100 and 75 nm, one finds that RD
pn =2 and 0.6 kOhm

for samples S1 and S2, respectively. This gives the corresponding resistance of

the ballistic p-n junction Rpn =4 and 1.6 kOhm, which is close to the expected

values of 5 and 2 kOhm. (Even better agreement, within 10%, is achieved if another

quantisation rule for graphene is used [71]: ky = π(n + 1/2)/W , n = 0, 1, 2, . . .)

The assumption of the diffusive nature of the n-region at large Vtg is confirmed by

Fig. 4.9, where the whole p-n-p region is seen to be larger than the mean free path.

However, near the onset of the p-n junctions, at small Vtg, the p-n-p region is much

shorter and can be fully ballistic.

We now discuss the applicability of Eq. (4.49) for the real potential. Using Eq.

4.31 we can rewrite Eq. 4.33 as

wexact
pn (θ) = exp

(
− 2

vF h̄

∫ l

−l

√
|u(x)2 − ε2

F sin2 θ|dx

)
(4.50)

where u(x) is the real electrostatic potential energy plotted in Fig. 4.9. In Fig.

4.10 we compare the momentum as a function of distance for the real potential and

the linear approximation. Because the dependence of the probability on angle θ is

sharp, there is a small difference (within 1 %) between the exact probability and

the approximations.
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Figure 4.10: Comparison of exact and approximated potential momentums. The
real part of momentum (px =

√
ε2

F sin2 θ − u(x)2/vF ) as a function of coordinate at
different angles of incidence from 5 ◦ to 45 ◦ is presented. The red dashed curves
are calculated using linear approximation of potential. The most important parts of
the momentum which make the main contribution to the probability are positioned
in the region of 2t. This region is around the middle of the p-n junction (505 nm).

4.4.4 p-n-p junction

We now consider the resistance oscillations which we observed in sample S1. The

mean free path for sample S1 is 100 nm. This is much smaller than the width of

the middle n-region in the p-n-p junction formed by the top-gate as shown in Fig.

4.9 which is about 400 nm. As transport can still be ballistic at the onset of p-

n-p structure, we can speculate about the expected magnitude and period of the

resistance oscillations. We have used the function qtrans3 (listing is given in App.

6) written by F. Guinea, which calculates the probability of passing through a p-n-p

junction at some angle. This code works for any strong or sharp potential. The

results of calculations for sample S1 at Vbg = −9 V and Vtg varying from 19 V to 40

V are shown in Fig. 4.11. For the calculations 20 modes were used. The period of

these oscillations is about 1.3 V which is about 3 times smaller than those observed

in experiment. The amplitude of the oscillations is 0.4 kOhm, which is also smaller

than experimental value of 1-5 kΩ. To observe oscillatory behavior of the resistance

originating from the interference of electron waves within the n-region as a function

of top-gate voltage we need a much shorter n-region, which can be done only if the

top-gate width is shorter than 100 nm and the distance between this gate and the

flake smaller than 100 nm.
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Figure 4.11: Oscillation of the resistance as a function of top-gate voltage for S1
sample for discreet valuers of the wavevector. Vbg = −9 V.

4.4.5 Magnetoresistance of p-n-p structure

In Fig. 4.7(d) top-gate dependences of the resistance at different magnetic fields

for sample S3 are presented. It is seen that the magnetoresistance is approximately

linear as a function of magnetic field, which can be due to geometric magnetoresis-

tance as it expected to be linear at high magnetic fields [73]. The geometry of the

sample has to be taken into account, when a region with different types of carrier is

formed under the top-gate. When the sample has three regions connected in series:

left p-region, central n-region, and right p-region, the magnetoresistance increases

because the central “sample” is shorter than the whole structure (where geometric

resistance is the smaller). Sample S3 has not been studied in detail.

To study the effect of magnetic field on the resistance of p-n-p, a structure

diffusive sample S5 has been used, Table 2.3. Fig. 4.12(a) shows the resistance

as a function of back-gate voltage at T = 50 K(Vtg = 0 V). The Dirac point is

at Vbg = −0.75 V. This R(Vbg) dependence has been used to find the separation

between the top-gate and graphene layer. The measurements of the resistance as

a function of Vtg at Vbg = −9 V show good agreement with our diffusive transport

modelling, Fig. 4.12(b).
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The resistance as a function of magnetic field, B, has been measured at differ-

ent back-gate voltages, Fig. 4.13(a). The magnetoresistance at different Vbg as a

function of B-field is shown in Fig. 4.13(b). The source of the magnetoresistance

in weak magnetic field is weak localisation [24], but when magnetic field increases,

at Vbg = −7 V Shubnikov-de Haas effect can be seen [21, 22]. In the Dirac point

magnetoresistance has a peculiar shape observed recently in [74], which is probably

caused by the presence of two types of carrier near the Dirac point.

To explain the magnetoresistance a program written on Matlab for calculation

of the resistance in 2D sample has been used. This code was written by Andrei

Shytov (Department of Physics, University of Utah, Salt Lake City, US) and Leonid

Levitov (Department of Physics, Massachusetts Institute of Technology, Cambridge,

US). If the resistivity tensor, ρ(x,B) is given as a function of space coordinate the

program allow to calculate the resistance of a rectangular sample. The experimental

magnetoresistance dependence of a uniform sample at Vbg = 0 have been used to find

a relation between the gate voltage and resistivity at fixed magnetic field. Because

we only had results for three back-gate voltages, two linear fits were used to find

the resistivity at any back-gate voltage. Then we have calculated the position of the

Fermi level along the sample using the electrostatic model (at some fixed back-gate

and top-gate voltages) and and using the linear extrapolation of the magnetoresis-

tance, found the local resistivity, ρxx(x, B), as a function of the x-coordinate. To

find the ρxy(x)-component of the resistivity tensor, a standard assumption of the

dependence on the carrier concentration has been used:

ρxy(x) =
B

en(p)
, (4.51)

where n(p) is the local concentration of electrons (holes), and e is the electron (hole)

charge. Because the behaviour of ρxy(x) near the Dirac point is unknown, we have

used a cut-off energy (±40 meV) where resistivity ρxy(x) is constant (these regions

are shown be arrows in Fig. 4.13(c)). Fig. 4.13(c) shows the components of the

resistivity tensor for Vbg = −7 V, Vtg = −40 V, B = 1 T.

The comparison between experiment and theory is presented in Fig. 4.13(d).

Good agrement is seen between experiment and calculations up to B = 2 T at

Vtg = 15 V, when the sample has no p-n junctions. When Vtg = 40 V is applied
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one can see that there is good agreement up to B = 1 T, but then experimental

magnetoresistance shows a more rapid increase. This discrepancy can be due to

lack of accuracy, because we have only three back gate voltages in the calibration

procedure. The temperature can affect the magnetoresistance at higher magnetic

field (we have compared the magnetoresistance of p-n-p structure measured at T =

22 K, Fig. 4.13(d), with the calibration curves measured at T ∼ 30 K, Fig. 4.13(a)).

Finally, we can conclude that the diffusive model of magnetoresistance shows

good agrement with experiment within B = 1 T and more accurate measurements

are required for higher magnetic fields.

4.5 Conclusions

An electrostatic model for a top-gated graphene sample has been presented which

can be used to calculate the dependence of the resistance on top-gate voltage. In this

model the characteristic feature of graphene (linear density of states) is explicitly

used. We have found that the transport in the fabricated p-n junctions is indeed

ballistic, with the characteristic feature of selective transmission of chiral particles.

Using this model has allowed us to find unambiguously the contribution of ballistic

resistance of individual p-n junctions to the total resistance of the p-n-p structure.

The theory by Cheianov’s and Fal’ko’s [43] for a ballistic p-n junction is used to

obtain a quantitative agreement between theory and experiment.

The analysis of magnetoresistance of the studied p-n-p structures has revealed a

significant contribution of classical geometric magnetoresistance . We show that its

contribution has to be taken into account when searching for new quantum effects

in the magnetoresistance of chiral particles.
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Figure 4.12: (a) Resistance of sample S5 as a function of the back-gate voltage, at
Vtg = 0 V, T = 50 K. (b) The resistance of sample S5 as a function of top-gate
voltage at Vbg = −9 V. Points show the results of the calculations of the expected
resistance assuming diffusive transport of carriers.

