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Abstract

This paper considers the asymptotic distribution of the sample covariance of a nonsta-
tionary fractionally integrated process with the stationary increments of another such process
� possibly, itself. Questions of interest include the relationship between the harmonic rep-
resentation of these random variables, which we have analysed in a previous paper, and the
construction derived from moving average representations in the time domain. Depending on
the values of the long memory parameters and choice of normalization, the limiting integral
is shown to be expressible as the sum of a constant and two Itô-type integrals with respect to
distinct Brownian motions. In certain cases the latter terms are of small order relative to the
former. The mean is shown to match that of the harmonic representation, where the latter is
de�ned, and satis�es the required integration by parts rule. The advantages of our approach
over the harmonic analysis include the facts that our formulae are valid for the full range of
the long memory parameters, and extend to non-Gaussian processes.
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1 Introduction

Let xt and yt be linear processes having the MA(1) forms

xt =
1
X

j=0

bjut�j ; yt =
1
X

j=0

cjwt�j (1.1)

where ut, wt are zero mean, independently and identically distributed processes, and the coef-
�cient sequences fbjg and fcjg decay hyperbolically. If Xn and Yn denote suitably normalized
partial sum processes on the unit interval for a sample of size n, it is known under fairly general

assumptions that (Xn; Yn)
d! (X;Y ) where the limit processes are fractional Brownian motions,

as de�ned by Mandelbrot and van Ness (1968). For exemplar case X, the well-known formula is

X(�) =
1

� (dY + 1)

�Z �

0
(� � �)dX dU (�) +

Z 0

�1

�

(� � �)dX � (��)dX
�

dU (�)

�

(1.2)

where dX is the fractional integration parameter, typically de�ning the hyperbolic decay rate
by bj = O(jdX�1), and U is regular Brownian motion on R. Fractional noise processes are a
well-known simple case, in which

bj =
�(j + dX)

�(dX)�(j + 1)
cj =

�(j + dY )

�(dY )�(j + 1)
(1.3)

for �1
2 < dX ; dY <

1
2 . In this case,

Xn(�) = n�1=2�dX
[n�]
X

t=1

xt; Yn(�) = n�1=2�dY
[n�]
X

t=1

yt (1.4)

for 0 � � � 1, where [x] denotes the largest integer not exceeding x. Considerably greater
generality will be permitted, although parameters dX and dY , subject to these constraints, will
in all cases index the rate of lag decay. The best general conditions currently known for these
results are given by Davidson and de Jong (2000) (henceforth, DDJ).

In this paper, our concern is the limiting distribution of the random variable

Gn =
1

K(n)

n�1
X

t=1

t
X

s=1

xsyt+1 (1.5)

where K(n) is a function of sample size which, for the case of (1.3) at least, can be set as
n1+dX+dY .1 Double sums of the type in (1.5) arise in the theory of cointegration. In the case
xt = yt they appear in the formula for the Dickey-Fuller statistic. This distribution was studied
by Sowell (1990) who obtained a special form for the distribution analogous to the ordinary
unit root case (Phillips 1987). In the multivariate context they arise, for example, in tests of
cointegrating rank (Johansen 1991) and cointegrating regressions. For these latter applications,
no distribution theory has been available to date.

A weak limit for (1.5) has been derived from the harmonic representation of the variables,
whenever these are de�ned. The analysis of Chan and Terrin (1995) has been extended by David-
son and Hashimzade (2008) (henceforth, DH) to include �causal� models of the type considered

1The divergence rates for the mean and mean deviation sequences can di¤er, and in those cases we de�ne K(n)
to normalize Gn � E(Gn), whereas Gn itself may diverge.
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here. This paper explores the counterpart of their solution in the time domain. There are sev-
eral reasons why this alternative approach provides an essential extension. The general weak
convergence proofs given by DH are restricted to the case dX + dY > 0, and the �standard�
case dX = dY = 0 is especially intractable, because the harmonic representation of the integral
breaks down (with unde�ned expectation) when the processes have summable covariances. While
there is no di¢culty in constructing more general dependence models than the fractional noise
example given, the harmonic representation requires Gaussian, identically distributed shocks � a
restrictive requirement for econometric modelling. Working in the time domain allows all these
limitations to be relaxed.

The paper is structured as follows. After specifying our assumptions in Section 2, in Section
3 we decompose Gn into components G1n, G2n and G3n, where G2n has a mean square limit and
the other two terms have zero means. In Section 4, heuristic arguments are used to establish the
limit distributions of these latter terms as stochastic integrals of Itô type, although with respect
to di¤erent integrator processes. In Section 5, we demonstrate the weak convergence formally.
The implications of our results for cointegrating regression analysis are brie�y summarized in the
concluding Section 6. Proofs are gathered in the Appendix.

2 Setup and Assumptions

The speci�c assumptions to be adopted are as follows.

Assumption 1 The collection fut; wt; t 2 Zg are identically and independently distributed with
zero mean and covariance matrix

E

�

ut
wt

�

�

ut wt
�

= 
 =

�

!uu !uw
!uw !ww

�

(2.1)

and �4uw = E(u
2
tw

2
t ) <1. ut = wt is an admissible case.

These random variables de�ne the �ltered probability space on which our processes live, denoted
(
;F ; P;F ) where

F = fFt; t 2 Z; Ft � F all t, and Ft � Fs i¤ t � sg: (2.2)

The pair (ut; wt) is adapted to Ft, and in this setup we may also use the notation Fn(r) = F[nr]
for 0 � r � 1 where n is sample size. Further, letting F(r) represent the limiting case as n!1,
(X(r); Y (r)) are measurable with respect to F(r) and accordingly will be called F -adapted:

Assumption 2 The sequences fbjg10 and fcjg10 depend, respectively, on parameters dX 2
(�1

2 ;
1
2) and dY 2 (�1

2 ;
1
2) and sequences fLX(j)g and fLY (j)g that are at most slowly varying

at in�nity. These sequences satisfy one of the following conditions, stated for fbjg10 as exemplar
case:

(a) If 0 < dX < 1
2 then bj = �(dX)

�1(j + 1)dX�1LX(j).

(b) If dX = 0 then 0 <
�

�

�

P1
j=0 bj

�

�

� <1, and bj = O(j�1��) for � > 0:

(c) If �1
2 < dX < 0 then b0 = a0 and bj = aj � aj�1 for j > 0 where aj = �(1 + dX)

�1(j +
1)dXLX(j).
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Under these assumptions, we set K(n) = n1+dX+dY LX(n)LY (n) in (1.5). While the �pure
fractional� cases represented by (1.3) satisfy Assumption 2, the assumption only controls the tail
behaviour of the sequences, and allows arbitrary forms for a �nite number of the lag coe¢cients.
In particular, the xt and yt processes may be stable invertible ARFIMA(p; d; q) processes. Suppose
more generally that xt = (1 � L)�dX�(L)ut where �(L) is, in general, a power series in the lag
operator with absolutely summable coe¢cients such that �j = O(j�1��) for � > 0. Letting for
dX > 0 the identity a(L) = (1�L)�dX de�ne the coe¢cients aj , such that aj s �(dX)�1jdX�1,2
note the following result.

Proposition 2.1 The sequence fbjg de�ned by b(L) = a(L)�(L) satis�es bj s �(1)�(dX)
�1jdX�1

as j !1:

(All proofs are given in the Appendix.) The slowly varying component can be de�ned to represent
the ratio of bj to the approximating sequence. Also, since 
 is unrestricted, we could impose the
normalization �(1) = 1, if desired, with no loss of generality.

Assumption 2(b) rules out the non-summable case � = 0, where the sum of the coe¢cients
diverges logarithmically. This is to avoid large complications of doubtful relevance. Be careful
to note that � is not a fractional di¤erencing coe¢cient in this case. The case dX < 0 under
Assumption 2(c) has the �overdi¤erenced� property, implying in particular that jPj

k=0 bkj =
O(jdX ). In the pure fractional model, represented by (1.3), note that b0 = 1 and bj = 0 for j > 0
in the case dX = 0, whereas bj < 0 for all j > 0 if dX < 0.

In applications, our pair of processes would typically be embedded in a vector Wold repre-
sentation of the VARFIMA type, such as

�

xt
yt

�

=

�

(1� L)�dX 0
0 (1� L)�dY

� �

�XX(L) �XY (L)
�Y X(L) �Y Y (L)

� �

ut
wt

�

:

To show the limit distribution of product moments in this framework is a simple application of
the continuous mapping theorem to the results explored in this paper. Note how xt and yt are the
sums of terms of the type (1.1), involving futg and fwtg respectively, so (1.5) becomes a sum of
four terms involving respectively the driving pairs fut; utg, fut; wtg, fwt; utg and fwt; wtg. Our
analysis can be applied to each of these cases in turn, with suitable rede�nition of symbols.

