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Abstract

This paper surveys the extensive recent literature on the problems of deciding what is
meant by an I(0) process, and then deciding how to test for the property. A formidable
di¢culty exists in the construction of consistent and asymptotically correctly sized tests for
the I(0) hypothesis, and this may appear to place a question mark over the validity of a
large area of econometric theory and practice. To overcome these di¢culties in practical
applications, the paper proposes that a slightly di¤erent question needs to be posed, relating to
the adequacy of approximation to asymptotic inference criteria in �nite samples. A simulation-
based test, aimed at discriminating between data sets on this basis, is examined in a Monte
Carlo experiment.

1 Introduction

Since the inception of integrated time series modelling in econometrics, the question of what
constitutes a �non-integrated� process has remained troublingly elusive. The inferential techniques
developed for cointegration and related analyses require for their validity that the di¤erences of
the data series possess certain critical properties. These properties are nearly the same as those
required for �classical� asymptotics or, in other words, the application of the central limit theorem
to approximate the distribution of regression coe¢cients and similar quantities. The project of
doing time series econometrics could hardly be viable, one would suppose, unless these properties
could be both clearly delineated, and subject to veri�cation.

Before the advent of cointegration these problems were often resolved willy-nilly, by an as-
sumption of correct speci�cation in the context of a fairly heroic conditioning exercise, whereby
the explanatory variables in a model were held to be ��xed in repeated samples�. The only sto-
chastic components left to model (the disturbances) could then be treated as independently and
identically distributed, and their treatment was elementary. However implausible these classical
assumptions may always have been, they are manifestly inadequate to deal with cointegration
models, because here it not possible to hold the data conditionally �xed. It is the observed series
themselves, not constructed disturbances, whose distributions must satisfy the critical regularity
conditions.

�This paper shares a title with the �rst version of a working paper that subsequently appeared as Davidson
(2002). It further explores some themes that the earlier working paper broached rather brie�y. I am glad of this
excuse to revive a nice title, although there is in practice minimal overlap between the content of this paper and
its predecessor.

yAddress for correspondence: james.davidson@exeter.ac.uk.
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2 De�ning I(0)

Early contributions to the cointegration literature tended to be fairly casual in their treatment of
I(0), perhaps because this component of the theory was viewed as inherited from the pre-existing
modelling methodology. The following de�nitions are culled from some widely cited articles and
monographs.

1. �De�nition: A series with no deterministic component which has a stationary, invertible
ARMA representation after di¤erencing d times is said to be integrated of order d...� (Engle
and Granger 1987, p. 252.)

2. �It follows that [...] a short-memory series is I(0), as it needs di¤erencing zero times� (Engle
and Granger 1991, p. 3)

3. �... if the series must be di¤erenced exactly k times to achieve stationarity then the series
is I(k), so that a stationary series is I(0).� (Banerjee, Dolado, Galbraith and Hendry 1993,
p. 7.)

4. �A �nite (non-zero) variance stochastic process which does not accumulate past errors is
said to be integrated of order zero...� (Hendry 1995, p. 43)

5. �A stochastic process Yt which satis�es Yt�E(Yt) =
P1
i=0Ci"t�i is called I(0) if [

P1
i=0Ciz

i

converges for jzj < 1 and]
P1
i=0Ci 6= 0.� (Johansen 1995, p. 34-35, the condition "t s

iid(0; �2) being understood.)

Of these (chronologically ordered) quotations, 2, 3 and 4 can be thought of as informal and
descriptive, while 1 and 5 are intended as more rigorous. Even so, it�s interesting to note that
they are by no means equivalent. The concepts of stationarity, short memory and �nite variance
are each singled out as �de�ning� descriptive characteristics, but it is not yet clear how these might
be connected with one another. On the other hand, the more formal de�nitions restrict attention
to a limited class of linear models, in which the three characteristics of stationarity, short memory
and (under Gaussianity) �nite variance are united in a single parametric restriction. Note that
in a more general framework it easy to dispense with one while retaining another. The inclusion
of deterministic components (e.g. �trend stationarity�) is only one of the many ways these models
might be generalized.

Another approach to de�nition is the pragmatic one of simply specifying conditions under
which the asymptotic theory is valid; see for example Stock (1994), Davidson (2002) and Müller
(2008). These conditions are of course what motivate the technical and informal de�nitions just
given, but in many ways it simpli�es the analysis to state the desired properties directly, rather
than conditions su¢cient for them. Thus,

De�nition 1 A time series fxtg1t=1 is I(0) if the partial sum process XT de�ned on the unit
interval by

XT (�) = !�1T

[T�]
X

t=1

(xt � Ext); 0 < � � 1 (2.1)

where !2T = Var(
PT
t=1 xt), converges weakly to standard Brownian motion B as T !1:

This de�nition �rst makes it clear that I(0) is an attribute of an in�nite stochastic sequence. In
other words, it is not a well-de�ned concept for observed time series except in the context of
limit arguments as T ! 1. Next, note that it implies the property !2T s T!2 for 0 < !2 < 1,
because otherwise the limit process cannot have the Brownian property E(B(s)�B(r))2) = s�r
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for 0 � r < s � 1. For full applicability, it might need to be supplemented by the condition that
a consistent estimator of !2 exists, which typically will be one of the class of kernel estimators;
see Newey and West (1987) and Andrews (1991) inter alia. However, the best known su¢cient
conditions for these twin convergences, in distribution and probability, are in fact quite similar;
see de Jong and Davidson (2000). It is quite possible that the best conditions actually coincide.
Moreover, Kiefer, Vogelsang and Bunzel (2000) have shown that valid inference is possible without
consistent variance estimation, although as pointed out below, their results don�t have application
for testing the I(0) hypothesis, in particular.