50

100

150

200

250

300
0 1 2 3 4 5 -2 -1 0 1 2 3 4 5

-0.2

0.0

0.2

0.4

-3 -2 -1 0 1 2 3

-6

-4

-2

0

2

4

6

0.0 0.5 1.0 1.5 2.0

50

60

70

80

90dc
a

  

 B, T

 

V
bg

 = -6.9, -7, -7.1 V T = 36 K

V
bg

 = -2 V T = 37.5 K

V
bg

 = -1.8 V T = 38.6 K
V

bg
 = -1.9 V T = 38 K

V
bg

 = -0.9 V 
T = 39 K

V
bg

 = -0.7 V 
T = 39.5, 36  K

V
bg

 = -0.8 V T = 40.6 K

R
, k

b

 

 -0.7 V
 -0.9 V
 -1.8 V
 -1.9 V
 -2 V
 -6.9 V
 -7 V
 -7.1 V
 -0.7 V
 -0.8 V

 
R

/R
0

 B, T

 

 

, k
 

x, m

 
xx

, 

 
xy

,  

B = 1 T

 R
, k

 

 V
tg
 = 39 V (Experiment)

 V
tg
 = 40 V (Model)

 V
tg
 = 15 V (Experiment)

 V
tg
 = 15 V (Model)

B, T

Figure 4.13: Analysis of the magnetoresistance of sample S5. (a) Resistance as a
function of magnetic field at several Vbg. (b) Magnetoresistance at different Vbg using
B-field dependences from (a). (c) The calculated components of the resistivity tensor
at B = 1 T for Vbg = −7 V and Vtg = 40 V. (d) Comparison of the experimental
resistances as a function of magnetic field at Vtg = 15 V and Vtg = 39 V (T = 22 K)
with the calculated resistances at Vtg = 15 V and Vtg = 40 V, respectively.

111



Chapter 5

Noise in graphene

5.1 Introduction

In this chapter we describe 1/f noise measurements in graphene and few-layer

graphene samples. It is important to investigate the noise properties of graphene

if its properties such as its high mobility at room temperature are to be explored

in electronic applications. A decrease of the noise in the Dirac point of few-layer

graphene in a wide temperature range and a decrease in the noise in the Dirac

point of graphene above 50 K have been observed. We will discuss possible physical

reasons for this behavior.

The first part of this chapter is an introduction to the 1/f noise physics of

conventional MOSFET structures and nanotubes (graphene rolled into a cylinder).

Knowledge of the origin of noise in MOSFETs (based on Si/SiO2) is crucial for un-

derstanding that in graphene on Si/SiO2 substrate. It is also important to compare

the noise in graphene with that in nanotubes due to the strong material similarity.

In the second part, the experimental results on noise are presented and dis-

cussed for multilayer and single-layer graphene. Similarities between nanotubes and

graphene both placed on top of SiO2 can be used to understand the origin of 1/f

noise in graphene.

5.2 Noise in conventional systems

The phenomenon of 1/f noise has been observed in many different electronic sys-

tems. It has been extensively studied in silicon MOSFET structures [6]. Here, the
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influence of the charge traps in the SiO2 was recognised as the primary source of

the noise [75]. Occupancy of these traps by charge carriers can change the current

in the MOSFET by Coulomb interaction and by fluctuating carrier concentration in

the channel. This leads to temporal switching of the current depending on the occu-

pancy of a trap – Random Telegraph Noise (RTN). The model of many RTN signals

(Sec. 1.3.4) with a broad range of characteristic times is usually used to explain

the appearance of the 1/f spectral power dependence (discussed below). However,

the existence of 1/f noise not only in MOSFET but also in many other electronic

systems suggests that a more fundamental and universal mechanism might exists,

but it has not been discovered yet.

Hooge’s empirical relation [76] provided a useful transformation between the nor-

malised noise amplitude and number of mobile carriers in the system. The relation

comes from the assumption of a Poisson distribution of random fluctuations and is

applied to many studied systems, although it is not universal [10]. This relation

states that the normalised noise power, SR, of resistance fluctuations is inversely

proportional to the number of carriers, N : [76]:

∆SR

R2
=

α

N

1

f
, (5.1)

where α is a factor which depends on the material and f is the frequency. A smaller

number of carriers N leads to larger relative fluctuations of the resistance R.

5.2.1 1/f noise in MOSFETs

Here we discuss two models for 1/f noise in MOSFETs commonly used in literature.

Impurities in SiO2 play an important part in these models. A sketch of a gated

MOSFET with impurities close to the 2DEG is shown in Fig. 5.1.

Using the Drude formula, Eq. 4.24, which describes the conductivity in metallic-

like two-dimensional samples, conductivity fluctuations can be written as

∆σ = ∆neµ + ne∆µ, (5.2)

where ∆n represents the concentration fluctuations of mobile carriers, and ∆µ the

mobility fluctuations. One of the 1/f noise models in MOSFETs, proposed by
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Figure 5.1: Model of charge traps at the Si/SiO2 interface. (a) The band diagram
with bias Vg applied to the gate. (b) A zoomed-in region near the interface where
tunnelling between the 2DEG and traps occurs.

Hooge [77], suggests that the mobility fluctuations are the reason for 1/f noise in

inversion layers in MOSFETs. The power spectral density of mobility fluctuations

is given by

Sµ = µ2 αH

Nf
, (5.3)

where αH is called Hooge’s constant and equal to ∼ 2 × 10−3 for many two-

dimensional systems.

A magnetic field and specific sample geometry (Corbino disk) can be used to

distinguish between fluctuations in concentration and mobility [78]. Basically the

statement is that noise has to disappear at the point where the product of the mo-

bility at zero field and magnetic field is equal to unity, namely mobility fluctuations

are given by [6]

Sµ(f,B)

µ2
=

(
1− (µ0B)2

1 + (µ0B)2

)2
Sµ(f, 0)

µ2
0

, (5.4)

where µ = µ0/(1 + (µ0B)2) is the mobility in magnetic field, and µ0 is the mobility

at B = 0. This has been tested in n-GaAs systems where it was shown that the

noise power spectral density is independent of magnetic field. Therefore in these

systems the noise originates from fluctuations in the number of carriers, but not in

the mobility [79].

The second model which was, historically, first introduced by McWhorter [11]

describes how 1/f noise originates from fluctuations in the number of mobile carriers.
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These fluctuations occur naturally when electrons in the 2DEG jump to the traps in

SiO2, Fig. 5.1(b). Scorfield and Fleetwood [75] in a similar model assumed that the

distribution of the traps, which in general is dependent on energy and distance from

the 2DEG, is constant and independent of the coordinate: nt(Et, x) = n0t. Because

the probability of tunnelling is exponentially depend on distance, the autocorrelation

function for this random process is given by [75]

Gnt(∆t) =
n0t

LW
f(E, T )(1− f(E, T ))e

−|∆t|
τ(E) , (5.5)

where τ(E) is the characteristic time for tunnelling, the product LW is the area of

the sample, and f(E, T ) is the Fermi-Dirac distribution. A Fourier transform of the

last expression gives the power spectral density for the corresponding RTN signal,

Snt =
n0t

LW
f(E, T )(1− f(E, T ))

4τ(E)

1 + (2πfτ(E))2
. (5.6)

To get the total noise power one has to integrate over the energy and distance of the

traps from the Si/SiO2 interface. This can be simplified at low temperatures where

the product f(E, T )(1− f(E, T )) can be replaced by the Dirac-delta function. The

total power spectral density of the number of carriers is then given by [75]

SNt ≈
kTDt(EF )

LW ln τ1/τ0

1

f
, (5.7)

where τ0 and τ1 are the limits related to the cut-offs for low and high frequencies,

Dt(EF ) = x1n0t is the number of traps per unit area and per unit energy at the

Fermi level. It can be seen that the noise in this model has a linear temperature

dependence. The measured relative noise is related to SNt via the capacitance of

the oxide Cox as
SV

V 2
=

(
e

Cox(Vg − VT )

)2

SNt =
SNt

n2
, (5.8)

where V is a source-drain voltage, Vg is the gate voltage (Fig. 5.1(a)), VT is a

threshold voltage where the conduction of the inversion layer starts.
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5.2.2 1/f noise in carbon nanotubes

Noise in carbon nanotubes (CNT) has been studied because of its importance in

device applications. By studying the influence of the material of the contacts to a

semiconducting nanotube FET in the ballistic regime, Appenzeller et al. [80] showed

that 1/f noise comes from fluctuation in the number of carriers in the channel

but not fluctuations of the mobility. They found Hooge’s constant to be equal

to 7.5 × 10−4. In contradiction with this result, a study [81] has shown that the

mobility does fluctuate, and with a much larger Hooge’s constant equal to 9.3×10−3.