A standard application of our results will be to models of fractional cointegration. In this case,
we may conjecture the existence of a relationship between nonstationary variables pt =

Pt
s=1 xt

and qt = �pt + yt, for a cointegrating parameter �. In the case where dY > 0 we have a case
of so-called fractional cointegration, in which the cointegrating residual exhibits long memory.3

Least squares estimation of this relation yields

�̂ = � +

Pn
t=1 ptyt
Pn
t=1 p

2
t

where the numerator of the error-of-estimate is an object of the form (1.5) apart from normal-
ization. Until now, little has been known about the distribution of random variables of this
form, subject to Assumptions 1 and 2. One question of particular interest must be the possible

2The symbol �s� here denotes that the ratio of the connected sequences converges to 1 as j !1:

3This phenomenon appears far from unusual in applied studies. As a well-known example, Lettau and Ludvigson
(2001) report a cointegrating vector for quarterly US consumption, labour income and household asset wealth,1952-
2001. The data are published on the second author�s web page. Log-periodogram regression performed on their
estimated vector yields a fractional integration parameter (d) in excess of 0.8; signi�cantly under 1 but nonetheless
in the covariance non-stationary range, a case outside even the range of possibilities being entertained here. See
Davidson (2006) for further details.

4



existence of transformations to mixed normality, allowing standard inference procedures for such
models. Following the presentation of our main results, we return to this issue in Section 6.

3 Some Properties of Gn

Expand (1.5), by substitution from (1.1), as

Gn =
1

K(n)

n�1
X

t=1

t
X

s=1

1
X

j=0

1
X

k=0

bkcjus�kwt+1�j :

Then decompose this sum as Gn = G1n +G2n +G3n where

G1n =
1

K(n)

n�1
X

t=1

t
X

s=1

1
X

k=0

k+t�s
X

j=0

bkcjus�kwt+1�j

=
1

K(n)

n�1
X

t=1

t
X

s=1

1
X

j=0

1
X

k=maxf0;j+s�tg

bkcjus�kwt+1�j (3.1)

G2n =
1

K(n)

n�1
X

t=1

t
X

s=1

1
X

k=0

bkck+t�s+1us�kws�k (3.2)

and

G3n =
1

K(n)

n�1
X

t=1

t
X

s=1

1
X

k=0

1
X

j=k+t�s+2

bkcjus�kwt+1�j : (3.3)

Thus, G1n contains those terms, and only those terms, in which s � k 6 t � j, so that the time
indices of w strictly exceed those of u; and hence E(G1n) = 0. In G2n, s � k = t + 1 � j such
that the time indices of u and w match. In G3n, s� k > t+ 1� j such that the indices of u lead
those of w, and E(G3n) = 0.

The properties of G2n depend on the sign of dX + dY , and we consider the various cases in
turn.

Proposition 3.1 If dX + dY > 0 then E(G2n)! �XY where

�XY =
!uw

�(dX + 1)�(dY + 1) (dX + dY )

�

dY
(1 + dX + dY )

+

Z 1

0

h

dY (1 + �)
dX+dY + dX�

dX+dY � (dX + dY )(1 + �)dY �dX
i

d�

�

: (3.4)

Letting �Y X denote the same limit with xt and yt interchanged, also note that

�XY + �Y X =
!uw

�(dX + 1)�(dY + 1)
�

�

1

(1 + dX + dY )
+

Z 1

0

�

(1 + �)dX � �dX
��

(1 + �)dY � �dY
�

d�

�

=  XY (3.5)

where

 XY = lim
n!1

1

K(n)
E

� n
X

t=1

xt

n
X

t=1

yt

�

: (3.6)
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This is the o¤-diagonal element of 	, the long-run covariance matrix of the processes, according
to equation (3.12) of DDJ. Considering the decomposition

E

� n
X

t=1

xt

n
X

t=1

yt

�

=
n
X

t=1

E(xtyt) +
n�1
X

t=1

t
X

s=1

E(xsyt+1) +
n�1
X

t=1

t
X

s=1

E(ysxt+1) (3.7)

where the second term on the right corresponds to K(n)E(Gn), note that

E(xtyt) = �XY = !uw

1
X

j=0

bjcj <1: (3.8)

The �rst right-hand side term in (3.7) is O(n), and hence this term is of small order under the
normalization K(n). The other two terms converge to �XY and �Y X respectively under the same
normalization, as indicated by (3.5). Observe that �XY depends only on dX , dY and !uw since
any short-run parameters have been absorbed into the functions LX and LY ; compare Proposition
2.1 for example. The sign of �XY matches that of dY , and if dY = 0, then �XY = 0. When
dX > 0, the cases where yt is i.i.d. (cj = 0 for j > 0) and is merely weakly dependent (dY = 0),
are equivalent asymptotically.

We give these results in the easily interpretable form of (3.4) but for computational purposes
the following closed-form expression is more useful.

Proposition 3.2 If dX + dY > 0, �XY =
!uw�(1� dX � dY )

� (1 + dX + dY ) (dX + dY )
sin�dY :

This formula matches that obtained for the causal model by DH (page 268), indicating that the
harmonic and moving average approaches to constructing fractional processes yield equivalent
results, at least in mean. The closed form of (3.5)

 XY =
!uw�(1� dX � dY )
(1 + dX + dY )

�

sin�dY + sin�dX
�(dY + dX)

�

(3.9)

follows directly.
Next consider the cases where dX+dY is zero or negative. In the latter case, E(G2n) diverges.

Proposition 3.3 If dX + dY � 0 and !wu 6= 0, then E(G2n) = O(n=K(n)):

In this instance there is no decomposition of  Y X into components of the form �XY , and the
three terms in (3.7) are each of O(n). We may write n�1

Pn
t=1 E(xtyt) = �XY and also

1

n

n�1
X

t=1

t
X

s=1

E(xsyt+1)! ��XY

1

n

n�1
X

t=1

t
X

s=1

E(ysxt+1)! ��Y X :

These limits are �nite constants depending on summable sequences of weights, hence necessarily
di¤erent from �XY and �Y X . Note that E(

Pn
t=1 xt)

2 = O(n2dX+1) and E(
Pn
t=1 yt)

2 = O(n2dY +1)
(compare DDJ Lemmas 3.1 and 3.3). For dX + dY < 0 the left-hand side of (3.7) is therefore
necessarily o(n), by the Cauchy-Schwarz inequality, and so �XY +�

�
XY +�

�
Y X = 0. Formula (3.9)

is nonetheless well de�ned for dX + dY � 0. Under the normalization n the covariance vanishes,
but under normalization K(n) the limit in (3.6) is well-de�ned and equal to (3.5) (equivalently,

6



to (3.9)) as shown in DDJ Lemma 3.3. These conclusions assume !uw 6= 0, but if ut and wt
are contemporaneously uncorrelated, implying under Assumption 1 that the cross-correlogram is
zero at all orders, then each of the terms in (3.7) is zero identically. Then (3.5) holds trivially
whatever the sign of dX + dY , since �XY = �Y X = 0.

The following result shows that G2n is a consistent estimator of the mean, albeit not a feasible

one. Let �
L2!� denote convergence in mean square.

Theorem 3.1 If Assumptions 1 and 2 hold, G2n � E(G2n) L2! 0:

The important implication is that the limit distribution of G1n +G3n matches that of the mean
deviation of Gn, not forgetting that the mean diverges under the given normalization when
dX + dY < 0:

One further result concerning the behaviour of the contemporaneous covariance term is gen-

erally needed for the analysis of regression models. Let �
d!� denote convergence in distribution.

Theorem 3.2 Let Assumptions 1 and 2 hold. Then

(i) n�1
Pn
t=1 xtyt

L2! �XY :

(ii) If !uw = 0, �1
2 < dY � 0 and �1

2 < dX � 0, then n�1=2
Pn
t=1 xtyt

d! N (0; V ) where
V <1:

4 Stochastic Integrals

In this section we use heuristic arguments to construct limiting forms for the terms G1n and G3n,
to be denoted by �1;XY and �3;XY respectively. Letting �XY = �1;XY +�3;XY , we subsequently

show that Gn � E(Gn) d! �XY
Consider G1n �rst. Replacing the summation over j in (3.1) by the summation over m = t�j,

and the summation over k by the summation over i = s� k, rewrite G1n as

G1n =
1

K(n)

n�1
X

t=1

t
X

s=1

t
X

m=�1

minfs;mg
X

i=�1

bs�ict�muiwm+1

=
1

K(n)

n�1
X

m=�1

wm+1

m
X

i=�1

ui

n�1
X

t=maxf1;mg

ct�m

0

@

t
X

s=maxf1;ig

bs�i

1

A

=
1

n

n�1
X

m=�1

qnmwm+1 (4.1)

where qnm =
Pm
i=�1 animui and

anim =
n

K(n)

n�1�m
X

t=maxf1�m;0g

ct

0

@

t+m�i
X

s=maxf1�i;0g

bs

1

A (4.2)

Lemma 4.1 For real-valued indices r; p with �1 < p � r � 1, an[np][nr] = AXY (r; p) + o(1) as
n!1 where, letting 1f:g denote the indicator of its argument,

AXY (r; p) =

(r � p)dX (1� r)dY F
�

�dX ; dY ; 1 + dY ;�
1� r
r � p

�

�(1 + dX)�(1 + dY )
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� 1fr<0g
(r � p)dX (�r)dY F

�

�dX ; dY ; 1 + dY ;�
�r
r � p

�

�(1 + dX)�(1 + dY )

� 1fp<0g
(�p)dX

�

(1� r)dY � 1fr<0g(�r)dY
�

�(1 + dX)�(1 + dY )
(4.3)

and

F (a; b; c; z) =
�(c)

�(a)�(b)

1
X

j=0

�(a+ j)�(b+ j)

�(c+ j)j!
(�z)j

represents the hypergeometric function.