What is clear is that a very wide class of processes satisfy these conditions, of which the cases
cited by Engle-Granger (1987) and Johansen (1995), respectively, form only a small subset.

3 Conditions for I(0)

Davidson (2002 and 2006, Section 5.5) provides a convenient summary of the technical conditions
that ensure the property given in De�nition 1 holds. A set of conditions is given for linear models
that are e¤ectively necessary for I(0), in the sense that convergence to a non-Brownian limit
process (fractional Brownian motion) can be demonstrated in cases where they are violated.

Summability of the autocovariances (though not necessarily absolute summability) is the fun-
damental necessary condition for I(0), because on this condition depends the property E(!2T ) s
T!2. Consider the class of covariance stationary moving average processes de�ned by

xt =
1
X

j=0

ajut�j ;
1
X

j=0

a2j <1; ut s i:i:d:(0; �
2): (3.1)

Since the mth order autocovariance is 
m = �2
P1
j=0 ajaj+m, note that

!2 =
1
X

m=�1


m = �2

0

@

1
X

j=0

aj

1

A

2

so that summability of the autocovariances is equivalent to summability of the moving average
coe¢cients. However, the conditions in (3.1) can be substantially relaxed by allowing dependence
in the process futg itself, which can in its turn be weakly dependent with summable autocovari-
ances. This can be illustrated by the obvious, though typically redundant, case where

ut =
1
X

j=0

bj"t�j ; "t s i:i:d:(0; �
2):

Then we simply obtain

!2 = �2

0

@

1
X

j=0

aj

1

A

20

@

1
X

j=0

bj

1

A

2

and this �Russian doll� layering of the dependence structure could be iterated any �nite number
of times.

More pertinent are the cases where ut exhibits some form of nonlinear dependence. In these
cases, restrictions on the autocovariances may need to be supplemented by more general restric-
tions on dependence. The simplest is to let ut be a stationary ergodic martingale di¤erence. A
variety of mixing conditions are also popular in the literature, although these have the drawback
of non-transparency. Being restrictions on the entire joint distribution of the process at long
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range, they are di¢cult to test, either in an e¢cient manner, or at all. �Geometric ergodicity� is
a property of Markov chains which can be established for certain nonlinear di¤erence equations
(see, e.g. Tong 1990). The condition of �near-epoch dependence� links the distribution of an
observed process to that of the near epoch of a speci�ed underlying forcing process, which can for
example be mixing. However, in a variety of nonlinear models driven by independent shocks, it is
comparatively easy to specify testable (in principle) parametric restrictions which are su¢cient
for near-epoch dependence of speci�ed �size� (rate of memory decay) and in turn su¢cient for
I(0) in the sense of De�nition 1. The cases of ARCH and GARCH models, bilinear models and
SETAR models, among others, are analysed in Davidson (2002).

The obvious di¢culty with De�nition 1 is that it speci�es an asymptotic property that cannot
be veri�ed in any �nite sample. Summability of the autocovariances can never be resolved,
one way or the other, from sample information. It is not unreasonable to ask whether sample
autocorrelations �look� summable, in the sense that they decline at such a rate as the lag increases
that some implicit smoothness constraint must be violated, were they to behave di¤erently at
long range. However, a number of authors have examined di¢cult cases that place our ability to
make this discrimination in doubt, even in large samples.

Leeb and Pötscher (2001) consider processes ut that are covariance stationary, and for which
there exists no covariance stationary process vt such that ut = �vt � in other words, are not
over-di¤erenced. They exhibit cases having these properties, yet lacking a spectral density (i.e.,
the spectral distribution function is non-di¤erentiable) which also lack the characteristic property
(necessary for Brownian asymptotics) that the partial sum variance increases proportionately to
sample size. Accordingly, such processes cannot be regarded as I(0). Their results emphasize the
fact that attributes such as �stationary� or �short memory�, cannot substitute for De�nition 1.

Müller (2008), on the other hand, considers processes generated by expansions of the form

Y (s) =

p
2

�

1
X

k=1

gk sin(�s(k � 1
2))�k; s 2 [0; 1] (3.2)

where �k s i:i:d:N(0; 1): Setting gk = 1=(k � 1
2) de�nes a Brownian motion (see Phillips 1998)

and sampling it at T points s = 1=T; : : : ; 1, yields a discrete integrated series. On the other
hand, setting gk = 1 yields, in the corresponding manner, a sample of Gaussian white noise. The
interesting cases are found by setting gk = 1 for k = 1; :::; n, for some n <1, and gk = 1=(k� 1

2)
for k > n. For quite modest values of n, one can obtain a series that appears stationary, yet is
also highly autocorrelated at long range. By letting n increase with T in just the right way, one
can manufacture a series which is I(0) on De�nition 1, yet the probability of rejection in any of
a wide class of tests for (in e¤ect) summable covariances converges to 1. This example is again
arti�cial, but it illustrates the pitfalls that await those who seek to test the conditions embodied
in the de�nition. As we show in more detail in the next section, there are always cases for which
no sample is large enough to discriminate e¤ectively.

4 Testing I(0)

Testing the hypothesis embodied in De�nition 1 has been called an �ill-posed� inference problem,
and a number of recent research contributions have highlighted di¤erent aspects of the di¢culty.

