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Abstract

Experimental studies presented in this thesis have shown the first realisation of

resonant tunnelling transport through two impurities in a vertical double-barrier

tunnelling diode; have proved the chiral nature of charge carriers in graphene by

studying ballistic transport through graphene p-n junctions; have demonstrated

significant differences of 1/f noise in graphene compared with conventional two-

dimensional systems.

Magnetic field parallel to the current has been used to investigate resonant tun-

nelling through a double impurity in a vertical double-barrier resonant tunnelling

diode, by measuring the current-voltage and differential conductance-voltage char-

acteristics of the structure. It is shown that such experiments allow one to obtain

the energy levels, the effective electron mass and spatial positions of the impurities.

The chiral nature of the carriers in graphene has been demonstrated by com-

paring measurements of the conductance of a graphene p-n-p structure with the

predictions of diffusive models. This allowed us to find, unambiguously, the con-

tribution of ballistic resistance of graphene p-n junctions to the total resistance of

the p-n-p structure. In order to do this, the band profile of the p-n-p structure has

been calculated using the realistic density of states in graphene. It has been shown

that the developed models of diffusive transport can be applied to explain the main

features of the magnetoresistance of p-n-p structures.

It was shown that 1/f noise in graphene has much more complicated concen-

tration and temperature dependences near the Dirac point than in usual metallic

systems, possibly due to the existence of the electron-hole puddles in the electro-

neutrality region. In the regions of high carrier concentration where no inhomogene-

ity is expected, the noise has an inverse square root dependence on the concentration,

which is also in contradiction with the Hooge relation.
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