Making the substitutions dU(p) for u[np]=
p
n and dW (r) for w[nr]=

p
n, the limit of the random

variable in (4.1) can be expressed heuristically in the form �1;XY =
R 1
�1Q(r)dW (r) where

Q(r) =
R r
�1AXY (r; p)dU(p). Note that when dY = 0, Q(r) = X(r) for r � 0 and 0 for r < 0,

and �1;XY reduces to the Itô integral of a fractional Brownian motion integrand, as analysed
in DDJ. In the general case, we ought to remark on the potential existence issue posed by a
functional of Brownian motion with in�nitely remote starting point. We shall show in the sequel
that these integrals can be constructed as the mean-square limits of integrals on the �nite intervals
[�N; r] and [�N; 1], respectively, as N ! 1. Of course, the fractional Brownian motion (1.2)
itself is well-de�ned on just the same basis.

Next, consider G3n. Proceeding in the same way as before, setting m = t+1�j and i = s�k,
we obtain from (3.3)

G3n =
1

K(n)

n�1
X

t=1

t
X

s=1

1
X

k=0

1
X

j=k+t�s+2

bkcjus�kwt+1�j

=
1

K(n)

n�1
X

i=�1

ui

i�1
X

m=�1

wm

n�1
X

s=maxfi;1g

bs�i

n�1
X

t=s

ct+1�m

=
1

K(n)

n�1
X

i=�1

hi�1ui

where hi =
Pi
m=�1 enmiwm and

enmi =
n

K(n)

n�1�i
X

s=maxf0;1�ig

bs

 

n�m
X

t=s+i+1�m

ct

!

: (4.4)

Lemma 4.2 For real-valued indices r; p with �1 < r � p � 1, en[nr][np] = EXY (p; r) + o(1) as
n!1, where

EXY (p; r) =
1

�(dY + 1)�(dX + 1)

�
�

(1� p)dX
�

(1� r)dY � (p� r)dY F
�

�dY ; dX ; 1 + dX ;�
1� p
p� r

��

�1fp<0g(�p)dX
�

(1� r)dY � (p� r)dY F
�

�dY ; dX ; 1 + dX ;
�p
p� r

���

: (4.5)
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This construction closely parallels the one in Lemma 4.1 except that in this case p � r. It allows
us to express the limit in the form �3;XY =

R 1
�1H(p)dU(p) where H(p) =

R p
�1EXY (p; r)dW (r).

Observe that EXY (p; r) = 0 for all p and r when dY = 0, so that this term arises only in the case
of fractional integrator functions.

Notice the important fact that both �1;XY and �3;XY are stochastic integrals of F -adapted
Gaussian integrand processes with respect to F -adapted Brownian motions. Therefore, these
integrals are of Itô type. Subject to su¢cient regularity conditions on the integrands, essentially
those of �nite variances and almost sure continuity, plus the validity of mean-squared approxi-
mations by integrals with �nite domain of integration, they may be analysed in the conventional
fashion. Section 5 provides the requisite results.

Under assumptions such that both convergence results hold,4 it appears natural to equate the
random variable �XY + �XY with the stochastic integral

R 1
0 XdY as de�ned (with appropriate

changes of notation) in DH Theorem 4.1. We have shown in Lemma 3.2 that the means match.
To validate the representation as an integral, however, we also need to establish that the formulae
satisfy the integration by parts rule. In DH Corollary 4.1, this was shown to hold in expectation
for the harmonic representation. Here, we can go further and show the following result, which
does not depend on parameter sign restrictions.

Proposition 4.1 �XY + �Y X +  XY = X(1)Y (1).

5 Weak Convergence

Building on the results in Section 3 on the behaviour of the mean sequence, the general result to
be established in this section is the following.

Proposition 5.1 Let Assumptions 1 and 2 hold.

(i) If dX + dY > 0, then Gn
d! �XY + �XY :

(ii) If dX + dY = 0, then Gn
d! �XY + �

�
XY :

(iii) If dX + dY < 0 and �
�
XY 6= 0, then

K(n)

n
Gn

L2! ��XY .

(iv) If dX + dY < 0 and �
�
XY = 0, then Gn

d! �XY .

Note that case (iii) has already been established in Theorem 3.1, subject to the components G1n
and G3n being Op(1) while G2n = Op(n=K(n)).

De�ne cadlag processesXn = n�1=2�dXLX(n)
�1
Pn
t=1 xt and Yn = n�1=2�dY LY (n)

�1
Pn
t=1 yt.

Then, Proposition 5.1 will follow from Propositions 3.1 and 3.3 and Theorem 3.1 in combination
with the following result, which is the main concern of this section.

Theorem 5.1 Under Assumptions 1 and 2,

(Xn; Yn; Gn � E(Gn)) d! (X;Y;�XY ) (5.1)

where �XY = �1;XY + �3;XY , and
d! denotes joint weak convergence in DR2 [0; 1] � R where

DR2 [0; 1] denotes the space of cadlag pairs equipped with the Skorokhod topology.

4Speci�cally, we require dX � 0 and dY � 0 with at least one strict inequality.
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The result for the �rst two members of (5.1) is shown in DDJ. Since the limit processes are
almost surely continuous, it is su¢cient for joint convergence that arbitrary linear combinations
of (Xn; Yn; Gn � E(Gn)) converge to the corresponding combinations of the limit processes (see
Davidson 1994, Theorem 29.16). Since the process elements are all de�ned with respect to the

same �ltration, these requirements follow directly. In practice, we show (Xn; Yn; G1n; G3n)
d!

(X;Y;�1;XY ;�3;XY ) where the limit random variables �1;XY and �3;XY can be identi�ed with
the Itô integrals on the intervals (�1; 1]. The continuous mapping theorem then yields Theorem
5.1.

A further rearrangement of (4.1) yields

G1n =
1

n

n�1
X

m=�Nn

qNnmwm+1 +
1

n

n�1
X

m=�Nn

(qnm � qNnm)wm+1 +
1

n

�Nn�1
X

m=�1

qnmwm+1 (5.2)

where qNnm =
Pm
i=�Nn animui, anim is de�ned in (4.2) and N > 0 is a �xed value to be chosen.

In the same way, write

G3n =
1

n

n�1
X

i=�Nn

hNn;i�1ui +
1

n

n�1
X

i=�Nn

(hn;i�1 � hNn;i�1)ui +
1

n

�Nn�1
X

i=�1

hn;i�1ui

where hNni =
Pi
m=�Nn enmiwm. The strategy of proof of Theorem 5.1 suggested by these decom-

positions involves three steps, which we describe for G1n as the exemplar case.

1. De�ne the cadlag arrays

QNn (r) =
1p
n

[nr]
X

i=�Nn

ani[nr]ui; WN
n (r) =

1p
n

[nr]
X

m=�Nn

wm

and show that QNn
d! QN , an almost surely continuous Gaussian process on the interval

[�N; 1]. Also, by standard arguments, WN
n

d! WN where WN is a Brownian motion on
the interval [�N; 1]. Since qNn;m�1 is a linear process in i.i.d. shocks, by Assumption 1,
Step 1 can be tackled by a minor extension of Theorem 3.1 of de Jong and Davidson (2000)
(henceforth, DJD).

2. (QN ;WN ) are adapted to a common �ltration F de�ned in (2.2), with respect to which
WN is a martingale. We therefore deduce by standard arguments that

 

QNn ; W
N
n ;

1

n

n
X

m=�Nn

qNn;m�1wm

!

d!
�

QN ; WN ;

Z 1

�N
QNdWN

�

: (5.3)

3. Show that by taking N large enough, the second and third terms of (5.2) can be made as
small as desired in L2 norm, allowing the limit random process to be formally represented
as �1;XY =

R 1
�1QdW .