Consider three possible approaches to the testing problem. 1) perform a test in the context
of a speci�ed parametric or semiparametric model; 2) test a speci�c restriction on the sample
distribution, such as the value of the spectrum at zero; 3) construct a nonparametric statistic
whose null distribution depends directly on the conditions of De�nition 1. In practice these
approaches will to a large degree overlap, but it is instructive to consider the di¢culties implicit
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in each. A fourth approach is to devise a consistent criterion for choosing between the speci�c
alternatives of I(0) and I(1); see Stock (1994) and Corradi (1999). However, these latter methods
have a rather specialized application, since they are predicated on the assumption that these
two cases exhaust the possibilities. Given the existence of fractionally integrated processes in
particular, this assumption appears unduly restrictive for our purposes.

4.1 Parametric Hypotheses

Start with the parametric framework. In an autoregressive or ARMA model, the null hypothesis
takes the form �the largest autoregressive root lies strictly inside the unit circle�.1 The size
control problems are immediately obvious, for the null hypothesis is de�ned by a non-compact
set in the parameter space, say 
0, whose closure contains the leading case of the alternative (the
unit root). If a test is consistent, then as sample size increases,

size = sup
!2
0

P!(test rejects)! 1:

One can certainly test the hypothesis that the largest autoregressive root lies in a speci�ed stable
region which does not have 1 as a boundary point. This approach has the virtue that a failure to
reject the restricted hypothesis implies a failure to reject the I(0) hypothesis at at most the same
signi�cance level. However, it does not tell us how to interpret a rejection and hence it cannot
be considered as a test of I(0) in the strict sense.

Another approach which has proved popular is to embed the I(0) case in the class of I(d)
models, where d represents the fractional integration (long memory) parameter. Note that d 6= 0 is
incompatible with De�nition 1, since the limit of the normalized partial sum process is a fractional
Brownian motion. The LM-type tests of Robinson (1991), Agiakloglou and Newbold (1994),
Tanaka (1999), and Breitung and Hassler (2002) are all of this form. These tests are constructed,
in e¤ect, as functions of the sample autocovariances. One might also construct a con�dence
interval for the parameter d itself, using either a parametric or a semiparametric procedure �
see Robinson (1994), Geweke and Porter-Hudak (1983), Moulines and Soulier (2000) inter alia.
Being based on the periodogram, these estimators can again be thought of as functions of the
sample autocovariances. The problem with all these tests is that autoregressive components, if
present, assume the role of nuisance parameters. Local dependence is known to induce small
sample bias in these estimators, so that conventional signi�cance tests for d have to be treated
with caution.2 For correct asymptotic size, these tests require that autoregressive components
be controlled for by some method of pre-whitening. A valid test of d = 0 requires that any such
autoregressive roots are in the stable region. However, a unit root is, of course, observationally
equivalent to the case d = 1. The previous problem of size control now re-emerges in a new form.
If the prewhitening is done consistently, these tests must have power equal to size against the
alternative of a unit root.

4.2 "Ill-posed" Estimation Problems

A number of authors including Blough (1992), Dufour (1997), Faust (1996, 1999), Pötscher
(2002), and Müller (2005, 2008) have investigated a class of estimation problems in which testing
of integration order (whether I(0)or I(1)) features prominently. As Dufour points out, there are
two distinct cases that give rise to similar di¢culties in practice. One is a failure of identi�cation

1There is also the parameterization which places stable roots outside the unit circle, but it is convenient for
expository purposes to adopt the parameterization in which root and lag coe¢cient coincide in the AR(1) case.

2Davidson and Sibbertsen (2007) suggest a pre-test for bias.
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at points of the parameter space; in other words, the existence of observationally equivalent points.
The second case is where the object of interest is a function of the underlying parameters, and
the parameter space contains points of discontinuity of this function.

Of the various analyses o¤ered in these papers, Faust (1996, 1999) demonstrates the second
case neatly, as follows. Consider the class of processes in (3.1). For the purposes of the argument
let the shocks be Gaussian, and since a0 = 1 is not imposed there is no loss of generality is
assuming "t s NI(0; 1). De�ne A = fa0;a1; a2; : : :g to be a point in the space of square-summable
sequences A � R1. Let the distance k�k be de�ned on A such that

kA1 �A2k =
r

X1

j=0
(a1j � a2j)2:

If fA1; A2; : : :g de�nes a sequence in A such that kAk �Ak ! 0, and the corresponding stochastic
sequences are fXktg such that

Xkt =
1
X

j=0

akj"t�j

then the distributions of the fXktg, say fPAk ; k � 1g, converge weakly to PA, the distribution of
fXtg. To demonstrate this, it is su¢cient in view of the Gaussianity to show that the autocovari-
ances of the processes converge. Given A, let Am = f0; : : : ; 0; am; am+1; : : :g 2 A, and note that
kAmk �Amk ! 0 if kAk �Ak ! 0. Also note that if 
km = E(XktXk;t�m) then for each m � 0,

j
km � 
mj =

�

�

�

�

�

�

1
X

j=0

akjak;j+m �
1
X

j=0

ajaj+m

�

�

�

�

�

�

=

�

�

�

�

�

�

1
X

j=0

akj(ak;j+m � aj+m) +
1
X

j=0

aj+m(akj � aj)