They have found that the normalised noise does not obey Eq. 5.8, but SV /V 2 ∝
1/|Vg − VT | ∝ 1/n. An additional result in this paper was that the adsorbates on

the nanotube do not effect the noise: no difference was found in the noise of the

nanotube in vacuum and exposed to air.

The influence of impurities in the substrate on CNT noise has also been studied

[82]. The authors measured 1/f noise in a nanotube on a Si/SiO2 substrate before

and after removing part of the SiO2 under the nanotube substrate, and found that

noise was reduced by an order of magnitude.

5.2.3 Experiments on 1/f noise in graphene nanoribbons

Previously, 1/f noise has been observed in graphene nanoribbons [20, 83]. The

width of these nanoribbons is so small (about 20 nm) that a bandgap of about

26 meV is formed [20], making them a narrow-gap semiconductors. 1/f noise in

several two-terminal field-effect transistors has been studied at room temperature.

The resistance as a function of back-gate voltage of one single-layer device and one

double-layer sample are shown in Fig. 5.2(a). The resistivity peak is about 32 kOhm

(it is about order of magnitude higher than in our samples) in the Dirac point. The

amplitude of the noise, defined as AN = fSI/I
2, changes from 10−6 Hz−1 at high

concentration (±20 V) to 2.5 · 10−6 Hz−1 in the Dirac point. This observed increase

of the noise is similar to the behaviour of 1/f noise in normal MOSFET structures

and carbon nanotubes. The authors claim that Hooge is applicable for graphene

nanoribbons and found αH = 10−3. The experiment with a double-layer graphene

has shown a qualitatively different behaviour of noise amplitude as a function of

gate voltage. The noise amplitude has a dip in the Dirac point, Fig. 5.2(c). The
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Figure 5.2: (a) Resistance of one single-layer and one bilayer graphene nanoribbon
devices measured as a function of gate voltage (at T = 300 K). The two devices
have identical channel layout (width W = 30 nm and length L = 2.8 µm) as shown
in the inset. (b) The resistance, R, and the noise amplitude AN , of the single-layer
graphene nanoribbon device measured as a function of gate voltage. The dashed
curve is a guide to the eye, illustrating the correlation between AN and R. (c) The
resistance and the noise amplitude of the bilayer graphene device measured as a
function of gate voltage. The dashed curve is a guide to the eye, illustrating the
inverse relation between AN and R. Adapted from [83].

amplitude of the noise in the Dirac point decreased in comparison to the single

layer by 25 times. However it appears that due to small width (∼ 30 nm) of the

nanoribbon the authors are dealing with a regular narrow-gap semiconductor (∼ 20

meV), but not with single-layer graphene with a zero band gap.

5.3 Experiments and analysis

5.3.1 1/f noise in multilayer graphene

Sample ML2 has a thickness of ∼ 2 nm (estimated by eye using the difference in

the visibility contrast of different flakes) which corresponds to about 4 layers of

graphene. The sizes of the sample are given in Table 2.2. The sample cannot be

thicker than 10 layers, because otherwise it would not have good gate control seen

experimentally. We expect that 1/f noise would be too small to be measured in

the case of a bulk graphite sample where all traps in the SiO2 are well screened and
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log  f10

Figure 5.3: Noise in a multilayer graphene sample ML2 after ethanol doping. (a)
An example of the spectrum measured up to 100 Hz at 0 V on the gate at T =
300 K. The slope of the fit is about 1. (b) The dependence of the resistance noise
spectral power at 1 Hz as a function of gate voltage. Inset: the resistances for each
gate voltage where noise has been measured. One can clearly see that the dip in the
noise corresponds to the resistance peak.

cannot change much the concentration or mobility of the sample. This two-terminal

device has been used for noise measurements at room temperature with two different

dopants (ethanol and tap water), and also at 4.2 K in a helium dewar. Spectra have

been taken in the range from 0.25 to 100 Hz at room temperature and from 0.5 Hz

to 400 Hz at liquid helium temperature. For a given resistance, R, the noise power

SV was found to scale with the square of Vsd across the sample as expected. in

addition, we have not observed at room temperature any nonlinear current-source-

drain voltage characteristics. An influence of the doping by tap-water and ethanol

on noise in multilayer graphene (the doping is made by placing a droplet of tap

water or ethanol on top of the sample).

The background noise at Vsd = 0 has been subtracted from the total noise to

get excess noise with 2 mV applied across the sample at room temperature. Then,

the noise power has been divided by the square of voltage to obtain the quantity

SR/R2 = SV /V 2 as a function of frequency. The obtained dependence has been

fitted to check the power dependence for 1/fα noise. The slope α is about 1 ± 0.1

for all measured resistances (an example of noise measured in the Dirac point is
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shown in Fig. 5.3(a)). From the fit we have obtained the magnitude of the noise at

1 Hz and plotted it in the Fig. 5.3(b), as a function of Vbg.

The position of the Dirac point is shifted to zero voltages after ethanol doping.

The main feature of the noise dependence on back-gate voltage in the sample doped

by ethanol is the observation of the noise minimum at the position of the resistance

peak (see the inset in Fig. 5.3(b)). Such behaviour of noise is in contradictions with

Hooge’s relation which states that the largest resistance fluctuations are observed

at small carrier concentration, Eq. 5.1.

After tap water doping, the Dirac point is shifted to positive gate voltages (the

position of the Dirac point is about 15 V). The slope of the power spectral density

of noise dependence on frequency has a good stability and is always very close to 1,

Fig. 5.4(a). The minimum in the noise is again observed, but it has been shifted so

that the position of the dip corresponds to the new position of the Dirac point. This

is shown in Fig. 5.4(b). This suggests that the minimum in noise is not related to

a specific distribution of impurities in the oxide, but is a result of different physics

in the Dirac point. It is seen that the smallest noise observed in the Dirac point of

sample ML2 at 300 K is ∼ 10−8 Hz−1.

It is known that there are electron-hole puddles in single-layer and double-layer

graphene near the Dirac point [60, 84]. If the noise has a minimum in the Dirac

point which is shifted due to doping, it has to be related to the properties of the

graphene itself, but not to the properties of the SiO2. Below is a qualitative model

how the presence of puddles near the Dirac point can explain the noise dip.

Lets assume that we have a finite concentration of the two types of carrier (N(t)

is for electrons and P (t) is for holes) in the puddles. Let us also assume that we can

write the noise in terms of the fluctuations of the number of carriers as

SV

V 2
=

(
∆N

N
+

∆P

P

)2

, (5.9)

where ∆N is a random fluctuation in number of electrons.

Eq. 5.9 can be simplified if we take into account that for random fluctuations

∆N/N = 1/
√

N and ∆P/P = 1/
√

P , and that the average number of carries in the

electron and hole puddles changes with gate voltage as N0 +CVg/2 and N0− cVg/2,

respectively. Assuming that the number of electrons and holes in the puddles is the
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Figure 5.4: Noise in sample ML2 after tap-water doping. (a) An example of the
spectrum measured up to 100 Hz at 0 V on the back-gate at T = 300 K. The slope
of the fit is about 1. (b) The dependence of the resistance noise at 1 Hz as a function
of back-gate voltage. Inset: the resistances for each back-gate voltage where noise
has been measured.