The arguments to establish the validity of these steps are given for the case of G1n in Section 5.1.
The case of G3n is on similar lines, replacing a by e, A by E, Q by H, and exchanging w; u and
W;U in formulae. These results are given in Section 5.2.
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5.1 The Case of G1n

We use Lemma 4.1 to show the following properties, invoking Assumptions 1 and 2 in each case.

Lemma 5.1 Let vanm = n�1
Pm
i=�1 a2nim for m 2 (�1; n):

(i) lim supn v
a
n;[nr] <1 for each �xed r 2 (�1; 1].

(ii) lim supn v
a
n;[nr] = O((�r)2dY +2dX�3) as r ! �1.

Lemma 5.2 sup
r2(�1;1]

lim sup
n

n�1
X[n(r+�)]

i=[nr]+1
a2ni[n(r+�)] = O(�minf1;2dX+1):

Lemma 5.3 sup
r2(�1;1]

lim sup
n

n�1
X[nr]

i=�1
(ani[n(r+�)] � ani[nr])2 = O(�2dX+1):

Step 1 is then implemented by means of the following result.

Theorem 5.2 (QNn ;W
N
n )! (QN ;WN ) where

d! denotes weak convergence in the space of cad-
lag functions DR2 [�N; 1] endowed with the Skorokhod topology, and (QN ;WN ) are elements of
CR2 [�N; 1] a.s..

Be careful to note that the topological space DR2 [�N; 1] is di¤erent from DR[�N; 1]�DR[�N; 1].
In the former case, the jump times are assumed to be synchronized in the component spaces so
that the Skorokhod distances can be de�ned in terms of a common change-of-time function, while
in the latter case they are not. Since the jumps are always the result of discrete observation dates
in our applications, the jump times match by default, and there is no problem about satisfying
this requirement in practice.

Given these results, we can proceed directly to Step 2, as follows.

Theorem 5.3 The convergence in (5.3) holds where
d! denotes weak convergence in the space

DR2 [�N; 1]� R endowed with the Skorokhod topology.

Theorem 5.3 is a special case of Theorem 2.2 of Kurtz and Protter (1991), see also Theorem 7.45 of
Kurtz and Protter (1995). These results are given for stochastic processes I on [0;1) de�ned by
I(�) =

R �
0 H(r)dX(r), where H is F -adapted and left-continuous, and X is a F -semimartingale

satisfying a condition of uniformly controlled variations (UCV). This latter condition is directly
satis�ed by WN

n since this is a partial sum of independent and identically distributed shocks with
�nite variance, and our processes are de�ned on a compact interval. There is no di¢culty about
considering the interval [0; N + 1], and then re-locating the initial date from 0 to �N .

We cannot apply the Kurtz-Protter results in full generality without modi�cation, because in
our case the integrands correspond to a family of functionals QN (r; �), and

R �
�N Q

N (r; �)dW (r)

does not have the form of I(�). However, replacing QN (r; �) by QN (r; 1) de�nes an integrand
process in the appropriate class, and then extracting the pointwise implication for the case � = 1
yields the desired distribution. Since QN is a.s. continuous according to Lemma 5.2, there is no
problem in meeting the left-continuity requirement.

Moving on to Step 3, we show the limiting negligibility of the remainders as follows.

Theorem 5.4 If Assumptions 1 and 2 hold,

5This theorem is numbered 34 in an alternate version of these notes posted on the internet.
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(i) limn!1 E

�

1

n

Xn�1

m=�Nn
(qnm � qNnm)wm+1

�2

= O(NdX+dY �2)

(ii) limn!1 E

�

1

n

X�Nn�1

m=�1
qnmwm+1

�2

= O(NdX+dY �3):

5.2 The Case of G3n

In this section the arguments are e¤ectively the same as those in Section 5.1, although the
results di¤er in formulae and in the details of proofs. We simply state the counterpart results, in
abbreviated form where appropriate. The proofs of these results based on the representation in
Lemma 4.2, are treated jointly with those of Section 5.1 in the Appendix.

Lemma 5.4 Let veni = n�1
Pi
m=�1 e2nmi for i 2 (�1; n). Then,

(i) lim supn v
e
n;[np] <1 for each �xed p 2 (�1; 1].

(ii) lim supn v
e
n;[np] = O((�p)2dY +2dX�3) as p! �1.

Lemma 5.5 sup
p2(�1;1]

lim sup
n

n�1
X[n(p+�)]

m=[np]+1
e2nm[n(p+�)] = O(�minf1;2dX+1g):

Lemma 5.6 sup
p2(�1;1]

lim sup
n

n�1
X[np]

m=�1
(enm[n(p+�)] � enm[np])2 = O(�2dX+1):

Theorem 5.5 (HN
n ; U

N
n )

d! (HN ; UN ) 2 CR2 [�N; 1] a.s.

Theorem 5.6

�

HN
n ; U

N
n ;

1

n

Xn

m=�Nn
um h

N
n;m�1

�

d!
�

HN ; UN ;

Z 1

�N
HNdUN

�

:

Theorem 5.7

(i) limn!1 E

�

1

n

Xn�1

m=�Nn
(hnm � hNnm)um+1

�2

= O(NdX+dY �2)

(ii) limn!1 E

�

1

n

X�Nn�1

m=�1
hnmum+1

�2

= O(NdX+dY �3):

6 Implications for Cointegrating Regression

To conclude, we return brie�y to the implications of our results for asymptotic inference in
regression models. Let

pt = q
0
t� + yt

where qt =
Pt
s=1 xs, and xs � I(dX) (k� 1) and yt � I(dY ) for �1

2 < dY <
1
2 < 1+ dX , implying

what is commonly called fractional cointegration. Suppose that the obvious generalizations of
our Assumptions 1 and 2 hold, such that ut is now a k-vector and

E

�

ut
wt

�

�

u 0t wt
�

=

�


uu !uw
!0uw !ww

�

(k + 1)� (k + 1):
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The least squares estimator may be written in error-of-estimate form as

�̂ � � =
� n
X

t=1

qtq
0
t

��1� n
X

t=1

qt�1yt +
n
X

t=1

xtyt

�

:

Suppose for simplicity that LX(n) ! 1 and LY (n) ! 1.6 Letting X be the vector of fractional

Brownian motions such that n�1=2�dXq[nr]
d! X (r) by Theorem 5.1, the continuous mapping

theorem yields

1

n2+2dX

n
X

t=1

qtq
0
t
d!
Z 1

0
XX 0dr:

Let �XY , �XY and �
�
XY be k�1 vectors whose elements are the limits as de�ned in Proposition

5.1 with respect to each regressor, and let �XY = plimn�1
Pn
t=1 xtyt (k � 1) similarly. In the

case where !uw 6= 0,7 applying Proposition 5.1 shows that

nminf1+dX�dY ;1+2dXg(�̂ � �) d!
�Z 1

0
XX 0dr

��1

�XY

where

�XY =

8

<

:

�XY +�XY ; dX + dY > 0
�XY +�

�
XY +�XY ; dX + dY = 0

�
�
XY +�XY ; dX + dY < 0:

In the case dX+dY < 0, note how the endogeneity bias term dominates by an order of magnitude.
The estimator becomes inconsistent as dX approaches �1

2 , which is the stationarity boundary
for qt. This generalizes the well-known fact that cointegrating regressions are consistent with
endogenous regressors, whereas stationary regressions are not, and locates the borderline precisely.

On the other hand, if !uw = 0 and hence qt is strictly exogenous, we obtain

n1+dX�dY (�̂ � �) d!
�Z 1

0
XX 0dr

��1

�XY

for all dX and dY in the assumed range. In this case the estimator is consistent except where dX
is near to dY � 1, a region which may include stationary processes.

However, except when dY = 0, note that the structure of �XY appears to preclude mixed
normal inference. Speci�cally, while both �1;XY and �3;XY appear conditionally Gaussian in the
usual way, the conditioning processes are di¤erent. There exist no simple operations involving
linear data projection by which the variance of �XY jX may be computed, and hence no prospect
of implementing e¢cient mixed Gaussian estimators of the type developed by Hansen and Phillips
(1990) and Saikkonen (1991). Further note, in connection with tests of the Johansen (1991)
type, that autoregressive �lters cannot reduce fractional processes to white noise. Our �ndings
therefore have important implications for the interpretation of standard methods when the short-
run autocorrelation structure of cointegration models is unknown, and could involve long memory.

6There is no loss of generality in these limits since
 is unrestricted; compare the discussion following Proposition
2.1.