�

�

�

�

�

�

� kAmk �Amk kAkk+ kAk �Ak kAmk
! 0 as k !1;

using the triangle and Schwarz inequalities. In other words, if kAk �Ak is small then the dif-
ference between the distributions of fXktg and fXtg is correspondingly small. Now consider the
sequence Ak = fa1; a2 ; : : : ak; 0; 0; : : :g, such that Ak ! A 2 A but suppose

P1
j=0 aj = 1. The

sums
P1
m=0 
km are accordingly diverging as k !1. fXktg is an I(0) sequence for each k, but

the limit is not I(0) in spite of lying arbitrarily close in distribution to I(0) sequences.
The implications for tests of the I(0) hypothesis should be clear. Supposing we seek to

construct a con�dence interval of level � for the spectral density at 0, say f(0) = ��1(12
0 +
P1
m=1 
m). Let (
;F ; �) represent the probability space generating the process innovations, and

also let B represent the Borel sets of the real line. An �-level con�dence interval depending on a
sample fX1; : : : ; XT g is a measurable mapping CT (�):A� 
 7�! B such that

inf
A
PA (fA(0) 2 CT (�)) � 1� �:

In words, a valid CT (�) needs to contain fA(0) with probability at least 1 � �, no matter how
the data are generated. It is evident that for any � > 0, CT (�) is unbounded. More alarmingly,
this is also the case if attention is con�ned just to the subset A0 = fA 2 A : fA(0) < 1g, since
this set is not compact, as demonstrated. Note that A � A0 (the closure of A0): Every non-
summable element of A can be constructed as the limit of a sequence of summable elements, and
A = A0. The closure of the set of square-summable sequences contains the non-square-summable
sequences.
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This property of con�dence intervals holds for any �nite T . A standard kernel estimator of
fA(0) should tend in distribution to the normal, with variance shrinking at the rate KT =T where
KT is the bandwidth. However, the implied approximate con�dence interval is an arbitrarily poor
approximation to the true con�dence interval. There exist data generation processes arbitrarily
close to A for which the kernel estimate is diverging at the rate KT , and has no well de�ned
limiting distribution.

A closely related analysis considers the distribution of the di¤erence processes xt = �Xt,
having the representation

xt =
1
X

j=0

a�j"t�j

where a�0 = a0 and a
�
j = aj � aj�1 for j � 1. Denote the generic sequence constructed in this

way from an element A of A by A� 2 A. If A 2 A0 then A� 2 A�0, where A�0 is the subset of A
having the property

P1
j=0 aj = 0. If attention is restricted to exponential lag decay processes,

having the property
P1
j=m aj = O(am), we may further say that fXtg is I(0) if and only if the

di¤erence process belongs to A�0. Evidently, sequences of elements of A�A�0 can be constructed
whose limits lie in A�0. In other words, there exist sequences of non-I(0) processes whose weak
limits are I(0).

Pötscher (2002) points out that the existence of such points implies that consistent estimation
is not a uniform property with respect to the parameter space. In other words, letting �̂T denote
an estimator of f(0) the quantity supA2AEAj�̂T � fA(0)j2 is in�nite, for every T � 1. A more
subtle implication of the Faust-Pötscher analysis is that A�A0 is dense in A. Every model A
with fA(0) < 1 is arbitrarily close to a case A0 with fA0(0) = 1. Now, it might be thought
that this result depends on the parameter space being explicitly in�nite dimensional. Parametric
representations of linear processes, such as the ARMA(p; q), are de�ned by subspaces of A, (the
images of mappings from � � Rp+q+1 to A) which, it might be hoped, exclude most problematic
regions. However, Pötscher shows that even the ARMA(1; 1) class contains problematic points
such that the uniform consistency criterion fails. Hence it also fails for every superset thereof.

4.3 The ARMA(1,1) Process

Consider the element of A de�ned by

(1� �L)Xt = �(1�  L)"t

so that a0 = � and aj = �(� �  )�j�1 for j � 1: Consider initially just the AR(1), by �xing
 = 0, and note that the sequence Ak de�ned by setting � = �k for �k = 1 � 1=k lies in A0,
with limit A 2 A�A0. In this case A =2 A, and there is also a failure of the weak convergence
of the distributions. The discontinuity in the space of probability measures at the stationarity
boundary is a familiar feature of this class. However, as noted previously, the null hypothesis
of I(0) is represented by the open set 
0 = f� : j�j < 1g, such that the leading case of the
alternative � = 1 lies in its closure. It follows that if a test of I(0) is de�ned by a statistic sT
and a critical region WT , such that the hypothesis of I(0) is rejected if sT 2 WT , then for any
T � 1 the power of the test against the alternative � = 1 can never exceed the size de�ned as
supA2
0 PA(sT 2WT ).

A special feature of the ARMA(1,1) class, closely related to the present problem although
distinct from it, is the existence of the set of unidenti�ed structures with � =  . Having the same
likelihood corresponding to the case � =  = 0, all these structures represent i.i.d. data, although
the case � =  = 1 is arbitrarily close in model space to I(1) cases with � = 1,  < 1. Pötscher
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(2002) considers the following example. Construct a sequence of coe¢cient pairs, f�k;  kg such
that the sequence of spectral densities is

fk(!) =
�2

2�

1 +  2k � 2 k cos!
1 + �2k � 2�k cos!

:

ChooseM � 0, and set 0 < �k < 1 and  k = 1�M(1��k), also requiring �k > (M�1)=M in the
cases with M > 1 so that  k > 0. Otherwise, f�kg can be an arbitrary sequence converging to 1.
Note that  k " 1 as �k " 1, and also that along these sequences, fk(0) = 1

2�
�1M2�2 for every k.