-40 -20 0 20 40
0.0

1.0x10
-8

2.0x10
-8

3.0x10
-8

4.0x10
-8

5.0x10
-8

10 100

10
-11

10
-10

10
-9

-40 -20 0 20 40
0

5

10

15

20

25

 S
R
/R

2
 (

a
t 

1
 H

z
),

 H
z

-1

 

 

ML2

T = 4.2 K

V
bg

, V

ba

I
sd

 

 

 

 25 nA

 50 nA

 100 nA

 Fit

ML2

T = 4.2 K

V
bg

 = -30 V

log
10

(S
R
/R

2
) = -8.2 - 1.012 log

10
f

S
R
/R

2
, 

H
z

-1

f, Hz

 R
, 

k
Ω

 

V
bg

, V

Figure 5.5: Noise in sample ML2 at 4.2 K. (a) An example of the spectrum at -
30 V on the back-gate at T = 4.2 K for three source-drain currents calculated as
SV /(RIsd)

2. The slope of the fit is about 1. (b) The dependence of the resistance
noise at 1 Hz as a function of back-gate voltage. Inset: the resistances for each
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same at zero gate voltage:

SV

V 2
=


 1√

N + CVg

2

+
1√

N − CVg

2




2

αM

f

=


 2N

N2 − (CVg)2

4

+
2√

|N2 − (CVg)2

4
|


 αM

f
. (5.10)

where αM is a constant which, in general, can depend on temperature and magnetic

field.

This expression leads to a minimum in the noise in the Dirac point where Vg = 0

and the maximum near the region where the total number (both electrons and holes)

of carriers in the puddles is equal to the number of carriers produced by the gate.

Here, we can interpret Eq. 5.10 as a modified Hooge’s relation for graphene. If

we consider a hole Vg-region with the total number of carriers P1(t) in the puddle,

it will fluctuate as a normal sample with one type of carrier, SV /V 2 ∝ 1/P1: i.

e. each uniform part of the graphene sample obeys the Hooge relation. When

we apply a small gate voltage we change the concentration in the puddle: if we

decrease number of holes relative fluctuations will increase and if we apply negative

gate voltage the noise decreases in this puddle according to the Hooge relation.

When the gate voltage is large enough, CVg À N0, to produce a sample without

puddles we have to have a standard metallic system which obeys the Hooge relation,

SV /V 2 ∝ 1/(CVg).

Because the number of carriers in the puddles has to be dependent on the tem-

perature the existence of temperature dependence naturally appears in the model:

namely the noise in the Dirac point at room temperature has to be smaller than at

lower temperature (if we forget for a moment about temperature dependence of the

noise amplitude, αM).

The temperature was decreased to 4.2 K to see the effect on the noise power.

The result is shown in Fig. 5.5(a). The dip in the noise is still seen at the Dirac

point. However, the power density of the noise has dropped to a smaller value in

the Dirac point. The decrease is about 6 times in the hole region, and 20 times in

the Dirac point. It is clearly seen that the electron region has larger noise than the

hole region and the ratio between the noise in the Dirac point and the noise power
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Figure 5.6: Resistance noise at T=0.26 K for sample SL4. (a-c) Spectra for different
back-gate voltages -7.5 V, -1.5 V, and -3 V. (RTN is better seen in (c).) Red solid
lines are the best fit using equation 5.11. (d) Solid circles show resistance power
spectral density for extrapolated values at 1 Hz. The empty circles represent 1/f
noise power at 1 Hz without the contribution of RTN, arrows show the change in
1/f noise amplitude when RTN is taken into account. Triangles show the resistance
as a function of back-gate voltage.

at 45 V on the back-gate is 0.01 (see Fig. 5.5(b)).

Voss [85] has discussed how gate voltage fluctuations can affect 1/f noise. As-

suming that these fluctuations can originate from the non-stable voltage source, or

fluctuating occupancies of impurities in SiO2 can produce effective fluctuating Vg,

we can conclude that relative resistance fluctuations ∆R/R are proportional to the

derivative of the resistance with respect to gate voltage dR/dVg. In this case the

noise would have a minimum in the Dirac point (where dR/dVg = 0 ) and two max-

ima where the second derivative is zero (thus the first derivative has a maximum).

A leakage current between the gate and the sample occurs through defects in the

SiO2 and causes fluctuations in voltage across the sample. In this case the noise

will be proportional to the resistance of the sample. However, in our experiments

we have tested the leak between the gate and the sample and the expected position

of the maxima have not been observed.
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Figure 5.7: Noise measured in sample SL4 by lock-in amplifier at T = 24 K with 1
µA constant source-drain current as a function of back-gate voltage. Forward and
backward sweeps are presented by different colors. Resistance as a function of back-
gate voltage is shown at 24 K (solid line) and several resistances at base temperature
from Fig. 5.6 are presented by open circles. The two lowest curves (backgrounds)
are measured without applied voltage across the sample.

5.3.2 1/f noise in single-layer graphene

Resistance noise has also been measured in sample SL4 at base temperature of

Helium-3 system (0.26 K). The slope of the spectra for several points in back-gate

voltage near the Dirac point deviates from 1, Fig. 5.6. We have attributed this

to a strong effect of a single impurity which can modulate the resistance of the

sample and produce (RTN) resistance noise which is added to 1/f noise. The total

resistance noise, Stot
R , is then described by the equation

Stot
R

R2
=

SRTN
R

1 + (2πfτ)2
+

S
1/f
R

f
, (5.11)

where SRTN
R and S

1/f
R are power spectral density for RTN and 1/f noise, respectively,

and τ is a characteristic time of the RTN. The quality of the fit is shown in Fig.

5.6(a-c) by the red curves. If the contribution to the total noise from the RTN is

removed, the resulting 1/f noise is found to be independent of the back-gate voltage

from -10 V to 5 V, Fig. 5.6(d). This is different from the noise behaviour in sample

ML2, where a dip in the noise is observed in the Dirac point at low temperature.

For sample SL4, we have tested the influence of the current contacts on noise.
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If the voltage noise in the contacts produces fluctuations in the current, this will

be seen as voltage noise on the sample. However, this (normalised) noise will be

reduced by a factor (rRc/R
2
b)

2, where r is the sample resistance, Rc is the contact

resistance, and Rb is a large ballast resistance. In this test we have taken r = 2.85

kΩ (at Vbg = 0 V and T = 8.5 K) and two ballast resistors of 10 MΩ and 100 MΩ.

The 1/f noise showed no difference between these two ballast resistors up to 0.25

mV applied (the noise was 1.2 · 10−8 Hz−1). Therefore this coefficient of suppression

(∼ 10−8) is large enough to neglect the contribution of the current contacts to the

total noise.

The sample has a weak temperature dependence of the resistance, if one compares

the resistance at T = 24 K (solid line) and at T = 0.26 K (empty circles), Fig. 5.7.

At T = 24 K we have measured the integral noise in sample SL4 by lock-in amplifier

at 1 µA source-drain current, Fig. 5.7. The lock-in amplifier has been used to

integrate the spectral amplitude of the signal in the bandwidth, 1/8τ , around a

central reference frequency, f0 = 1 kHz. The result is shown in Fig. 5.7 by black

and red noisy curves. The background (flatline in Fig. 5.7) is constant and comes

from the noise of the preamplifiers. Nonmonotonic excess noise appears when a

source-drain current is applied. This has a maximum not only in the Dirac point,

where noise has to be larger due to the larger voltage applied, but also maxima in

the region close to the Dirac point. The strongest peaks occurs at Vbg = −1 V and

at 5 V from the Dirac point. The width of the peak at Vbg = −1 V is about 150 K

(here we have used the expression for the change in the Fermi energy due to change

of back-gate voltage ∆εF = 30 [meV] ∆V [V]/2
√

V [V]), which is much larger than

the temperature. We attribute this peak to the existence of impurities in the SiO2 or

on top of the flake in this sample. These impurities have a contribution to the noise

amplitude only in a narrow back-gate voltage span of about 2 V, when the Fermi

energy crosses the energy band (maxima in the density of states) occupied by the

impurities. It is interesting to note that the low temperature measurements, Fig.

5.6 have shown 1/f noise with a slightly steeper slope, −1.31 instead −1 (for 1/f

noise) at Vbg = −1.5 V, for another point at Vbg = 0 V there is no RTN contribution

to the noise. It is worth mentioning that the half width of the noise peak is smaller

than the distance between the peak and Vbg = −3 V where a clear RTN spectrum

is observed, Fig. 5.6(c). We can conclude that the RTN observed at Vbg = −1 V is
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Figure 5.8: (a) Power spectral density at 1 Hz as a function of back-gate voltage at
T = 8.75 K for sample SL4. (b) Fitting the spectrum at Vbg = −12 V using two
RTN signals and 1/f spectrum.

not related to the RTN at Vbg = −3 V. It is also seen that the strong RTN signal at

Vbg = −3 V is not present in the integrated noise dependence on back-gate voltage.