7Assume for simplicity that all the elements are nonzero, otherwise convergence rates can di¤er.
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A Appendix: Proofs

A.1 Proof of Proposition 2.1

The coe¢cient of Lj in the expansion of b(L) = �(L)a(L) is

bj =

j
X

i=0

�iaj�i s
1

�(dX)

j�1
X

i=0

�i(j � i)dX�1: (A-1)

Therefore, for any � > 1 note that

bj s
jdX�1

�(dX)

�j � j1=�
j

�dX�1
j�1
X

i=0

�i

� j � i
j � j1=�

�dX�1
: (A-2)

Write
j�1
X

i=0

�i

� j � i
j � j1=�

�dX�1
= A(j) +B(j)

where

A(j) =

[j1=� ]�1
X

i=0

�i

� j � i
j � j1=�

�dX�1

and

B(j) =

j�1
X

i=[j1=� ]

�i

� j � i
j � j1=�

�dX�1
:

Since the �i are summable and (j� i)=(j� j1=�)! 1 as j !1 for each �xed i � 0, A(j)! �(1)
as j !1. To show that B(j)! 0, de�ne k = j�i. Since �i = O(i�1��) for � > 0 by assumption,

B(j) �
j�1
X

i=[j1=� ]

j�ij
� j � i
j � j1=�

�dX�1

= O

�

(j � j1=�)1�dX j�(1+�)=�
j�[j1=� ]
X

k=1

�j � k
j1=�

��1��
kdX�1

�

= O((j � j1=�)j�(1+�)=�)

in view of the fact that j� k � j1=� for all k. Since � > 1 is arbitrary, pick � < 1+ � to complete
the proof.

A.2 Proof of Proposition 3.1

Under Assumption 1,

E(G2n) =
1

K(n)

1
X

k=0

bk

k+n�1
X

j=k+1

cj

n�j
X

i=1�k

E(uiwi)

=
!uw
K(n)

1
X

k=0

bk

n�1
X

t=1

(n� t)ck+t: (A-3)
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where the second equality follows upon the substitution t = j � k. It can be veri�ed that
1
X

k=0

bk

n�1
X

t=1

(n� t)ck+t =
n�1
X

t=1

t�1
X

s=0

� s
X

k=0

bk

�

cs+1 +
n�1
X

t=1

1
X

s=t

� s
X

k=s�t+1

bk

�

cs+1

=
n�1
X

t=1

t�1
X

s=0

an;t�s(t=n; 0)cs+1 +
n�1
X

t=1

1
X

s=t

an;t�s(t=n; 0)cs+1 (A-4)

where the expression

ant(s; s
0) =

[ns]�t
X

j=maxf0;[ns0]�t+1g

bj (A-5)

is de�ned in DDJ, equation (3.2). According to a straightforward extension of DDJ Lemma 3.1,

an;[ns]�[nx](s; 0) �

8

>

>

>

<

>

>

>

:

LX(n)[nx]
dX

�(dX + 1)
; 0 � x � s

LX(n)
[nx]dX � ([nx]� [ns])dX

�(dX + 1)
; x > s:

In the case dX + dY > 0, applying Assumption 2 and substituting dY =�(dY +1) for 1=�(dY ),
we have

1

K(n)

n�1
X

t=1

t�1
X

s=0

an;t�s(t=n; 0)cs+1 �
dY

n2�(dX + 1)�(dY + 1)

n�1
X

t=1

t
X

s=1

� s

n

�dX+dY �1

! dY
�(dX + 1)�(dY + 1)

Z 1

0

Z �

0
�dX+dY �1d�d�

=
dY

�(dX + 1)�(dY + 1)(dY + dX)(1 + dY + dX)
: (A-6)

Similarly,

1

K(n)

n�1
X

t=1

1
X

s=t

an;t�s(t=n; 0)cs+1

� dY
n2�(dX + 1)�(dY + 1)

n�1
X

t=1

1
X

s=0

 

�

s+ t

n

�dX

�
� s

n

�dX

!

�

s+ t

n

�dY �1

! dY
�(dX + 1)�(dY + 1)

Z 1

0

Z 1

0
((� + �)dX � �dX )(� + �)dY �1d�d�

=
1

�(dX + 1)�(dY + 1) (dX + dY )

�
Z 1

0
[dY (1 + �)

dX+dY + dX�
dX+dY � (dX + dY ) (1 + �)dY �dX ]d�: (A-7)

Combining these two limits completes the �rst part of the proof for the cases with dY 6= 0. If
dY = 0, Assumption 2(b) does not permit the explicit representation used in (A-6) and (A-7).
However, summability of the cs coe¢cients implies that

n�1
X

t=1

1
X

s=0

an;t�s(t=n; 0)cs+1 = o(n1+dXLX(n)) (A-8)

and E(G2n) vanishes in the limit. These expressions are therefore formally correct in all the
cases.
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A.3 Proof of Proposition 3.2

Let LXY denote the integral in (3.4), and let fXY (�) denote the integrand such that LXY =
R1
0 fXY (�) d� . For 0 < dX;dY < 1=2; lim�!�1 fXY (�) = 0, lim�!0 fXY (�) = dY , and the
function is integrable for all � . For �1

2 < dX < 0 we have lim�!�1 fXY (�) = 0, and fXY (�)

has a singularity at � = 0 with lim�!0 fXY (�) �
�(dX+dY ) = dX , and fXY (�) is integrable. For

�1
2 < dY < 0 it has a singularity at � = �1 with lim�!�1 fXY (�) (� + 1)�(dX+dY ) = dY , and is

again integrable.
Consider an auxiliary integral L�XY =

R1
�1 fXY (�)d� . Changing the variable of integration,

� + 1 = �t, observe that

L�XY = (�1)dX+dY L�Y X = (�1)2(dX+dY ) L�XY

and hence L�XY = L�Y X = 0. Divide the range of integration in L�Y X into intervals (�1;�1),
(�1; 0), and (0;1). We can then show

R �1
�1 fY X(t) dt = (�1)dX+dY LXY and also

Z 0

�1
fY X(t)dt =

(�1)dX+dY dY + dX
dX + dY + 1

� (�1)dY (dX + dY )B (dX + 1; dY + 1) ;

whereas the integral over the third interval is simply LY X . Adding the three integrals we obtain

(�1)dX+dY LXY +
(�1)dX+dY dY + dX

dX + dY + 1
� (�1)dY (dX + dY )B (dX + 1; dY + 1)+LY X = 0 (A-9)

and by symmetry, noting B (x; y) = B (y; x),

(�1)dX+dY LY X +
(�1)dX+dY dX + dY

dX + dY + 1
� (�1)dX (dX + dY )B (dX + 1; dY + 1) + LXY = 0:

(A-10)
Now multiply (A-9) by (�1)dX+dY , subtract from (A-10), and rearrange to get.

LXY = �
dY

dX + dY + 1
+ (�1)dX 1� (�1)2dY

1� (�1)2(dX+dY )
(dX + dY )B (dX + 1; dY + 1) :

Using (�1)x = ei�x and standard trigonometric identities,

(�1)dX 1� (�1)2dY

1� (�1)2(dX+dY )
=

sin�dY
sin� (dX + dY )

and therefore

LXY = �
dY

dX + dY + 1
+ (dX + dY )B (dX + 1; dY + 1)

sin�dY
sin� (dX + dY )

:

The proof is completed by substituting this expression into (3.4) and rearranging, using the
identities B(x; y) = �(x)�(y)=�(x+ y), �(1� x)�(x) = �= sin�x and �(x+ 1) = x�(x).

A.4 Proof of Proposition 3.3

In this case, note that if ant is de�ned by (A-5) then

an;t�s(t=n; 0)cs+1 = O(sdX+dY �1LX(s)LY (s))
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so that these terms are summable by assumption. Considering expression (A-4), the proposition
follows since

n�1
X

t=1

t�1
X

s=0

an;t�s(t=n; 0)cs+1 = O(n)

and
n�1
X

t=1

1
X

s=t

an;t�s(t=n; 0)cs+1 = o(n):

A.5 Proof of Theorem 3.1

Setting i = s� k; rewrite (3.2) as

G2n � E(G2n) =
1

K(n)

n�1
X

t=1

t
X

s=1

1
X

k=0

bkck+t�s+1(us�kws�k � !uw)

=
1

K(n)

n�1
X

t=1

t
X

s=1

Pts

where

Pts �
s
X

i=�1

bs�ict+1�i(uiwi � !uw):

Hence note that

E(G2n � E(G2n))2 �
2

K(n)2

n�1
X

t=1

t
X

s=1

t�s
X

m=0

s�1
X

k=0

E(PtsPt�m;s�k)

where, letting C denote a generic �nite constant, and de�ning j = s� i,

E(PtsPt�m;s�k) =
�4uw � !2uw
K(n)2

s�k
X

i=�1

bs�ibs�k�ict+1�ict�m+1�i

=
�4uw � !2uw
K(n)2

1
X

j=k

bjbj�kct+1�s+jct�m+1�s+j

� C

n2(1+dX+dY )