Except at the limit point, the sequences of models have �k 6=  k and hence they are technically
identi�ed, but depending on the path chosen they can have e¤ectively any nonnegative spectral
density at 0, in spite of being arbitrarily close to one another as the limit is approached.

As in the examples of the previous section, a con�dence interval for f(0) must be either
unbounded, or have level zero. For a more familiar insight into this issue, consider the one
parameter IMA(1; 1) class of models, de�ned by the MA parameter  . This has nonsummable
lag coe¢cients for every  2 (�1; 1), yet the case  = 1, lying in closure of this set, de�nes the
i.i.d. case. Be careful to note that the fact this point is unidenti�ed in the ARMA(1,1) class is
irrelevant, for it is perfectly well identi�ed in the IMA class. This problem is related strictly to
the discontinuity of f(0) as a function of  .

4.4 Nonparametric Tests

The most popular procedures for checking I(0) involve computing statistics that address the
question of summability of the autocovariances directly. Among tests in this class are the modi�ed
R/S test (Lo, 1991), the KPSS test (Kwiatkowski et al., 1992), the LM test of Lobato and
Robinson (1998), the V/S test of Giraitis et al. (2003), the �remote autocorrelations� test of
Harris et. al. (2008), and the increment ratio test of Surgailis et al. (2008). Except for the last,
these tests all depend on an estimator of the long run variance of the process, which is assumed
�nite under the null hypothesis. In fact, it is true to say that the properties of the tests are
completely de�ned by the properties of these variance estimators. It is necessary to specify the
null by specifying a �nite lag, beyond which the sum of the autocovariances is either exactly zero
or arbitrarily close to zero. Di¤erent choices of truncation point e¤ectively de�ne di¤erent null
hypotheses, all of which are strictly contained in the �I(0) hypothesis� proper.

The force of this point is nicely illustrated by the fact that the KPSS statistic, if constructed
using the Bartlett kernel with bandwidth set equal to sample size, has a degenerate distribution
with value 1

2 (see Kiefer and Vogelsang 2002). In other words the KPSS test can be viewed as
comparing two variance estimators, respectively imposing and not imposing a truncation point
smaller than sample size. The problem is there are T � 1 such comparisons that can be made
in a sample of size T , and no formal constraints on the proper choice. Since the null hypothesis
imposes no �nite truncation point, as such, the test is bound to be oversized for any �nite
truncation; equivalently, there is always a valid truncation point which sets power equal to size.3

5 Fingerprinting I(0)

The literature surveyed in this paper may appear to place a question mark over large areas of
econometric practice. If there are serious problems in discriminating between I(0) models and
alternatives, what is the future for methods of analysis which depend critically on making this

3 Interestingly, 1
2
actually exceeds the 5% critical value of the limiting KPSS null distribution, so there always

exists a truncation to guarantee rejection under both null and alternative at the nominal 5% level.
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assessment reliably at the outset? Indeed, some authors have evidenced a certain satisfaction at
pouring cold water on the e¤orts of time series analysts in this area.

Before going too far in this pessimistic direction, however, we do well to remind ourselves of
the actual question usually being posed. In almost every application, this is �Will asymptotic
distribution results based on the assumption of I(0) provide more accurate approximate inferences
than alternatives, in my sample?� Call this Question 1. It is clearly a di¤erent question from the
following, which we will call Question 2: �Will the distributions obtained by extending my sample
inde�nitely match the asymptotic distributions implied by the I(0) hypothesis?� It is Question
2 that has proved to be di¢cult to answer in the conventional manner. However, this is of little
concern if there is no actual prospect of extending the sample inde�nitely, and if there were then
the di¢culties would resolve themselves by the same token. As to Question 1 it is, arguably,
reasonable to be guided by the popular adage: �If it walks like a duck, and quacks like a duck,
then (let�s assume) it�s a duck.�

The problem is to �nd an independent yardstick by which to judge, in a simulation experiment
for example, whether the answer to Question 1 is a¢rmative. Linking back to De�nition 1, this is
essentially the question of whether the partial sums of the process approximate to Brownian mo-
tion in a su¢ciently large sample. A natural approach to answering this question is to formulate
a real-valued statistic whose limiting distribution corresponds to a unique functional of Brownian
motion. Unfortunately, most statistics known to converge to pivotal Brownian functionals (for
example, the Dickey-Fuller statistic and variants) are dependent on unknown scale factors, and
embody estimates of the long-run variances. As previously noted, invoking these would tend to
make the problem circular.

There is one nice exception, however. Consider the statistic T�1%̂T where

%̂T =

PT
t=1 U

2
t

T
PT
t=1 u

2
t

where Ut = u1+ � � �+ut, and either ut = xt� �x with �x denoting the sample mean, or ut = xt� �̂
0
zt

where zt is a vector of deterministic regressors, such as intercept and time trend. For simplicity
we consider only the former case, but the extension is very easily handled. Note that %̂T is similar
to the KPSS statistic, except that the variance estimate is not autocorrelation-corrected. This
statistic is proposed by Breitung (2002) as a nonparametric test of I(1). Suppose that vt s I(0)
with mean 0 and long-run variance �2 <1, and xt =

Pt
s=1 vs. Then (by de�nition)

T�1=2x[T �]
d! �W (�)

where W is standard Brownian motion, and accordingly, by the continuous mapping theorem,

T�1%̂T
d! �0 where

�0 =

R 1
0

�

R �
0 W (s)ds� �

R 1
0 W (s)ds

�2
d�

R 1
0 W (�)

2d� �
�

R 1
0 W (�)d�

�2 : (5.1)

Breitung points out that under the alternative hypothesis ut s I(0), T�1%̂T = Op(T
�1), and

hence, using the lower tail as a rejection region yields a consistent test of I(1) against the alter-
native of I(0).

