Tunnelling and noise in GaAs and graphene nanostructures

Submitted by Alexander S. Mayorov to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics
September, 2008

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Alexander S. Mayorov
September, 2008
Abstract

Experimental studies presented in this thesis have shown the first realisation of resonant tunnelling transport through two impurities in a vertical double-barrier tunnelling diode; have proved the chiral nature of charge carriers in graphene by studying ballistic transport through graphene $p-n$ junctions; have demonstrated significant differences of $1/f$ noise in graphene compared with conventional two-dimensional systems.

Magnetic field parallel to the current has been used to investigate resonant tunnelling through a double impurity in a vertical double-barrier resonant tunnelling diode, by measuring the current-voltage and differential conductance-voltage characteristics of the structure. It is shown that such experiments allow one to obtain the energy levels, the effective electron mass and spatial positions of the impurities.

The chiral nature of the carriers in graphene has been demonstrated by comparing measurements of the conductance of a graphene $p-n-p$ structure with the predictions of diffusive models. This allowed us to find, unambiguously, the contribution of ballistic resistance of graphene $p-n$ junctions to the total resistance of the $p-n-p$ structure. In order to do this, the band profile of the $p-n-p$ structure has been calculated using the realistic density of states in graphene. It has been shown that the developed models of diffusive transport can be applied to explain the main features of the magnetoresistance of $p-n-p$ structures.

It was shown that $1/f$ noise in graphene has much more complicated concentration and temperature dependences near the Dirac point than in usual metallic systems, possibly due to the existence of the electron-hole puddles in the electroneutrality region. In the regions of high carrier concentration where no inhomogeneity is expected, the noise has an inverse square root dependence on the concentration, which is also in contradiction with the Hooge relation.
Acknowledgements

I would like here to say thank you to several people who helped me during my years of research at the university of Exeter. Firstly to my supervisor Alex Savchenko, for his encouragement and support. A lot of thanks also go to the PhD students I worked with: Evgeniy Galaktionov, Fedor Tikhonenko. Special thanks to Adam Price who corrected my English and David Horsell who read this thesis and spent a lot of time to make it clearer. Great thanks go to Andrew Kretinin from whom I learned how to measure noise.

The DBRTD sample was supplied by Giancarlo Faini of the Laboratoire de Photonique et Nanostructures, CNRS in Marcoussis, France. I am grateful to Roman Gorbachev who fabricated all graphene samples I have used. Also I want to thank Alex Beaton who helped me with the graphene doping experiment.

Thanks to theoreticians Matvey Entin from the Institute of Semiconductor Physics, Novosibirsk, Russia and Francisco Guinea from Instituto de Ciencia de Materiales de Madrid, Spain, who helped me to get a better understanding of the physics I was dealing with. Also I would like to express my gratitude to Professor Kvon Ze Don from the Institute of Semiconductor Physics, Novosibirsk with whom I worked for a month. He was also the one who told me about Exeter university, and the ORS scholarship.

I would like to thank all the technical staff in the Physics Department who helped me, especially Dave Manning and Adam Woodgate for their generous supply of liquid helium, and Paul Wilkins for solving all my technical problems.

Finally, I owe a big thank you to my mother Tat’yana, and to my sister Maria for support over the last years. Thanks to my friends Alexey Petrenko and Anatoly Patrakov who were not here but helped me a lot. I would like to thanks Mr. and Mrs. Allison who ensured that I did not have any problem with my accommodation during my PhD study.

Thanks also to all the people I have interacted with during my PhD study at Exeter but did not mention here.
Contents

Abstract 2

Acknowledgements 3

Contents 4

List of Figures 8

List of Tables 18

List of publications 19

Introduction 21

1 Basic concepts 24

1.1 Introduction .. 24

1.2 Low-dimensional systems .. 24

1.2.1 Two-dimensional electron gas 24

1.2.2 The Boltzmann equation .. 27

1.2.3 Landauer-Büttiker approach 29

1.2.4 Quantum dots and shallow donors in GaAs 31

1.2.5 Semimetals ... 32

1.2.6 p-n junctions ... 32

1.2.7 Resonant tunnelling diode 33

1.3 Basics of noise ... 35

1.3.1 General noise characteristics 35

1.3.2 Thermal noise ... 38

1.3.3 Random telegraph noise 38
1.3.4 1/f noise or flicker noise .. 39
1.3.5 Shot noise ... 40

2 Samples and experimental techniques 42
2.1 Introduction ... 42
2.2 Samples .. 42
 2.2.1 Double barrier resonant tunnelling diode 42
 2.2.2 Graphene samples for noise measurements 44
 2.2.3 Graphene p-n-p samples .. 48
2.3 Circuitry and methods .. 49
 2.3.1 I-V characteristics ... 49
 2.3.2 Resistance measurements 49
 2.3.3 Noise ... 51
 2.3.4 Temperature and magnetic field control 51