To see how temperature affects the noise, 1/f noise as a function of Vbg at 8.75

K has been measured in sample SL4. Figure 5.8(a) shows a dip in noise at 0 V

(black squares). The amplitude of the noise increases from 0.5 × 10−8 Hz−1 (Dirac

point) to 6× 10−8 Hz−1 (at −40 V), and the noise decreases at higher gate voltages.

Even less scattered data can be obtained if we take into account the contribution of

several RTNs in the total spectrum as it shown in Fig. 5.8(b), where two RTNs with

amplitudes 7.72× 10−11 Hz−1 and 7.42 · 10−9 Hz−1 are detected. The resulting noise

dependence on gate voltage (empty circles) has more monotonic behaviour. This

behaviour is in qualitative agreement with Eq. 5.10: there is a deep in the Dirac

point, and a maximum in the noise is seen at Vbg = −40 V, and the noise decreases

at larger negative voltages.
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1/f noise spectra away from the Dirac point show good 1/f dependence without
magnetic field (a) and with B = 2 T applied (b). (c-d) Noise at the Dirac point.

5.3.3 Influence of magnetic field on 1/f noise

We have tested the influence of magnetic field on 1/f noise in single-layer graphene

at T = 8.75 K. For sample SL4 two points in the back-gate voltage have been

taken: 0 V and −6 V (Dirac point). We have measured noise spectra at magnetic

fields of 0 T and 2 T applied perpendicular to the sample, Fig. 5.9. At back-gate

voltage equal to 0 V (which is away from the Dirac point) we have observed a good

1/f frequency dependence of the spectra, with a small change in noise amplitude

between 8.1 × 10−9 Hz−1 at 0 T and 8.9 × 10−9 Hz−1 at 2 T. The resistance also

changes from 2.39 kOhm as 0 T to 3.4 kOhm at 2 T. In the Dirac point 1/fα noise

has been observed without magnetic field, where α = 0.9. When a magnetic field of

2 T was applied a RTN appeared and the amplitude of noise SR/R2 increased from

4.07 × 10−9 Hz−1 to 1.64 × 10−8 Hz−1. Thus there is a transition in magnetic field

from the situation when noise in the Dirac point is the smallest to the case where

it is the largest. We have not studied this effect in detail, and we do not have yet
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any conclusion about the mechanism of this transition.

5.3.4 Temperature dependence of noise

Figure 5.10(a) shows the temperature dependence of the resistance in single-layer

graphene (sample SL6). It is seen to have a very weak (close to the Dirac point)

or no temperature dependence. Quantum Hall effect has been measured to prove

that we are dealing with a single-layer sample (see inset to Fig. 5.10(a) where the

off-diagonal conductance component Gxy is shown as a function of the filling factor).

The noise spectra at 5 K do not have pure 1/f dependence, instead a contribution

of RTN is seen and the slope of frequency dependence is close to 0.9 instead of 1.

We have measured 1/f noise as a function of Vbg twice (see Fig. 5.10(c)). (The

two measurements are separated in time by one day.) An increase of noise near the
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Dirac point is seen for both sets of measurements. The noise increased by an order

of magnitude from a high-conduction hole region to the Dirac point. This is usual

behaviour for standard MOSFET structures (except for the last point at 60 V).

In Fig. 5.10(d) the temperature dependence of noise is shown from 5 K (filled

squares) to 48 K (filled triangles) where one can see an increase of noise with in-

creasing temperature at high hole concentration (Vbg = −60 V, −40 V, −20 V) by

factor of 2. However, close to the Dirac point (−4.7 V) the noise amplitude shows

an opposite behaviour: the noise decreases with increasing temperature. It is clearly

seen in the inset to Fig. 5.10(d) where the results for four gate voltages are presented

as a function of temperature. This unusual effect has not been observed before. It

highlights the difference in the origin of noise in the Dirac point and may be related

to the presence of the minimum in the dirac point in sample SL4.

The influence of the temperature on noise in sample SL6 has been studied in

another cool-down. The noise dependence on gate voltage has been measured for

three temperatures (140 K, 100 K, and 60 K). The results of measurements for the

highest temperature are presented in Fig. 5.11. The difference of the resistance in

the Dirac point at T = 140 K and T = 50 K is less than 10 %. At T = 140 K noise

amplitude as a function of back-gate shows a dip in the Dirac point. In addition,

two maxima in noise amplitude have been observed: at Vbg = 1 V and Vbg = 5.5

V. These maxima do not correspond to the maxima in the squared derivative of

the sample resistance with respect to Vbg and cannot therefore be related to same

effective gate voltage fluctuations.

It has been shown that the noise decreases from 140 K to 60 K, Fig. 5.12(a).

The decrease is larger at higher gate voltage (by order of magnitude at Vbg = −20

V) but in the Dirac point the noise amplitude is smaller only by 3 times. The dip

in the noise amplitude as a function of Vbg seen at 140 K and 100 K is absent at

T = 60 K. This interesting observation requires more detailed studies.
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Fig. 5.12(b) shows the dependence of the resistance noise (electron region) at 1

Hz as a function of (Vbg−VD), where VD = 3.3 V, in log-log scale. The lines have the

slope equal to −0.5. Good agreement is seen with a square root dependence of the

noise amplitude on (Vsd− VD). This gives another interesting feature of single-layer

graphene: the Hooge relation is not applicable for graphene because in experiment

SR/R2 ∝ (Vbg − VD)−1/2f−1 ∝ N−1/2f−1. (5.12)

Such behaviour of 1/f noise is observed in a wide range of temperatures, from 5 K

to 140 K.

5.3.5 Current-voltage characteristic

If the differential resistance changes as a function of source-drain bias it will affect

the measured noise. Therefore the nonlinearity in the current-voltage characteristic

has to be taken into account. The measured monolayer (SL4 and SL6) and multilayer

(ML2) graphene samples have shown a linear I(Vsd) at room temperature: SL4 and

SL6 in the studied range of Vsd up to 1 mV, and ML2 up to 10 mV. A nonlinearity

can occur at lower temperature.

A question about the influence of the contacts on the voltage dependence of the

differential resistance appears due to possible the Shottky barrier between graphene

and a metallic contact. In Fig. 5.13 we show the results of the normalised differential

resistance dependence on DC current for sample SL6 at T = 5.5 K using two- and

four-terminal measurements (where contacts are not important) where one can see

that there is no significant difference between two types of connections. We conclude

from this that all nonlinearity comes from the properties of the graphene itself.

5.3.6 Shot noise in graphene sample SL6

Shot noise has been measured in two back-gate voltages of -60 V and -40 V. The

resistances at these voltages are 2.28 kΩ and 2.48 kΩ at base temperature (0.26

K). The spectra have been measured at four different source-drain currents up to

1000 nA, which produces source-drain voltages up to 2.5 mV across the sample.

A six-terminal device has allowed us to use the cross correlation technique in the
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frequency range from 50 kHz to 100 kHz where 1/f noise can be neglected. The

results are shown in Fig. 5.14. As one can see the spectra have a slight bending at

high frequencies (5.14(a-b)), caused by parasitic capacitance in the circuit, which is

taken into account by a correction procedure where the measured spectrum, SI is

multiplied by a factor

SSN
I = SI(1 + (2πfRC)2), (5.13)

where R is the sample resistance, C is the capacitance of the twisted pairs used

in the circuit, and f is the frequency. It is known that thermal noise has a flat

spectrum. Thus one can determine the capacitance, C, of the wires by “unbending”

the background thermal noise. The determined capacitance is 1250 pF which is in

agreement with the estimated length of the wires.

Once the capacitance of the wires is known, shot noise spectra are obtained

using Eq. 5.13. The average values of each spectra are shown in Fig. 5.14(c-d) by

solid squares. It is seen that the dependence of the current noise on source-drain

current is approximately linear. To compare the current noise with the theoretical

shot noise SI = 2eIF , where F is the Fano factor, red circles are shown for Fano

factors 0.34 and 0.17 for −40 and −60 Volts, respectively. The Fano factor of 0.34

is in agreement with noise measurements in disordered short graphene samples [86]

and the theory for a square sample [87]. The decrease (in disagreement with the

theory [86]) of the Fano factor at higher voltages has not been observed previously.