The test does not provide a consistent test against the alternative of I(1 + d) for d > 0 (and
hence by implication a test of I(0) applied to the partial sums) because the distribution of T�1%̂T
has bounded support. In fact, it never exceeds 1=�2 regardless of the distribution of fxtg (see
Davidson, Magnus and Wiegerinck 2007). However, consider the case where vt is I(d) for d > 0.
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Figure 1: Breitung (2002) statistic with cumulated I(d) increments . The case I(1) is Breitung�s
null distribution. (Kernel density plots from 1 million replications.)

If d < 1
2 , then under mild assumptions on the increments (see for example Davidson and de Jong

2000) we have the result

T�d�1=2
[T� ]
X

s=1

vs
d! �Wd(�)

where � is the long-run variance of the fractional di¤erences (1 � L)dvt, and Wd is fractional
Brownian motion as de�ned by Mandelbrot and Van Ness (1968) for �1

2 < d < 1
2 . The Breitung

statistic then has the limit

�d =

R 1
0

�

R �
0 Wd(�)d� � �

R 1
0 Wd(s)ds

�2
d�

R 1
0 Wd(�)2d� �

�

R 1
0 Wd(�)d�

�2 : (5.2)

On the other hand, if 12 < d < 3
2 then

T�d�1=2
[T� ]
X

s=1

vs
d!
Z �

0
Wd�1(�)d�; 0 � � � 1

and

�d =

R 1
0

�

R �
0

R �
0 Wd�1(�)d�d�� �

R 1
0

R �
0 Wd�1(�)d�d�

�2
d�

R 1
0

�R �
0 Wd�1(�)d�

�2
d� �

�

R 1
0

R �
0 Wd�1(�)d�d�

�2 : (5.3)

Be careful to note how the extra normalization factors T�2d cancel in the ratio, as does �,
so that these distributions remain Op(1) and free of nuisance parameters other than d. These
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T 50 100 200
� 0.3 0.5 0.7 0.9 0.5 0.7 0.9 0.7 0.9

KPSS: Bw = 4 0.062 0.087 0.145 0.270 0.095 0.172 0.403 0.189 0.509
Bw = 12 0.043 0.043 0.051 0.080 0.055 0.077 0.174 0.087 0.236
Andrews 0.044 0.029 0.011 0.028 0.041 0.026 0.003 0.043 0.010
N-W 0.060 0.077 0.112 0.212 0.073 0.114 0.264 0.115 0.316

K-S for T�1%̂T 0.727 1.486 2.786 6.790 0.737 1.434 4.404 0.802 2.401

Table 1: KPSS Rejections in Gaussian AR(1) models with parameter �, in 100,000 replications.
The last row shows the Kolmogorov-Smirnov statistic for comparison of partial sums with the
Breitung distribution.

distributions have been tabulated by simulation for four values of d, using 1000 NID(0,1) drawings
to represent the vs (see Figure 1). While any I(0) process vs must yield (5.1) in the limit, it is
clear that the passage to the limit may be substantially di¤erent, depending on the strength of
dependence. Thus, the distribution of T�1%̂T where vt is an autoregressive process, with a root
close to unity, is likely to resemble �1 more closely than �0 in samples of moderate size.

The idea to be explored here is to use the null distribution of Breitung�s statistic to �ngerprint
(the partial sums of) an I(0) process. If the latter distribution cannot be distinguished from the
former, in a sample of given size, it is a reasonable conjecture that the dependence in the process is
innocuous from the point of view of applying asymptotic inference. Of course, this is by no means
the only statistic that might be used for this purpose, but it does have two notable advantages,
independence of scale parameters and bounded support. The latter is a particularly convenient
feature for implementing a comparison of distributions.

In Table 1, data have been simulated from �ve I(0) processes, the Gaussian AR(1) with co-
e¢cients � = 0, 0:3, 0:5, 0:7 and 0:9, and three sample sizes, T = 50, 100 and 200. In all these
cases the correct answer to Question 2 is a¢rmative. The KPSS test has been computed for
these series with HAC variance estimator computed using the Bartlett kernel and four choices of
bandwidth, two �xed, and two selected by data-based �plug-in� methods as proposed by, respec-
tively, Andrews (1991) and Newey and West (1994) (denoted N-W in the table).4 To provide
critical values, 1.5 million Gaussian i.i.d. samples were used to construct tabulations for each
choice of T , so ensuring that all features of the data and test procedure, except the dependence,
are correctly modelled. Viewed as attempts to answer Question 2, all of these procedures appear
to represent an unsatisfactory compromise. Only the Andrews method is never over-sized, but
its power against a unit root alternative appears in doubt.