3 Transport through impurities in a vertical double-barrier resonant
tunnelling diode .. 54
3.1 Introduction .. 54
3.2 Theory of resonant tunnelling ... 55
 3.2.1 Resonant tunnelling via a quantum well in a DBRTD 55
 3.2.2 Tunnelling through one impurity 55
 3.2.3 Tunnelling through two states 57
 3.2.4 Effect of magnetic field .. 59
3.3 Experiment and analysis ... 62
 3.3.1 General I-V characteristic of DBRTD 62
 3.3.2 Random telegraph noise in DBRTD at 4.2 K 62
 3.3.3 I-V characteristics at T=0.25 K 64
 3.3.4 Effect of magnetic field on the current peak 69
 3.3.5 Analysis of the current peak in the presence of magnetic field . 72
 3.3.6 Diamagnetic shift and current amplitude 74
3.4 Conclusions .. 77

4 Charge carrier transport in graphene 78
4.1 Introduction .. 78
4.2 Graphene .. 79
 4.2.1 Crystal lattice ... 80
 4.2.2 Band structure ... 81
 4.2.3 Effective Dirac equation 83
 4.2.4 Rotation ... 85
 4.2.5 Chirality .. 86
4.3 Transport properties .. 86
 4.3.1 \(p-n \) junction ... 89
 4.3.2 Ballistic transport in a \(p-n \) junction 90
 4.3.3 Ballistic transport in a \(p-n-p \) junction 92
4.4 Experiment and analysis 95
 4.4.1 Overview of the experimental results 95
 4.4.2 Electrostatic model 100
 4.4.3 \(p-n \) junction ... 104
 4.4.4 \(p-n-p \) junction 107
 4.4.5 Magnetoresistance of \(p-n-p \) structure 108
4.5 Conclusions .. 110

5 Noise in graphene ... 112
 5.1 Introduction .. 112
 5.2 Noise in conventional systems 112
 5.2.1 \(1/f \) noise in MOSFETs 113
 5.2.2 \(1/f \) noise in carbon nanotubes 116
 5.2.3 Experiments on \(1/f \) noise in graphene nanoribbons 116
 5.3 Experiments and analysis 117
 5.3.1 \(1/f \) noise in multilayer graphene 117
 5.3.2 \(1/f \) noise in single-layer graphene 123
 5.3.3 Influence of magnetic field on \(1/f \) noise 126
 5.3.4 Temperature dependence of noise 127
 5.3.5 Current-voltage characteristic 130
 5.3.6 Shot noise in graphene sample SL6 130
 5.4 Conclusions .. 131

6 Conclusions and suggestions for further work 134
A Current amplitude in two-impurity tunnelling 142

B Code for solving 2D Laplace equation (FEMLab) 145

C Mathematica code for qtans3 function to find $T(\theta)$ of a p-n-p structure (courtesy of F. Guinea) 149

D Code for solving 2D Laplace equation and finding the resistance of a p-n-p structure 150
List of Figures

1.1 (a) Cross-section through a high-frequency GaAs-AlGaAs MODFET. (b) Self-consistent solution of the conduction band $\varepsilon_c(z)$ through modulation-doped layers with a positive gate bias $V_g = \mu_s - \mu_m = 0.2$ V (the difference between bulk and metal chemical potentials) and $n = 3 \times 10^{15}$ m$^{-2}$ in the 2DEG. Adapted from [1].

1.2 Top: A conductor with transmission probability T connected to two large contacts through two leads. Bottom: subbands in the leads with Fermi levels μ_1 and μ_2. “Zero” temperature is assumed such that the energy distribution of the incident electrons in the two leads can be assumed to be step function. Note that $k = k_x$. Adapted from [3].