1
X

j=k

jdX�1(j � k)dX�1(j + t+ 1� s)dY �1(j + t�m+ 1� s)dY �1

� C

n2(1+dX+dY )
k2dX�1(k + t+ 1� s)dY �1(k + t�m+ 1� s)dY �1:

Hence,

E(G2n � E(G2n))2 �
C

n2(1+dX+dY )

n�1
X

t=1

t
X

s=1

(s� 1)2dX (t+ 1� s)dY �1
t�s
X

m=0

(t�m+ 1� s)dY �1:

By conventional summation arguments (Davidson 1994, Thm 2.27) and also applying Lemma
A.1 of DDJ in the case dX < 0, these sums can be bounded as follows.
Case dY > 0:

E(G2n � E(G2n))2 �
C

n2(1+dX+dY )

n�1
X

t=1

t
X

s=1

(t+ 1� s)2dY �1(s� 1)2dX
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= O(n�1):

Case dY � 0:

E(G2n � E(G2n))2 �
C

n2(1+dX+dY )

n�1
X

t=1

t
X

s=1

(t+ 1� s)dY �1(s� 1)2dX

=

�

O(n�1 log n); dY = 0
O(n�1�2dY ); dY < 0

:

A.6 Proof of Theorem 3.2

First note that

E

 

1

n

n
X

t=1

xtyt � �XY
!2

=
1

n2

1
X

k=0

1
X

j=0

1
X

i=0

1
X

l=0

bkblcjci

�
n�1
X

t=1

n�1
X

s=1

[E(ut�kwt�jus�lws�i)� E(ut�kwt�j)E(us�lws�i)]: (A-11)

Under the assumptions,

E(ut�kwt�jus�lws�i)� E(ut�kwt�j)E(us�lws�i)

=

8

<

:

�4uw � !2uw t� k = s� l = t� j = s� i
!uu!ww � !2uw t� k = s� l 6= t� j = s� i

0 otherwise.

Collecting these terms and letting sums over an empty index set equal zero yields

E

 

1

n

n
X

t=1

xtyt � �XY
!2

=
�4uw � !2uw

n

1
X

k=0

b2kc
2
k +

!uu!ww � !2uw
n

1
X

k=0

b2k

1
X

j=0

c2j

= O(n�1):

The conditions of part (ii) overlap with those of part (i), but ensure that the sequences fbkg
and fcjg are absolutely summable. In this case,

n�1=2
n
X

t=1

xtyt =
1
X

j=0

1
X

k=0

bkcj

�

n�1=2
n
X

t=1

ut�kwt�j

�

:

d!
1
X

j=0

1
X

k=0

bkcjZ(j; k) = � (A-12)

(say) where, since the terms ut�kwt�j are i.i.d. with mean 0 and �nite variance !uu!ww for each
pair (j; k), the Z(j; k) are N(0; !uu!ww) random variables, by the standard Lindeberg-Lévy CLT.
Note that Z(j; k) = Z(j0; k0) if j�k = j0�k0 and E(Z(j; k)Z(j0; k0)) = 0 if j�k 6= j0�k0. Hence
� is normally distributed with zero mean and variance

V = !uu!ww

2

4

1
X

k=0

b2k

1
X

j=0

c2j + 2

1
X

p=1

0

@

1
X

k=0

bkbk+p

1
X

j=0

cjcj+p

1

A

3

5

<1:
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A.7 Proof of Lemma 4.1

A preliminary lemma is needed as follows.

Lemma A.1 For 0 < � < 1
2 and a > b � 0, and LX(n) slowly varying,

�

�

�

�

�

�

1

n

[na]
X

s=1+[nb]

� s

n

���1 LX(s)

LX(n)
�
Z a

b
u��1du

�

�

�

�

�

�

= o(1):

Proof This follows since

1

n

[na]
X

s=1+[nb]

� s

n

���1 LX(s)

LX(n)
=
1

n

[na]
X

s=1+[nb]

� s

n

���1
+ o(1)

and

1

n

�

�

�

�

�

�

[na]
X

s=1+[nb]

"

� s

n

���1
� n

Z (s+1)=n

s=n
u��1du

#

�

�

�

�

�

�

=
1

n

�

�

�

�

�

�

[na]
X

s=1+[nb]

�

� s

n

���1
� n

�

��

s+ 1

n

��

�
� s

n

��
��

�

�

�

�

�

�

� 1

n

�

�

�

�

�

�

[na]
X

s=1+[nb]

"

�

s+ 1

n

���1

�
� s

n

���1
#

�

�

�

�

�

�

=
1

n

�

�

�

�

�

�

[na] + 1

n

���1

�
�

[nb] + 1

n

���1
�

�

�

�

�

= O(n�1):

Considering the components of equation (4.2), de�ne q and u by t�m = [nq] and s� i = [nu].
If dX > 0, write

b[nu]

ndXLX(n)
=
(([nu] + 1)=n)dX�1

n� (dX)

LX(nu)

LX(n)

Note by Lemma A.1 that in this case,

1

ndXLX(n)

[nq]+[nr]�[np]
X

s=maxf0;1�[np]g

bs =
1

�(dX)

Z q+r�p

maxf0;�pg
udX�1du+ o(1)

=
(q + r � p)dX � 1fp<0g(�p)dX

�(1 + dX)
+ o(1):

If dX < 0, use part (c) of Assumption 2 to write

b[nu]

ndXLX(n)
=
(([nu] + 1)=n)dX � ([nu]=n)dX

� (1 + dX)
+ o(1)

for [nu] > 0 where b0 = LX(0), and hence, as before,

1

ndXLX(n)

[nq]+[nr]�[np]
X

s=maxf0;1�[np]g

bs =
(q + r � p)dX � 1fp<0g(�p)dX

� (1 + dX)
+ o(1): (A-13)

In the case dX = 0, under part (b) of Assumption 2, note that

[nq]+[nr]�[np]
X

s=maxf0;1�[np]g

bs =

(

O(1) p � 0
o(1) p < 0
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which is formally equivalent to (A-13) when LX(n) is de�ned as a constant not depending on
n. Moreover, the sum can be assigned the limiting value 1 � 1fp<0g by choice of normalization,
without loss of generality.

Proceeding similarly, for the case dY > 0 we may now write

c[nq]

ndY LY (n)
=
(([nq] + 1)=n)dY �1

n� (dY )

LY (nq)

LY (n)

and hence, from (4.2), an[np][nr] = AXY (r; p) + o(1) where

AXY (r; p) =
1

� (1 + dX) � (dY )

Z 1�r

maxf0;�rg
qdY �1

h

(q + r � p)dX � 1fp<0g(�p)dX
i

dq

=
1

� (1 + dX) � (dY )

Z 1�r

maxf0;�rg
qdY �1(q + r � p)dXdq

�
1fp<0g(�p)dX

�

(1� r)dY � 1fr<0g(�r)dY
�

� (1 + dX) � (1 + dY )
(A-14)

To verify that this formula matches (4.3) see Abramovitz and Stegun (1972), 15.3.1.
In the case dY < 0, on the other hand,

c[nq]

ndY LY (n)
=
(([nq] + 1)=n)dY � ([nq] + 1=n)dY

� (dY )
+ o(1) (A-15)

=
(([nq] + �)=n)dY �1

� (1 + dY )
+ o(1); 0 � � � 1:

The approximation in (4.3) may be applied as before in respect of the �rst and second terms.
However, since the integral of the increments in (A-15) diverges at 0, the terms with factor 1fp<0g
in (4.3) have to be constructed as the limiting case of

1

ndY LY (n)

n�1�[nr]
X

t=maxf1�[nr];0g

ct =
((n� 1� [nr])=n)dY � 1fr<0g(�[nr]=n)dY

� (1 + dY )
+ o(1):

The expression in (A-14) nonetheless continues to apply.