5.4 Conclusions

It has been shown that the noise in multilayer graphene samples shows a dip in noise

amplitude as a function of back-gate voltage, which can be shifted to a new position

by doping as it follows the Dirac point position.

For a single layer graphene we have found two opposite types of behaviour: a

dip in the Dirac point in one sample (observed in sample SL4 at 8.75 K), but a

noise peak in the Dirac point in another (SL6) at 5 K. However, a dip in noise

amplitude at the Dirac point has been observed in sample SL6 at 100 and 140 K.

More samples for statistics are required to explain this unusual effect. In sample SL6

we have observed an increase of the noise as a function of temperature at high hole
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concentration, but in the Dirac point noise decreases as a function of temperature

(from 5 K to 50 K), which unveil the presence of different mechanism of noise in

these regions. This effect also requires further investigation.
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Conclusions and suggestions for

further work

In this thesis the results of experimental studies of transport through double impu-

rities placed in double-barrier resonant tunnelling diode, the ballistic transport of

chiral particles through p-n junctions, and 1/f noise properties of graphene have

been presented. It has been demonstrated that diffusive models can be applied to

the diffusive graphene systems to explain the resistance dependence on back and top

gate voltages. Also the magnetoresistance of a nonuniform sample can be explained

by a geometrical magnetoresistance. It was shown that 1/f noise in graphene has

much more complicated concentration and temperature dependence than that in

usual metals.

We have used magnetic field parallel to the current to investigate resonant tun-

nelling through a double impurity in a vertical double-barrier resonant tunnelling

diode, by measuring current-voltage and differential conductance-voltage character-

istics. Information was obtained about the properties of the impurities: the energy

levels, the effective electron mass and their spatial positions.

The chiral nature of the carriers in graphene has been demonstrated by com-

paring measurements of the transport through a ballistic p-n junction with the

predictions of the diffusive models. This allowed us to find, unambiguously, the

contribution of ballistic resistance to the total resistance of a p-n-p structure.

The first observation of 1/f noise in graphene has revealed a new feature not

observed in conventional metals or semiconductors. The dip in the normalised noise
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seen in the Dirac point of single-layer graphene at temperatures above 100 K still

requires an explanation. A simple model of two different types of carrier in the Dirac

point seems to be useful to explain the dip in the normalised noise.

Below are some suggestions for further work:

• We have not studied in detail the mutual arrangement of the impurities in the

barriers of a DBRTD, but this can be done by rotation of magnetic field with

respect to the current, in order to reveal the overlap between the wavefunctions

of the two states.

• The studied graphene samples with p-n-p structures did not have large enough

mean free path (or small enough n-region) to make the whole p-n-p structure

fully ballistic. Making such structure would allow one to observe unambigu-

ously the Klein paradox in graphene.

• We have not identified whether fluctuations in concentration or mobility are

the main source of 1/f noise in graphene. This can be done using a Corbino

disc geometry and measure the noise as a function of magnetic field to clarify

this question.

135



Bibliography

[1] J. H. Devies. The Physics of Low-Dimentional Semiconductors: an Introduc-

tion. Cambridge University Press, Cambridge, (1998).

[2] B. M. Askerov. Electron Transport Phenomena in Semiconductors. World

Scientific, Singapore, (1994).

[3] S. Datta. Electronic Transport in Mesoscopic Systems. Cambridge University

Press, Cambridge, (1995).

[4] M. V. Entin. private communication .

[5] A. van der Ziel. Noise in solid state devices and circuits. Wiley-Interscience,

(1986).

[6] Sh. Kogan. Electronic noise and fluctuatiions in solids. Cambridge University

Press, Cambridge, (1996).

[7] R. F. Voss and J. Clarke. Phys. Rev. Lett. 40, 913 (1976).

[8] R. F. Voss and J. Clarke. Phys. Rev. B 13, 556 (1976).

[9] H. Wong. Microelectronics Reliability 43, 585 (2003).

[10] M. B. Weissman. Rev. Mod. Phys. 60, 537 (1988).

[11] A. L. Mc Whorter. Semiconductor surface physics. University of Pennsylvania

press, Philadelphia.

[12] F. N. Hooge, T. G. M. Kleinpenning, and L. K. J. Vandamme. Rept. Progr.

Phys. 44, 479 (1981).

[13] P. Dutta and P. M. Horn. Rev. Mod. Phys. 53, 497 (1981).

136



BIBLIOGRAPHY

[14] C. W. J. Beenakker M. J. M. de Jong. cond-mat/9611140 .
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Appendix A

Current amplitude in

two-impurity tunnelling

Here we will discuss the integration of the conductance (Eq. 3.14) over energy

from −∞ to the Fermi energy µ. We neglect changes in the density of states. The

integral is written as

I(V ) =

∫ µ

−∞

e

h
T (ε, ε1, ε2)dε =

e

h

∫ µ

−∞

4ΓLΓR|HLR|2
|(ε− ε1 + iΓL)(ε− ε2 + iΓR)− |HLR|2|2dε

(A.1)

We are interested only in the current amplitude. The maximum of the current occurs

at the resonance condition when the impurities have the same energy.

The four roots of the denominator in (A.1) are written as

εI,II =
1

2
(ε1 + ε2 − i(ΓL + ΓR))±

√
1

4
[ε1 − ε2 − i(ΓL − ΓR)]2 + |HLR|2, (A.2)

εIII,IV =
1

2
(ε1 + ε2 + i(ΓL + ΓR))±

√
1

4
[ε1 − ε2 + i(ΓL − ΓR)]2 + |HLR|2. (A.3)

We know a simple link between energy levels (Eq. 3.18). It is possible to simplify

expressions (A.2) and (A.3):

εI,II = εr − 1

2
i(ΓL + ΓR)±

√
|HLR|2 − 1

4
(ΓL − ΓR)2, (A.4)

εIII,IV = εr +
1

2
i(ΓL + ΓR)±

√
|HLR|2 − 1

4
(ΓL − ΓR)2. (A.5)

We define H =
√
|HLR|2 − 1

4
(ΓL − ΓR)2 and Γ = 1

2
(ΓL + ΓR). If we assume that
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Appendix A: Current amplitude in two-impurity tunnelling

|HLR|2 > (ΓL − ΓR)2/4, then we can rewrite (A.4) and (A.5):

εI,II = εr − iΓ±H, (A.6)

εIII,IV = εr + iΓ±H. (A.7)

The other possibilities, |HLR|2 < (ΓL − ΓR)2/4 and |HLR|2 = (ΓL − ΓR)2/4, we

will consider below. Knowing the roots (A.6) and (A.7) for the denominator of the

fraction under the integral we can factorise it to simplify integration. Combining εI

with εIII and εII with εIV we have

1

|(ε− ε1 + iΓL)(ε− ε2 + iΓR)− |HLR|2|2 =
1

(ε− εI)(ε− εII)(ε− εIII)(ε− εIV )

=
1

((ε− εr −H)2 + Γ2)((ε− εr + H)2 + Γ2)
=

1

4H(H2 + Γ2)

(
ε− εr + 2H

(ε− εr + H)2 + Γ2

− ε− εr − 2H

(ε− εr −H)2 + Γ2

)
(A.8)

The last expression can be easily integrated. Consider the first term in the last

expression (A.8):

∫ µ

−∞

(ε− εr + H) + H

(ε− εr + H)2 + Γ2
dε =

∫ µ

−∞

(ε− εr + H)d(ε− εr + H)

(ε− εr + H)2 + Γ2

+

∫ µ

−∞

H

(ε− εr + H)2 + Γ2
dε =

1

2

∫ µ

−∞
dln((ε− εr + H)2 + Γ2)

+
H

Γ

∫ µ

−∞

d((ε− εr + H)/Γ)

((ε− εr + H)/Γ)2 + 1

=
1

2
lim

x→−∞
(ln

(
(x + H − εr)2 + Γ2

)
) +

1

2
ln

(
(µ + H − εr)2 + Γ2

)

+
H

Γ

[
tan−1

(
µ + H − εr

Γ

)
+

π

2

]
. (A.9)

The first term in (A.9) is infinite but the second term in (A.8) provides a similar

negative value which cancels this divergence. The full expression for the current

amplitude is

Imax =
e

h

ΓLΓR|HLR|2
H(H2 + Γ2)