1.3 (a) p-n diode structure at zero bias. The Fermi level has the same value in the p and n regions of the structure. (b) p-n diode structure at a negative bias applied to produce a tunnel current of holes from the p to n region and current of electrons from the n to p region.

1.4 Profile of a resonant-tunnelling diode at different bias voltages V. The bias increases from (a) to (d), giving rise to the I-V characteristic shown in (e). The shaded areas on the left and right are the Fermi seas in the contacts. Adapted from [1].

1.5 (a) A random variable V as a function of time (1024 points are shown). (b) Zoom-in of the time domain signal shown in (a). (c) Spectral density, S_V, on a log-log scale as a function of frequency. The largest spikes correspond to 50 Hz harmonics. (d) Distribution of the values in the signal presented in (a) into bins.
2.1 The calculated conduction band profile, ε_c, of the DBRTD structure with $V_{sd} = 67$ mV. The dashed line is the electron concentration as a function of x-coordinate. The Fermi level is at zero energy.

2.2 (a) SEM image of sample SL4, where the positions of the contacts are shown as outlines. The inset shows a diagram of a graphene sample on n$^+$Si substrate (purple), covered by 300 nm SiO$_2$ (blue) and contacted by Au/Cr (yellow). Control of the carrier density, n, is achieved by varying V_g. (b) Resistivity of the sample as a function of V_g at $T = 0.25$ K. The mobility is 10000 cm2V$^{-1}$s$^{-1}$ outside the Dirac region. The inset shows the first quantum Hall plateau in the conductance, where the filling factor $\nu = nh/4eB$. Adapted from [24].

2.3 (a) Three stages of the air-bridge fabrication: electron beam lithography with two exposure doses, development, and deposition of the metal film. (b) A false-colour SEM image of a graphene flake with a metal air-bridge gate (image is tilted by 45$^\circ$).

2.4 The circuit used for measurements of $I(V_{sd})$ and dI/dV_{sd}.

2.5 The circuit used for measurements of $G(V_{bg})$ and $G(V_{tg})$.

2.6 The circuit used for measurements of voltage noise.

2.7 Scheme of Helium-3 cryostat.

3.1 Tunnelling through a resonant state with energy E_s in a double-barrier structure. Γ_L and Γ_R are the tunnelling rates from the source to the resonant state and from the drain to the state, respectively. I_2 is the total current.
3.2 a) Conduction-band profile of a device used to probe the states of a QD with an impurity state in a DBRTD. The inset shows a schematic overview of the structure, indicating the depleted region around the tungsten wires. The quantum dot is formed between the two DBRTDs. b) I-V characteristics measured at $B = 0$ T and $V_g = -50$ mV for different temperatures. The solid line is for 0.3 K, the dotted 4.2 K, and the dashed 10 K. For $V_c < 0.12$ V the current is less than 0.1 pA and has no fine structure. Note the emitter corresponds to source and the collector to drain in my text. Adapted from [36].

3.3 (a) Several energy levels of the impurity with $\hbar \omega_0 = 5$ meV as a function of magnetic field, Eq. 3.6. (b) Oscillations of the Fermi level in magnetic field, Eq. 3.7.

3.4 Schematic presentation of the double-barrier resonant tunnelling GaAs/Al$_{0.33}$Ga$_{0.67}$As structure with an applied bias. The two dots indicate impurities in resonance.

3.5 The I-V characteristic (solid line) of the KIIORe23b sample from -0.15 V to 0.17 V at 4.2 K. The dotted line shows the simultaneously measured differential conductance, G, as a function of V_{sd}. Negative differential conductance near ± 0.1 V corresponds to the presence of peaks in the I-V characteristic.

3.6 The $I(V_{sd})$ characteristic of sample KIIORe23b at 4.2 K measured twice with sweep rate 600 mVh$^{-1}$. One can see switching between two states. Inset: the $I(V_{sd})$ characteristic measured with sweep rate 4 mVh$^{-1}$ with results presented as individual points. The shift in V_{sd} between the two states is about 2.4 mV.