The last row of the table shows the Kolmogorov-Smirnov tests of the Breitung distributions
generated from the Monte Carlo replications for each case, using the tabulations from the i.i.d.
data to provide the benchmark distributions. Those cases exceeding the asymptotic 5% critical
value, of 1.35, are shown in boldface in the table.5 Suppose we take rejection on this test as a
negative answer to Question 1. On this criterion, only the case � = 0:3 is included in the null
hypothesis in a sample of size 50. In a sample of size 100, � = 0:5 enters the acceptance region,
and in a sample of 200, so does � = 0:7. The point to be emphasized here is that the KPSS

4The plug-in formulae have the form bandwidth = 1:447(�T )1=3 where � = �A and � = �NW , respec-
tively, and �A = 4�̂2=(1 � �̂)2(1 + �̂)2 where �̂ is the �rst-order autocorrelation coe¢cient, and �NW =
h

2
P[nT ]

j=1 j
̂j=
�


̂0 + 2
P[nT ]

j=1 
̂j

�i2

where 
̂j is the jth order sample autocovariance. Here, [:] is the �oor func-

tion, and nT = 3(T=100)
2=9 so that [n50] = 2, and [n100] = [n200] = 3. Newey and West advocate a pre-whitening

step using an autoregression before applying their kernel estimator, but this step has been omitted here.

5For clarity the table shows only the most extreme cases of the null hypothesis, as indicated by the K-S statistic.
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tests are even less satisfactory as a means for answering Question 1 than for answering Question
2. Except for the Andrews method, which has no power, the rejection rates for a given � all
increase with sample size, whereas on the criterion of Question 1, as indicated by the last row,
we should like them to decrease. It is, manifestly, the evidence contained in the last row of Table
1 that we should most like to possess, when evaluating Question 1. The next section attempts to
operationalize this insight.

6 A Bootstrap Test of I(0)

A test of I(0) in the sense of Question 1, based directly on the comparison of �ngerprinting
distributions, might be implemented by the following steps.

1. Formulate and �t a model of the data generation process.

2. Use this estimate to simulate the series many times and tabulate the Breitung statistic
T�1%̂T for the partial sums.

3. Use the Kolmogorov-Smirnov test to compare the distribution of this statistic with the
benchmark case based on independent increments.

Given an implementation of Step 1, which we discuss in detail below, Step 2 might be performed
using a Gaussian random number generator, or by bootstrap draws from the Step 1 residuals.
In the latter case it is very important to generate the benchmark distribution from the same
sample as the test distribution, to avoid a spurious di¤erence. The drawings are recoloured by
the estimated �lter to create the test distribution, and used un�ltered to create the benchmark.
Note that di¤erences in the variances of the two draws are unimportant, since scale e¤ects cancel
in the construction of the Breitung statistic. For Step 3, the benchmark distribution should
preferably be estimated in parallel with matching sample size, and compared by the two-sided
Kolmogorov-Smirnov test. This is to ensure that it is exclusively the dependence that in�uences
the test outcome, not the accuracy of the asymptotic approximation.

Estimation of the DGP is clearly the trickiest step, in e¤ect the counterpart of the bandwidth
selection problem in conventional tests, although the constraints it imposes are di¤erent and gen-
erally more favourable. Note that nonparametric methods for bootstrapping under dependence,
such as the block bootstrap or Fourier bootstrap, are not attractive in this context because of
the problem of matching the distributions under the null hypothesis. Given a suitable estimator
of the autocovariance function, it would be feasible to simulate using the Choleski method or the
circulant embedding algorithm (Davies and Harte, 1987). However, this estimation problem is
precisely the source of the di¢culties described in Section 4.2. Therefore, parametric modelling
as in Step 1 appears the most promising approach.

For power against unit and near-unit root autoregressive alternatives, an autoregressive model
naturally suggests itself. However, this is a less attractive option from the point of view of de-
tecting fractional alternatives, since unrestricted estimation of a hyperbolic AR(1) lag structure
poses obvious e¢ciency problems. Therefore it seems important that the autocorrelation model
contain a fractional integration component. One possibility is to �t an ARFIMA model to the
data, although there are well-known identi�cation and numerical problems involved in simul-
taneously �tting an autoregressive root and fractional d parameter. Multi-modal and poorly
conditioned likelihoods are commonly encountered in these models. For the purposes of a Monte
Carlo study, where a routine of model checking and evaluation at each replication is not fea-
sible, three options have been compared. The �rst is a sieve autoregression, using the Akaike
criterion to select the AR order from the set 0; : : : ; [0:6T 1=3]. The second is to �t an ARFI(1,d)
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two-parameter model by nonlinear least squares. The third alternative considered is to �t a
truncated fractional model, of the form

xt = �
min(�;t�1)
X

j=1

bjxt�j + et

where bj = (j�d�1)bj�1=j, with b0 = 1, and the �tted parameters are d and � . Think of this as
a restricted version of the sieve autoregression, parsimoniously approximating either a low-order
autoregressive alternative with � small, or a fractional alternative with � large.

Table 2 shows the results of replicating these three test procedures, using 500 bootstrap draws
to generate the test distributions at Step 2. For four sample sizes, T = 50, 100, 200 and 500,
the rows of the table show the results for these three estimation methods augmented by the
�True� model, where the known data generation process has been used to create the bootstrap
replications. This test is of course infeasible in practice, but it provides a yardstick against which
to gauge the e¤ectiveness of the alternative feasible methods.

The table entries show the proportion of rejections in the Kolmogorov-Smirnov test comparing
the distribution of Breitung�s statistic constructed from the re-coloured data with that of the
statistic constructed from the same number of i.i.d. bootstrap drawings. Each statistic was �rst
tabulated under the null hypothesis from 10,000 replications using i.i.d. normal drawings, so as
to provide correct critical values for each sample size. Taking the critical values for the 5%-level
�True� test as the yardstick (so that these table entries are 0.05 by construction, note) the �rst
column of the table shows the estimated sizes of the nominal 5% tests. The remaining columns
show estimates of the true powers (using the null tabulations to provide critical values) against
seven alternatives, based on 5000 replications of each case. The cases are four AR(1) processes
with parameter � and three ARFIMA(0,d,0) processes, with i.i.d. Gaussian shocks and zero
start-up values in each case.