[
1

2
ln

(
(µ + H − εr)2 + Γ2

(µ−H − εr)2 + Γ2

)
+

+
H

Γ

[
tan−1

(
µ + H − εr

Γ

)
+ tan−1

(
µ−H − εr

Γ

)
+ π

]]
,

which is (3.19) in the text.
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If we have |HLR|2 < (ΓL − ΓR)2/4 than the answer for the current amplitude is

Imax =
e

h̄

ΓLΓR|HLR|2
ΓH(Γ2 −H2)

(
πH + (Γ + H) tan−1 µ− εr

Γ−H
− (Γ−H) tan−1 µ− εr

Γ + H

)
,

(A.10)

where Γ = 1/2(ΓL+ΓR) and H =
√
−|HLR|2 + 1

4
(ΓL − ΓR)2. Otherwise, if |HLR|2 =

(ΓL − ΓR)2/4 the answer is more simple

Imax =
e

h̄

ΓLΓR|HLR|2
Γ3

(
π +

Γ(µ− εr)

(µ− εr)2 + Γ2
+ 2 tan−1 µ− εr

Γ

)
. (A.11)
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Code for solving 2D Laplace

equation (FEMLab)

format long

flclear fem

Graphene_flake_length=4.3e-6;

Dielectric_thickness=3.0E-7;

Small_box_width=1e-5;

Top_gate_length=170e-9;

Top_gate_heigth=250e-9;

Top_gate_distance=210e-9;

Box_width=2*Small_box_width+Graphene_flake_length;

Box_heigth=5.7E-6;

Impurities_distance=3.1E-7;

% Geometry

g2=rect2(Graphene_flake_length,Dielectric_thickness,’base’,’corner’,....

’pos’,[-Graphene_flake_length/2,0]);

g4=rect2(Small_box_width,Dielectric_thickness,’base’,’corner’,...

’pos’,[-Small_box_width-Graphene_flake_length/2,0]);

g6=rect2(Small_box_width,Dielectric_thickness,’base’,’corner’,...

’pos’,[Graphene_flake_length/2,0]);

g8=rect2(Box_width,Box_heigth,’base’,’corner’,’pos’,[-Box_width/2,...

Dielectric_thickness]);

carr={curve2([-2.15E-6,2.15E-6],[Impurities_distance,...

Impurities_distance],[1,1])};

g9=geomcoerce(’curve’,carr);

gg=geomedit(g9);

g10=geomedit(g9,gg);

g11=geomcomp({g2,g4,g6,g8},’ns’,{’g2’,’g4’,’g6’,’g8’},’sf’,...

’g2+g4+g6+g8’,’edge’,’none’);

g13=rect2(Top_gate_length,Top_gate_heigth,’base’,’center’,’pos’,...

[0,Top_gate_distance+Dielectric_thickness+Top_gate_heigth/2]);
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Appendix B: Code for solving 2D Laplace equation (FEMLab)

g15=geomcomp({g11,g13},’ns’,{’g11’,’g13’},’sf’,’g11-g13’,’edge’,’none’);

% Analyzed geometry

clear c s

c.objs={g10};

c.name={’B1’};

c.tags={’g10’};

s.objs={g15};

s.name={’CO2’};

s.tags={’g15’};

fem.draw=struct(’c’,c,’s’,s);

fem.geom=geomcsg(fem);

% Initialize mesh

fem.mesh=meshinit(fem, ...

’hauto’,5);

% Initialize mesh

fem.mesh=meshinit(fem, ...

’hauto’,5, ...

’hmaxedg’,[10,1e-8,11,1e-8,12,1e-8,13,1e-8]);

% (Default values are not included)

e=1.60217733*1e-19;

h=6.6260755*1e-34/(2*3.1415926);

e0=8.854187817e-12;

er=3.9;

d=3e-7;

vf=1e6;

C=er*e0/d;

rs=e^3/(3.1415926*h^2*vf^2);

GV=1/sqrt(rs/C);

Vdp=0.93;

Ef0=-1e-3/GV*sqrt(Vdp);

Density=strcat(’-’,num2str(rs),’*V^2*sign(V)’);

Charge_density=strcat(num2str(sign(Ef0)*rs),’*’,num2str(Ef0^2));

Rvtg=zeros(1,21);

for jj=1:1

Backgate_voltage=-4;

%Topgate_voltage=-66+jj*6;

Topgate_voltage=20;

Contact_Potential=GV*sqrt(abs(Backgate_voltage))*sign(Backgate_voltage);
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% Application mode 1

clear appl

appl.mode.class = ’EmElectrostatics’;

appl.module = ’ACDC’;

appl.border = ’on’;

appl.assignsuffix = ’_emes’;

clear bnd

bnd.rhos = {0,0,0,0,Density,Charge_density,0};

bnd.V0 = {0,Backgate_voltage,Contact_Potential,0,0,0,...

Topgate_voltage};

bnd.type = {’nD0’,’V’,’V’,’cont’,’r’,’r’,’V’};

bnd.name = {’Box’,’Backgate’,’Contacts’,’’,’Graphene’,...

’Impurities’,’Topgate’};

bnd.ind = [1,2,1,3,1,4,2,5,6,7,7,7,7,4,2,3,1,1];

appl.bnd = bnd;

clear equ

equ.epsilonr = {3.9,1};

equ.name = {’Dielectric’,’Vacuum’};

equ.ind = [1,2,1,1];

appl.equ = equ;

fem.appl{1} = appl;

fem.frame = {’ref’};

fem.border = 1;

clear units;

units.basesystem = ’SI’;

fem.units = units;

% Multiphysics

fem=multiphysics(fem);

% Extend mesh

fem.xmesh=meshextend(fem);

% Solve problem

fem.sol=femstatic(fem, ...

’solcomp’,{’V’}, ...

’outcomp’,{’V’}, ...

’linsolver’,’gmres’);

% Save current fem structure for restart purposes

fem0=fem;

postplot(fem, ...

’contdata’,{’V’,’cont’,’internal’,’unit’,’V’}, ...

’contlevels’,20, ...

’contlabel’,’off’, ...

’contmap’,’cool(1024)’, ...

’title’,’Contour: Electric potential [V]’, ...

’axis’,[-1.5616550440727387E-6,1.7905022732366362E-6,...
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-9.184963735485299E-7,1.6417052435411149E-6,-1,1]);

% Plot in cross-section or along domain

[h,data]=postcrossplot(fem,1,[-2.15e-6 2.15e-6;300e-9 300e-9], ...

’lindata’,’V’, ...

’linxdata’,’x’, ...

’title’,’Electric potential [V]’, ...

’axislabel’,{’x’,’Electric potential [V]’});

subintegral=strcat(’if(V^2*sign(V)*’,num2str(1/GV^2),’>0,...

if(V^2*sign(V)*’,num2str(1/GV^2),’>3,1/(0.00356+...

0.02904*V^2*sign(V)*’,num2str(1/GV^2),’)+5.5,1/(0.03271+...

0.00339*V^2*sign(V)*’,num2str(1/GV^2),’+0.00824*(V^2*sign(V)*...

’,num2str(1/GV^2),’)^2-9.41747E-4*(V^2*sign(V)*’,...

num2str(1/GV^2),’)^3)+5.5),if(V^2*sign(V)*’,num2str(1/GV^2),...

’<-5,1/(0.03416-0.01303*V^2*sign(V)*’,num2str(1/GV^2),’)+...

1.7,1/(0.0302-0.0027*V^2*sign(V)*’,num2str(1/GV^2),’+...

0.00497*(V^2*sign(V)*’,num2str(1/GV^2),’)^2+5.57394E-4*...

(V^2*sign(V)*’,num2str(1/GV^2),’)^3)+1.7))’);

% Integrate

I3=postint(fem,subintegral, ...

’unit’,’’, ...

’dl’,[8], ...