3.7 (a) Current as a function of V_{sd} of sample KIIORe23b for two separated states at 4.2 K. State 1 is shown by filled circles and state 2 by empty circles. (b) Distribution of the currents at $V_{sd} = 64.122$ mV (shown in (a) by dashed vertical line). Arrow shows current value (5.45 pA) taken to separate two states. Solid line shows fit using sum of two Gaussian functions. (c) Probability to find an electron in state 2 as a function of V_{sd}. The solid line is a linear fit.
3.8 General view of the I-V characteristic of sample KIIORe23b at 0.25 K. Inset: zoomed in region before threshold voltage with many small current peaks with the amplitude of 50 pA. 66

3.9 The I-V characteristic of sample KIIORe23b at 0.25 K from 55 mV to 79 mV. (a) Several sweeps with small RTN. (b) Fitting of the I-V characteristic (empty circles) using seven Lorentzian peaks (dashed curves). The resulting fit is shown by a solid thick line. 67

3.10 (a) Grey-scale of the current as a function of V_{sd} and B of sample KIIORe23b at 0.25 K (first measurement). The darkest region represents the largest current. The black line at $B = 1.6$ T is RTN. (b) Grey-scale of the conductance as a function of V_{sd} and B measured simultaneously with the current. NDC is seen as white regions on the graph. ... 68

3.11 Grey-scale of the current as a function of V_{sd} and B of sample KIIORe23b at 0.25 K (second measurement). 70

3.12 Current as a function of bias at different magnetic fields. The curves are shifted vertically from the curve at $B = 0$ T for clarity. 70

3.13 The position of the current peak as a function of magnetic field from 0 T to 3 T for two sets of experiments. 71

3.14 Conductance as a function of electron energy and overlap integral; $\Gamma = 0.1$ meV; $\varepsilon_r = 1$ meV, Eq. 3.19. 72

3.15 Normalised amplitude of the current peak as a function of resonance level position ε_r and overlap integral H; $\Gamma = 0.3$ meV; $\mu = 4$ meV, Eq. 3.19. 73

3.16 (a) The ratio of the current amplitudes as a function of magnetic field from 0 T to 3.5 T. Four curves generated from Eq. 3.18 with different overlap parameter, H_{LR} are presented. (b) Current as a function of bias, V_{sd}, for two magnetic fields (0.7 T, 3 T), shown in (a) with arrows. 75

3.17 Position of the current peak as a function of magnetic field, with a fitting curve, Eq. (3.20). 76

4.1 Graphene honeycomb crystal lattice. Two independent sublattices A and B are shown by different colours. 80
4.2 Neighbouring atoms in the graphene crystal: nearest neighbours, next to nearest neighbours, and third nearest neighbours in the same sublattice with translating vectors between them indicated by solid, dashed, and dotted lines, respectively. 81

4.3 Band diagram for graphene in the nearest neighbours approximation described by Eq. 4.12. Two nonequivalent Dirac points (K^- and K^+) are shown. 85

4.4 (a) Momentum of an electron approaching a p-n junction at an angle θ. (b) The gap in the spectrum $E(\kappa_x)$ (highlighted) at $\theta \neq 0$. (c) Band-structure profile along the length of the p-n-p structure. The value of the gap determines the tunneling length $2t(2\theta)$. 91

4.5 Total transmission as a function of height of a rectangular barrier. (a) Different lengths of the barrier, using Eq. (4.40) for a single channel. Energy of electrons $\varepsilon=0.06$ eV. The model potential $u(x)$ is shown in the top left inset. (b) Influence of the finite width of the ribbon for 50 nm barrier length. T_{tot} for a single channel, 100 nm, and 200 nm width is presented. 93

4.6 (a) Resistivity of the three samples as a function of the back-gate voltage, at $V_{bg} = 0$, at $T = 50$ K. Points indicate the values of V_{bg} where the top-gate voltage was swept to produce p-n-p junctions. (b) The resistance of sample S1 as a function of top-gate voltage at different V_{bg}. (c,d) The resistance as a function of top-gate voltage at different V_{bg} of samples S2 and S3, respectively. Points show the results of the calculations of the expected resistance assuming diffusive transport of carriers. (Dashed lines in b,c are guides to the eye.) 96
4.7 Sample S3. (a) Colour-scale of the resistance as a function of top-gate voltage and back-gate voltage at T=50 K. The dashed line shows the position of the Dirac point under the top-gate and separates the p-p-p region from the region where the p-n-p junction is formed. (b) Conductivity and mean free path as a function of back-gate voltage at T = 50 K. The mean free path is calculated for two different contact resistances 200 Ω/µm and 400 Ω/µm. (c) Temperature dependence of the resistance fluctuations as a function of top-gate voltage. (d) Resistance as a function of top-gate voltage at T = 80 K for different magnetic fields perpendicular to the flake. The orange curve shows reproducibility of the result. 98