A.8 Proof of Lemma 4.2

By arguments closely paralleling those of Lemma 4.1 applied to the formula in (4.4), we arrive at

EXY (p; r) =
1

�(dY + 1)�(dX)

Z 1�p

maxf0;�pg
udX�1

h

(1� r)dY � (u+ p� r)dY
i

du

=
1

�(dY + 1)�(dX + 1)

�

(1� r)dY (1� p)dX � dX
Z 1�p

0
udX�1(u+ p� r)dY du

�1fp<0g
�

(1� r)dY (�p)dX � dX
Z �p

0
udX�1(u+ p� r)dY du

��

This yields the stated result by routine manipulation and application of Abramowitz and Stegun
(1972), 15.3.1.
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A.9 Proof of Proposition 4.1

For a function F and fractional Brownian motion X as de�ned in (1.2), de�ne the notation
R

F�X
by the formula

R

F�X =
1

�(dX + 1)

Z 1

�1
F (�)

h

(1� �)dX � 1f�<0g(��)dX
i

dU(�) (A-16)

and de�ne
R

F�Y similarly:The idea here is that
R

F�X represents a notion of �integral with
respect to fractional Brownian motion�, and in particular,

R

�X = X(1) and
R

�Y = Y (1).
However, we need to emphasize that these are not in the class of objects that is the subject of
this paper, for which the notations

R

FdX and
R

FdY are customary.
Observe that

AXY (r; p) + EY X(r; p) =

�

(1� r)dY � 1fr<0g(�r)dY
� �

(1� p)dX � 1fp<0g(�p)dX
�

�(dY + 1)�(dX + 1)

with the corresponding identity for AY X(p; r) + EXY (p; r). Therefore, de�ning processes

~X(t) =
1

�(dX + 1)

Z t

�1

h

(1� �)dX � 1f�<0g(��)dX
i

dU(�)

~Y (�) =
1

�(dY + 1)

Z �

�1

h

(1� t)dX � 1ft<0g(�t)dX
i

dW (t)

note that
�XY + �Y X =

R

~X�Y +
R

~Y �X: (A-17)

Next de�ne

�X(t) =

8

>

>

>

>

>

<

>

>

>

>

>

:

1

� (dX + 1)

R 1
t (1� �)dXdU (�) t � 0

1

� (dX + 1)

0

@

R 1
0 (1� �)dXdU (�)

+
R 0
t

�

(1� �)dX � (��)dX
�

dU (�)

1

A t < 0:

(A-18)

and also the complementary expression for �Y (�), with dY replacing dX , W replacing U; and
t; � interchanged. It can easily be veri�ed that X(1) = ~X(t) + �X(t) for any t < 1 and likewise
Y (1) = ~Y (�) + �Y (�) for any � < 1. Therefore, given (A-17) and (A-16), we �nd

2X(1)Y (1) = �XY + �Y X +
R

�X�Y +
R

�Y �X: (A-19)

Observe that, since E(X(1)Y (1)) =  XY while E(�XY ) = E(�Y X) = 0, (A-19) implies

E
�

R

�X�Y
�

+ E
�

R

�Y �X
�

= 2 XY : (A-20)

Next, combining (A-18) with (A-16) consider the following decomposition.

R

�X�Y =
1

� (dY + 1)

�Z 1

0
(1� t)dY �X(t)dW (t) +

Z 0

�1

h

(1� t)dY � (�t)dY
i

�X(t)dW (t)

�

=
1

� (dX + 1)� (dY + 1)

Z 1

0

�Z 1

t
(1� �)dXdU (�)

�

(1� t)dY dW (t)

+
1

� (dX + 1)� (dY + 1)

Z 0

�1

�Z 1

0
(1� �)dXdU (�)

�

h

(1� t)dY � (�t)dY
i

dW (t)
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+
1

� (dX + 1)� (dY + 1)

Z 0

�1

�Z 0

t

h

(1� �)dX � (��)dX
i

dU (�)

�

�
h

(1� t)dY � (�t)dY
i

dW (t) (A-21)

= E(
R

�X�Y ) +
1

� (dX + 1)� (dY + 1)

Z 1

0

�Z �

0
(1� t)dY dW (t)

�

(1� �)dXdU (�)

+
1

� (dX + 1)� (dY + 1)

�Z 0

�1

h

(1� t)dY � (�t)dY
i

dW (t)

��Z 1

0
(1� �)dXdU (�)

�

+
1

� (dX + 1)� (dY + 1)

Z 0

�1

�Z �

�1

h

(1� t)dY � (�t)dY
i

dW (t)

�

�
h

(1� �)dX � (��)dX
i

dU (�) : (A-22)

In (A-21), note how the �rst and third terms involve non-adapted integrands, and hence must
have non-zero means. However, these two-dimensional integrals can be formally rearranged as Itô
integrals with respect to dU(�) of F(�)-measurable processes, provided the non-zero component
means (corresponding to the diagonal contributions t = �) are included explicitly. This is done
in the fourth member, labelled (A-22), noting that the two component means sum to E(

R

�X�Y ),
which accordingly must appear explicitly: By direct calculation we �nd

E(
R

�X�Y ) =
!uw

� (dX + 1)� (dY + 1)
�

�Z 1

0
(1� t)dX+dY dt+

Z 0

�1

h

(1� t)dX � (�t)dX
i h

(1� t)dY � (�t)dY
i

dt

�

=  XY

where the second equality is by (3.5). The remaining term in these expressions is the product of
factors de�ned on (�1; 0] and (0; �] respectively, and hence has zero mean.

The corresponding decomposition can of course be carried out for
R

�Y �X whose mean, given
the symmetry in X and Y , is also  XY . Accordingly, consider the expression obtained by taking
(A-21) and interchanging the pairs (X;Y ), (U;W ), and (t; �) throughout. The sum of this
expression and (A-22) itself, after piecing together the integrals and simplifying, yields

R

�X�Y +
R

�Y �X = X(1)Y (1) +  XY : (A-23)

Equation (A-23) in combination with (A-19) yields the required formula.

A.10 Proof of Lemmas 5.1 and 5.4

The following preliminary lemmas are needed.

Lemma A.2 jAXY (r; p)j � �AXY (r; p) where AXY (r; p) is de�ned in (4.3) and

�AXY (r; p) =

�

�(1� r)dY � 1fr<0g(�r)dY
�

�

�

�(g � p)dX � 1fp<0g(�p)dX
�

�

�(dX + 1)�(dY + 1)

where

g =

�

1; dX � 0 or dX < 0; p < 0
r; dX < 0; p � 0:
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Proof From (4.2),

�

�an[np][nr]
�

� =
n

K(n)

�

�

�

�

�

�

n�1�[nr]
X

t=maxf1�[nr];0g

ct

0

@

t+[nr]�[np]
X

s=maxf1�[np];0g

bs

1

A

�

�

�

�

�

�

� n

K(n)

�

�

�

�

�

�

n�1�[nr]
X

t=maxf1�[nr];0g

ct

�

�

�

�

�

�

max
maxf1�[nr];0g���n�1

�

�

�

�

�

�

�+[nr]�[np]
X

s=maxf1�[np];0g

bs

�

�

�

�

�

�

=

�

�(1� r)dY � 1fr<0g(�r)dY
�

� max
maxf0;rg�g�1

�

�(g � p)dX � 1fp<0g(�p)dX
�

�

�(dX + 1)�(dY + 1)
+ o(1) (A-24)

as n!1, using the same arguments as in the proof of Lemma 4.1. When dX � 0, (g � p)dX is
monotone nondecreasing in g, and is maximized over [0; 1] at g = 1. When dX < 0, (g � p)dX is
monotone decreasing. If p � 0, so that r � 0, the maximum in (A-24) is achieved at g = r. On
the other hand, if p < 0 then

�

�(g � p)dX � 1fp<0g(�p)dX
�

� is maximized at g = 1, as indicated.

Lemma A.3 jEXY (p; r)j � �EXY (p; r) where EXY (p; r) is de�ned in (4.5) and

�EXY (p; r) =

�

�(1� p)dX � 1fp<0g(�p)dX
�

�

�

�(1� r)dY � 1fr<0g(�r)dY
�

�

�(dX + 1)�(dY + 1)

Proof From (4.4)

�

�en[nr][np]
�

� =
n

K(n)

�

�

�

�

�

�

n�1�[np]
X

s=maxf0;1�[np]g

bs

0

@

n�[nr]
X

t=s+[np]+1�[nr]

ct

1

A

�

�

�

�

�

�

� n

K(n)

�

�

�

�

�

�

n�1�[np]
X

s=maxf0;1�[np]g

bs

�

�

�

�

�

�

max
maxf0;1�[np]g�z�n�1

�

�

�

�

�

�

n�[nr]
X

t=z+[np]+1�[nr]

ct

�

�

�

�

�

�

=

�

�(1� p)dX � 1fp<0g(�p)dX
�

� max
maxf0;pg�g�1

�

�(1� r)dY � (g � r)dY
�

�

�(dX + 1)�(dY + 1)
+ o(1) (A-25)

as n!1. First, suppose p � 0. When dY � 0 then (1�r)dY �(g�r)dY > 0 and is maximized over
[p; 1] at g = p, noting that r � p in this case. When dY < 0, (1 � r)dY � (g � r)dY < 0 and is
minimized at g = p: In the case p < 0 the same considerations apply, but the extremum over
[0; 1] is at g = 0 in each case. The proof is completed by noting that for any p 2 [ r; 1], and dY
of either sign,

�

�

�(1� r)dY � (maxfp; 0g � r)dY
�

�

� �
�

�

�(1� r)dY � 1fr<0g(�r)dY
�

�

� .