’edim’,1);

jj

I3/4.3e-6

Rvtg(jj)=I3/4.3e-6;

end
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Mathematica code for qtans3
function to find T (θ) of a p-n-p
structure (courtesy of F. Guinea)

gtrans3[w_, nn_, ep_, em_, k_, en1_] :=Module[{ww, fp, ffp, fm, ffm,

green1, green2, greend1, greend2, green, cc, tfp, tfm, auxp, auxm},

cc = 2*Cos[k/2]; For[i = 1, i < n + 2, {

tt[i] = ((1 + cc)/2 - (1 - cc)/2*(-1)^i)*t;

en[i] = potential[en1, i]};i++];

tfp = t*t*cc/(w - ep);

wp = ((w - ep)*(w - ep) - t*t - t*t*cc*cc)/(w - ep);

wwp = wp/(2*tfp); auxp = Sqrt[wp*wp/4 - tfp*tfp];

If[wp*wp/4 - tfp*tfp > 0, fp = wp/2 - Sign[wp]*auxp,

fp = wp/2 - auxp]; ffp = t*t/(w - ep) + fp;

tfm = t*t*cc/(w - em);

wm = ((w - em)*(w - em) - t*t - t*t*cc*cc)/(w - em);

wwm = wm/(2*tfm);

auxm = Sqrt[wm*wm/4 - tfm*tfm];

If[wm*wm/4 - tfm*tfm > 0, fm = wm/2 - Sign[wm]*auxm,

fm = wm/2 - auxm]; ffm = t*t*cc*cc/(w - em) + fm;

tp[n] = tt[n]/(w - en[n + 1] - ffp);

For[i = 1, i < n, {tp[n - i] =tt[n - i]/(w - en[n - i + 1] -

tt[n - i + 1]*tp[n - i + 1])};i++];

tm[1] = tt[1]/(w - en[1] - ffm);

For[i = 2, i < n + 1, {

tm[i] = tt[i]/(w - en[i] - tt[i - 1]*tm[i - 1])};i++];

green1 = 1/(w - en[nn] - tt[nn - 1]*tm[nn - 1] -

tt[nn]*tp[nn]);

green2 = 1/(w - en[nn + 1] - tt[nn]*tm[nn] -

tt[nn + 1]*tp[nn + 1]);

greend1 = tm[nn]*green2;greend2 = tp[nn]*green1;

green =2*tt[nn]^2*(2*Im[green1]*Im[green2] - Im[greend1]^2 -

Im[greend2]^2)];
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Code for solving 2D Laplace
equation and finding the
resistance of a p-n-p structure

format long

flclear fem

Graphene_flake_length=5e-6; Dielectric_thickness=3.0E-7;

Small_box_width=1e-5; Top_gate_length=170e-9;

Top_gate_heigth=250e-9; Top_gate_distance=140e-9;

Box_width=2*Small_box_width+Graphene_flake_length;

Box_heigth=5.7E-6; Impurities_distance=3.1E-7;

% Geometry

g2=rect2(Graphene_flake_length,Dielectric_thickness,...

’base’,’corner’,’pos’,[-Graphene_flake_length/2,0]);

g4=rect2(Small_box_width,Dielectric_thickness,’base’,...

’corner’,’pos’,[-Small_box_width-Graphene_flake_length/2,0]);

g6=rect2(Small_box_width,Dielectric_thickness,’base’,...

’corner’,’pos’,[Graphene_flake_length/2,0]);

g8=rect2(Box_width,Box_heigth,’base’,’corner’,’pos’,...

[-Box_width/2,Dielectric_thickness]);

carr={curve2([-Graphene_flake_length/2,Graphene_flake_length/2],...

[Impurities_distance,Impurities_distance],[1,1])};

g9=geomcoerce(’curve’,carr);

gg=geomedit(g9);

g10=geomedit(g9,gg);

g11=geomcomp({g2,g4,g6,g8},’ns’,{’g2’,’g4’,’g6’,’g8’},’sf’,...

’g2+g4+g6+g8’,’edge’,’none’);

g13=rect2(Top_gate_length,Top_gate_heigth,’base’,’center’,...

’pos’,[Graphene_flake_length/6-Top_gate_length/2,...

Top_gate_distance+Dielectric_thickness+Top_gate_heigth/2]);

g15=geomComp({g11,g13},’ns’,{’g11’,’g13’},’sf’,’g11-g13’,...

’edge’,’none’);

% Analyzed geometry
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clear c s

c.objs={g10};

c.name={’B1’};

c.tags={’g10’};

s.objs={g15};

s.name={’CO2’};

s.tags={’g15’};

fem.draw=strUct(’c’,c,’s’,s);

fem.geom=geomcsg(fem);

% Initialize mesh

fem.mesh=meshinit(fem, ...

’hauto’,5);

% Initialize mesh

fem.mesh=meshinit(fem, ...

’hauto’,5, ...

’hmaxedg’,[10,1e-8,11,1e-8,12,1e-8,13,1e-8]);

% (Default values are not included)

e=1.60217733*1e-19; h=6.6260755*1e-34/(2*3.1415926); e0=8.854187817e-12;

er=3.9; d=3e-7; vf=1e6; C=er*e0/d; rs=e^3/(3.1415926*h^2*vf^2);

GV=1/sqrt(rs/C); Vdp=0.05; Ef0=-1e-3/GV*sqrt(abs(Vdp))*sign(Vdp);

Density=strcat(’-’,num2str(rs),’*V^2*sign(V)’);

Charge_density=strcat(num2str(sign(Ef0)*rs),’*’,num2str(Ef0^2));

Rvtg=zeros(1,100); RpnG=zeros(1,100);

sec=zeros(1,100);

secFano=zeros(1,100);

for jj=1:100

Backgate_voltage=-9; Topgate_voltage=19+21*jj/100;

Contact_Potential=GV*sqrt(abs(Backgate_voltage))*sign(Backgate_voltage);

% Application mode 1

clear appl

appl.mode.class = ’EmElectrostatics’;

appl.module = ’ACDC’;

appl.border = ’on’;

appl.assignsuffix = ’_emes’;

clear bnd

bnd.rhos = {0,0,0,0,Density,Charge_density,0};

bnd.V0 = {0,Backgate_voltage,Contact_Potential,0,0,0,...

Topgate_voltage};

bnd.type = {’nD0’,’V’,’V’,’cont’,’r’,’r’,’V’};

bnd.name = {’Box’,’Backgate’,’Contacts’,’’,’Graphene’,...

’Impurities’,’Topgate’};

bnd.ind = [1,2,1,3,1,4,2,5,6,7,7,7,7,4,2,3,1,1];

151



Appendix D: Code for solving 2D Laplace equation and finding the resistance of a
p-n-p structure

appl.bnd = bnd;

clear equ

equ.epsilonr = {3.9,1};

equ.name = {’Dielectric’,’Vacuum’};

equ.ind = [1,2,1,1];

appl.equ = equ;

fem.appl{1} = appl;

fem.frame = {’ref’};

fem.border = 1;

clear units;

units.basesystem = ’SI’;

fem.units = units;

% Multiphysics

fem=multiphysics(fem);

% Extend mesh

fem.xmesh=meshextend(fem);

% Solve problem

fem.sol=femstatic(fem, ...

’solcomp’,{’V’}, ...

’outcomp’,{’V’}, ...

’linsolver’,’gmres’);

% Save current fem structure for restart purposes

fem0=fem;

left=-250e-9;

right=750e-9;

points=3000;

[h,data]=postcrossplot(fem,1,[left right;300e-9 300e-9], ...

’lindata’,’V’, ...

’linxdata’,’x’, ...

’npoints’,points, ...

’title’,’Electric potential [V]’, ...

’axislabel’,{’x’,’Electric potential [V]’});

pot=data.p(2,:)’;

%Guinea

n = 3000; n0 = n; w = 0;

enpot=zeros(2*n,1);

en=zeros(n+1,1);

for ii = 1:n

enpot(ii)=pot(ii);

enpot(2*n+1-ii)=pot(ii);

end
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Appendix D: Code for solving 2D Laplace equation and finding the resistance of a
p-n-p structure

for ii = 1:n

en(ii) = enpot(2*ii);

end

nn1 = 40; em = en(1); ep = en(n); en(n + 1) = en(n);

t0 = 3; length = 2*10^3; aa = 1.4; length1 = 3/4*aa*n0/10;

t = t0*length1/length;

nphi = 1;

W=235e-9;

hbar=1.055e-34;

e=1.602e-19;

vf=1e6;

W=235e-9;

kn=pi/W*1e-10;

for ll=1:20

q=qtrans3(w, nn1, ep, em, 2*pi/3 + kn*(ll-1/2)*aa*sqrt(3),en,n,t);

sec(jj) = sec(jj) +q;

secFano(jj)=secFano(jj)+q*(1-q);

end

secFano(jj)=secFano(jj)/sec(jj);

end
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