4.8 Electrostatic model used to find the distribution of potential in a graphene flake. It uses real size geometry and correct boundary conditions for graphene (see Eqs. (4.45) and (4.46)). (a) Whole geometry of the model, (b) Zoom-in region under the top-gate. An additional layer of impurities is shown by the dotted line. 101

4.9 Position of the Dirac point, \(\varepsilon_D \), for different top-gate voltages at -9 V applied on the back-gate as a function of coordinate for sample S1. Half of the potential is presented. Top-gate voltage changes from 15 V to 40 V with 1 V increment. Inset: zoomed in region. 103

4.10 Comparison of exact and approximated potential momentums. The real part of momentum \(p_x = \sqrt{\varepsilon_F^2 \sin^2 \theta - u(x)^2 / v_F} \) as a function of coordinate at different angles of incidence from 5° to 45° is presented. The red dashed curves are calculated using linear approximation of potential. The most important parts of the momentum which make the main contribution to the probability are positioned in the region of 2t. This region is around the middle of the p-n junction (505 nm). 107

4.11 Oscillation of the resistance as a function of top-gate voltage for S1 sample for discreet valuers of the wavevector. \(V_{bg} = -9 \) V. 108
4.12 (a) Resistance of sample S5 as a function of the back-gate voltage, at $V_{tg} = 0$ V, $T = 50$ K. (b) The resistance of sample S5 as a function of top-gate voltage at $V_{bg} = -9$ V. Points show the results of the calculations of the expected resistance assuming diffusive transport of carriers. .. 111

4.13 Analysis of the magnetoresistance of sample S5. (a) Resistance as a function of magnetic field at several V_{bg}. (b) Magnetoresistance at different V_{bg} using B-field dependences from (a). (c) The calculated components of the resistivity tensor at $B = 1$ T for $V_{bg} = -7$ V and $V_{tg} = 40$ V. (d) Comparison of the experimental resistances as a function of magnetic field at $V_{tg} = 15$ V and $V_{tg} = 39$ V ($T = 22$ K) with the calculated resistances at $V_{tg} = 15$ V and $V_{tg} = 40$ V, respectively. .. 111

5.1 Model of charge traps at the Si/SiO$_2$ interface. (a) The band diagram with bias V_g applied to the gate. (b) A zoomed-in region near the interface where tunnelling between the 2DEG and traps occurs. 114

5.2 (a) Resistance of one single-layer and one bilayer graphene nanoribbon devices measured as a function of gate voltage (at $T = 300$ K). The two devices have identical channel layout (width $W = 30$ nm and length $L = 2.8$ μm) as shown in the inset. (b) The resistance, R, and the noise amplitude A_N, of the single-layer graphene nanoribbon device measured as a function of gate voltage. The dashed curve is a guide to the eye, illustrating the correlation between A_N and R. (c) The resistance and the noise amplitude of the bilayer graphene device measured as a function of gate voltage. The dashed curve is a guide to the eye, illustrating the inverse relation between A_N and R.

Adapted from [83]. .. 117
5.3 Noise in a multilayer graphene sample ML2 after ethanol doping. (a) An example of the spectrum measured up to 100 Hz at 0 V on the gate at $T = 300$ K. The slope of the fit is about 1. (b) The dependence of the resistance noise spectral power at 1 Hz as a function of gate voltage. Inset: the resistances for each gate voltage where noise has been measured. One can clearly see that the dip in the noise corresponds to the resistance peak. 118

5.4 Noise in sample ML2 after tap-water doping. (a) An example of the spectrum measured up to 100 Hz at 0 V on the back-gate at $T = 300$ K. The slope of the fit is about 1. (b) The dependence of the resistance noise at 1 Hz as a function of back-gate voltage. Inset: the resistances for each back-gate voltage where noise has been measured. 120

5.5 Noise in sample ML2 at 4.2 K. (a) An example of the spectrum at -30 V on the back-gate at $T = 4.2$ K for three source-drain currents calculated as $S_V/(RI_{sd})^2$. The slope of the fit is about 1. (b) The dependence of the resistance noise at 1 Hz as a function of back-gate voltage. Inset: the resistances for each back-gate voltage where noise has been measured. 120