Some important points of interpretation need to be borne in mind, in studying this table. In
the limiting case as T ! 1, we should expect to �nd power = size for each of the four cases of
the I(0) hypothesis, and power = 1 for each of the three cases of the I(d) alternative. In �nite
samples, however, rejection in the I(0) cases is not an incorrect outcome. The issue is whether
the autocorrelation is strong enough to put asymptotic inference criteria into question. The
infeasible �True� cases represent the ideal outcomes from this point of view, against which the
feasible tests can be judged. If this test were to be adopted as a pre-test before a conventional
inference procedure, we can even see it as a means of discriminating between data sets which (by
chance) tend to satisfy our validity criteria, from those which violate it. Failure to reject can be
conjectured to indicate that subsequent tests with these data may not be too badly sized.

In the event, the truncated fractional model appears to have the best all-round performance.
The sieve AR method performs generally closest to the infeasible test in the I(0) cases, but
has poor power properties against the fractional alternatives. The ARFI method su¤ers the
worst from spurious rejection and so diverges furthest from the �True� benchmark under I(0),
while the truncated fractional method appears to o¤er the best compromise in both cases. Of
course, this is chie�y due to the fact that it gives a good approximation to both the AR(1) and
FI alternatives tested. To determine how it performs in a more general setting calls for more
experiments. In practical implementations (as opposed to a Monte Carlo experiment) the test
should be performed following the speci�cation and estimation of a time series model by the
investigator, and so tailored more accurately to the data set in question.
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Size Power
(Nominal AR(1): � FI: d

T Test 5% Test) 0.3 0.5 0.7 0.9 0.3 0.5 0.7

50 True 0.050 0.206 0.682 0.997 1 1 1 1
Sieve AR 0.068 0.164 0.492 0.828 0.975 0.293 0.672 0.924
ARFI(1,d) 0.174 0.064 0.092 0.305 0.797 0.383 0.622 0.861
Trunc. FI 0.129 0.135 0.366 0.730 0.964 0.458 0.733 0.926

100 True 0.050 0.085 0.207 0.673 1 1 1 1
Sieve AR 0.054 0.086 0.204 0.557 0.962 0.105 0.479 0.846
ARFI(1,d) 0.153 0.073 0.092 0.193 0.810 0.554 0.758 0.730
Trunc. FI 0.095 0.112 0.168 0.473 0.953 0.548 0.761 0.877

200 True 0.050 0.069 0.098 0.261 0.986 1 1 1
Sieve AR 0.050 0.071 0.096 0.249 0.867 0.197 0.516 0.857
ARFI(1,d) 0.165 0.080 0.096 0.155 0.602 0.842 0.914 0.855
Trunc. FI 0.094 0.077 0.063 0.139 0.818 0.750 0.862 0.884

500 True 0.050 0.050 0.056 0.075 0.381 1 1 1
Sieve AR 0.050 0.050 0.056 0.074 0.344 0.070 0.208 0.755
ARFI(1,d) 0.143 0.083 0.109 0.159 0.369 0.960 0.975 0.928
Trunc. FI 0.081 0.044 0.035 0.045 0.283 0.890 0.967 0.985

Table 2: Bootstrap I(0) test: Rejection rates for the Kolmogorov-Smirnov test of Breitung�s
statistic in 5000 replications

7 Concluding Remarks

The hypothesis that a time series is I(0) has been justly described as an "ill-posed" problem for
statistical investigation. A number of studies have shown that this question, as conventionally
posed, is unsuited to standard methods of inference. This paper suggests that there are more
suitable hypotheses to test, relating directly to the implications of the distribution of the data
for asymptotic (i.e., approximate) inference. A convenient asymptotically pivotal statistic is used
as a yardstick, to assess how far data features such as local dependence a¤ect the distribution,
in a sample of given size. The null hypothesis under test is not �I(0)� in the strict sense, but the
arguably more useful hypothesis that the assumption of I(0) is innocuous from the point of view
of the asymptotic approximation of test distributions.

It�s important to emphasize that this test is strictly of the properties of a model (or DGP),
not a direct test on an observed series, as such. The link between the model and the data has
to be supplied by the explicit modelling exercise, which is accordingly the key component of the
procedure. The reported Monte Carlo results, which show simple models �tted mechanically to
series with a known simple structure, need to be interpreted with care in this light. Whereas
reproducing the observed autcorrelation structure of the data is a key requirement, don�t overlook
the fact that (for example) an uncorrelated IGARCH process is a case of the alternative. Power
against such cases depends on a suitable choice of model. In view of the cited result of Müller
(2008), there are bound to be cases which defy the ability of popular time series models to
capture the dependence structure, although being non-causal it is questionable whether processes
of the type (3.2) can feature in observed economic time series. It will be useful to compare the
performance of the test in alternative DGPs, especially with nonlinear dynamics, and also to
calibrate the performance of conventional tests, such as the Dickey Fuller, in conjunction with
bootstrap �pre-testing�. Among other important questions is whether the Breitung statistic is the
best candidate for comparison, or whether a range of benchmarks might be implemented. Such
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exercises must however be left for future work.
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