5.6 Resistance noise at $T=0.26$ K for sample SL4. (a-c) Spectra for different back-gate voltages -7.5 V, -1.5 V, and -3 V. (RTN is better seen in (c).) Red solid lines are the best fit using equation 5.11. (d) Solid circles show resistance power spectral density for extrapolated values at 1 Hz. The empty circles represent $1/f$ noise power at 1 Hz without the contribution of RTN, arrows show the change in $1/f$ noise amplitude when RTN is taken into account. Triangles show the resistance as a function of back-gate voltage. 122

5.7 Noise measured in sample SL4 by lock-in amplifier at $T = 24$ K with 1 μA constant source-drain current as a function of back-gate voltage. Forward and backward sweeps are presented by different colors. Resistance as a function of back-gate voltage is shown at 24 K (solid line) and several resistances at base temperature from Fig. 5.6 are presented by open circles. The two lowest curves (backgrounds) are measured without applied voltage across the sample. 123
5.8 (a) Power spectral density at 1 Hz as a function of back-gate voltage at $T = 8.75\ K$ for sample SL4. (b) Fitting the spectrum at $V_{bg} = -12\ V$ using two RTN signals and $1/f$ spectrum. 125

5.9 Spectra for sample SL4 at 8.75 K at three source-drain currents. (a-b) $1/f$ noise spectra away from the Dirac point show good $1/f$ dependence without magnetic field (a) and with $B = 2\ T$ applied (b). (c-d) Noise at the Dirac point. .. 126

5.10 $1/f$ noise in graphene SL6 sample. (a) Resistance as a function of back-gate voltage at temperature 5 K and 50 K. Inset: quantum Hall effect for single-layer graphene measured at 5 K and fixed magnetic field 12 T. (b) Three noise spectra at 5 K for 0 V (squares), -10 V (circles), and -20 V (triangles) on the back-gate. (c) Noise amplitude at 10 Hz for two sets of measurements. (d) Temperature dependence of noise amplitude for hole region from 5.5 K to 48 K. 127

5.11 $1/f$ noise in graphene SL6 sample at $T = 140\ K$. (a) Resistance as a function of back-gate voltage at $T = 140\ K$. Points show the resistances for each back-gate voltage where noise has been measured. (b) The resistance noise at 1 Hz as a function of V_{bg} (left ordinate axis), and the squared derivative of the sample resistance with respect to V_{bg} as a function of V_{bg} (right ordinate axis). 129

5.12 $1/f$ noise in graphene SL6 sample at three temperatures. (a) The resistance noise at 1 Hz as a function of V_{bg} at 140 K (squares), 100 K (circles), and 60 K (triangles) temperatures. (b) The dependence of the resistance noise (electron region) at 1 Hz on $(V_{bg} - V_D)$ in log-log scale. The solid lines have slopes equal to -0.5. 129

5.13 Normalised resistance in the Dirac point as a function of source-drain current for sample SL6 at 5.5 K. (a) 2 terminal circuit. (b) 4 terminal circuit. ... 133
5.14 Shot noise in graphene at $T=0.26$ K. (a) Spectra for different source-drain currents for 50 a kHz span at -40 V on back-gate voltage. (b) Spectra for different source-drain currents for 50 a kHz span at -60 V on back-gate voltage. (c) Current noise (solid squares) as a function of current at $V_{bg} = -40$ V. Red circles show current noise at Fano factor equal 0.34. (d) Current noise as a function of current at $V_{bg} = -60$ V. Red circles show current noise at Fano factor equal 0.17.
List of Tables

2.1 The profile of heterostructure M240 (with doping levels and thicknesses) on which K110Re23b sample is based. 43
2.2 Characteristic of graphene samples for noise measurements. 45
2.3 Characteristic of graphene p-n-p samples. 48
4.1 Parameters of graphene samples with ‘air-bridge’ top-gates. 97
List of publications

Publications

Conference presentations

• International Conference on Superlattices, Nanostructures and Nanodevices (ICSNN 2006) Oral contribution: Resonant tunnelling via two impurity levels in a vertical tunnelling nanostructure
• International Conference on Superlattices, Nanostructures and Nanodevices (ICSNN 2006) Poster contribution: Resistance fluctuations near the metal-to-insulator transition in the DEG in a Si-MOSFET