To prove Lemma 5.1, �rst suppose m � 0. Break the sum nvanm into components
Pm�1
i=0 a2nim

and
P�1
i=�1 a2nim where the �rst term is 0 if m = 0. Note that if m = [nr] for 0 � r � 1, then

since i = [np] � 0, applying Lemma A.2,

lim sup
n

1

n

m�1
X

i=0

a2nim �
Z r

0

�AXY (r; p)
2dp
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=

8

>

>

>

<

>

>

>

:

(1� r)2dY +2dX+1
(2dX + 1)�(dX + 1)2�(dY + 1)2

; dX � 0

(1� r)2dY r2dX+1
(2dX + 1)�(dX + 1)2�(dY + 1)2

; dX < 0

<1

whereas

1

n

0
X

i=�1

a2nim �
Z 0

�1

�AXY (r; p)
2dp

=
(1� r)2dY

�(1 + dX)2�(1 + dY )2

Z 1

0

h

(1 + p)dX � pdX
i2
dp

<1

noting that
R1
0

�

(1 + p)d � pd
�2
dp < 1 for jdj < 1

2 : (See for example DH Lemma 5.1.) Finally,
if m < 0 and hence r < 0, by Lemma A.2 there exists n large enough that

1

n

m
X

i=�1

a2nim �
Z r

�1

�AXY (r; p)
2dp

�
�

(1� r)dY � (�r)dY
�2

�(1 + dX)2�(1 + dY )2

Z 1

�r

h

(1 + p)dX � pdX
i2
dp

= O((�r)2dY +2dX�3):

The argument for Lemma 5.4 is very similar. Letting i = [np], applying Lemma A.3 leads to

lim sup
n

1

n

i�1
X

m=0

e2nmi �
Z p

0

�EXY (p; r)
2dr

=

�

(1� p)dX � 1fp<0g(�p)dX
�2
(1� p)2dY +1

(2dY + 1)�(dX + 1)2�(dY + 1)2

<1

whereas
1

n

0
X

m=�1

e2nmi �
Z 0

�1

�EXY (p; r)
2dr <1

and for i < 0,

1

n

i
X

m=�1

e2nmi �
Z p

�1

�EXY (p; r)
2dr = O((�p)2dY +2dX�3)

follow exactly as for the proof of Lemma A.2.

A.11 Proof of Lemmas 5.2 and 5.5

In principle there are three cases to consider, depending on the respective signs of r and r + �.
However, if r < 0 and r+ � > 0 then the interval may be split into subintervals of widths �r < �
and � + r respectively, and treated separately. Showing the cases r � 0 and r < r + � � 0 is
therefore su¢cient. The bounding arguments here are essentially the same as those in the proofs
of Lemmas 5.1 and 5.4.
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First, for Lemma 5.2,

lim sup
n

1

n

[n(r+�)]
X

i=[nr]+1

a2ni[n(r+�)]

�
Z r+�

r

�AXY (r + �; p)
2dp

=

�

(1� r � �)dY � 1fr+�<0g(�r � �)dY
�2

�(1 + dX)2�(1 + dY )2

Z r+�

r

h

(g � p)dX � 1fp<0g(�p)dX
i2
dp

where �AXY (r; p), and g, are de�ned in Lemma A.2.
Case: r � 0. If dX > 0, then g = 1 and

Z r+�

r
(1� p)2dXdp = (1� r)2dX+1 � (1� r � �)2dX+1

2dX + 1
= O(�)

otherwise g = r + � and
Z r+�

r
(r + � � p)2dXdp = �2dX+1

2dX + 1
:

Case: r < r + � � 0. In this case g = 1 and
Z r+�

r
[(1� p)dX � (�p)dX ]2dp �

Z r+�

r
(�p)2dXdp+

Z r+�

r
(1� p)2dXdp

= O(�)

since dX � �1
2 . These bounds are independent of r, and hold uniformly with respect to r 2

(�1; 1].
The proof of Lemma 5.5 is very similar, noting that

lim sup
n

1

n

[n(p+�)]
X
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e2nm[n(p+�)] �
Z p+�

p

�EXY (p+ �; r)
2dp

=

�

(1� p� �)dX � 1fp+�>0g(�p� �)dX
�2

�(dX + 1)2�(dY + 1)2
�

Z p+�

p

h

(1� r)dY � 1fr<0g(�r)dY
i2
dr

= O(�).

A.12 Proof of Lemmas 5.3 and 5.6

First, for case Lemma 5.3, note that
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a
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1n, D

a
2n, D

a
3n) where an empty sum takes the value 0 by convention, so that Da

3n = 0
for r � 0. Now de�ne

�Da
1(r; �; p) =

�

�(1� r)dY � (1� r � �)dY
�
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�

�(1 + dX)�(1 + dY )

�Da
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:

If dX > 0, dY > 0 then, using Assumption 2 and Lemma A.1,
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= �Da
3(r; �; p) +O(n

�dY ):

The cases having dY � 0 and/or dX � 0 require modi�cation of these formulae on the lines of
equation (A-13). Terms of the form

�

t
n

�dY �1 and
�

s
n

�dX�1 are replaced respectively with terms

of the form
�

t+1
n

�dY �
�

t
n

�dY and
�

s+1
n

�dX �
�

s
n

�dX . The approximation error rates are modi�ed
in the same manner, with �1�dY replacing �dY when dY < 0 and �1�dX replacing �dX when
dX < 0. However, note that although the signs of the sums depend on the signs of dY and dX ,
the indicated bounds hold in all cases. We therefore have that there exists n large enough that

�

�an[np][n(r+�)] � an[np][nr]
�

� � �Da
1(r; �; p) + �Da

2(r; �; p) + �Da
3(r; �; p):

Therefore,
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�
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2dp
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Z r

�1

h

(1� p)dX � 1fp<0g(�p)dX
i2
dp

= O(�2)
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i2
dp

= O(�2dX+1)

and if r < 0,
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h
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i2
dp

= O(�2dX+3):

These bounds are independent of r, and hold uniformly with respect to r 2 (�1; 1].
For Lemma 5.6, we have from (4.4)
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e
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e
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Similarly to the previous case, there exists n large enough that
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1(p; �; r)
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�(1� r)dY � (1 + � � r)dY
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�

�(1 + dX)�(1 + dY )

jDe
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and

jDe
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�(�p)dX � (�p� �)dX
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Therefore, similarly to the previous case,

lim sup
n

1

n

[np]
X

m=�1

(enm[n(p+�)] � enm[np])2 �
Z p

�1

�De
1(p; �; r)

2dp+

Z p

�1

�De
2(p; �; r)

2dp

Z p

�1

�De
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2dp

= O(�2dY +1)

where the bound is independent of p, and holds uniformly in p 2 (�1; 1].

A.13 Proof of Theorems 5.2 and 5.5

We argue for the exemplar case of QNn . The proof for H
N
n is essentially identical, after swapping

H for Q, w for u and e for a, and also substituting the lemmas from Section 5.2 for those of
Section 5.1

The proof follows the lines of Theorem 3.1 of Davidson and de Jong (2000) (henceforth, DDJ),
which in turn is based on Theorem 3.1 of DJD. Similarly to the DDJ theorem, the sample period
is changed from 1; : : : ;Kn to �Nn; : : : ; n. For the �nite dimensional distributions, we apply
the CLT of de Jong (1997). Since the ui are assumed independent, this is simply a matter of
establishing a counterpart of the Lindeberg condition for the process qNnm.

To translate the conditions of the present setup into those of the DDJ model, note that the
process in question has increments

QNn (r + �)�QNn (r) =
1p
n

[n(r+�)]
X

i=[nr]+1

ani[n(r+�)]ui +
1p
n

[nr]
X

i=�Nn

(ani[n(r+�)] � ani[nr])ui: (A-26)

28



The notations of this paper and DDJ may be connected by matching t, � and �0 in DDJ with
i, r + � and r in this paper, respectively, and so noting that the quantities denoted ant(�; �

0)
in DDJ, equation (3.1), correspond in the present notation to ani[n(r+�)] for i > [nr], and to
ani[n(r+�)] � ani[nr] for �1 < i � [nr] otherwise. Since the shocks ui are i.i.d by Assumption 1,
bounds on the variances of the increments in (A-26) are found from Lemmas 5.1, 5.2 and 5.3.
The �nite dimensional distributions of the variates QNn (r) can be determined from Theorem 3.1
of DJD. Note that the variates denoted Xnt in that theorem correspond in the present case to
either n�1=2ani[n(r+�)]ui or to n

�1=2(ani[n(r+�)] � ani[nr])ui for �nN � i � [n(r + �)] and, given
the conditions speci�ed in our Assumptions 1 and 2, are su¢cient for DJD�s Assumption 1. Note
further that r is �xed in each application of this theorem, that condition (3.2) in DJD holds
in the present case by Lemma 5.1, and that condition 3.3 in DJD holds in the present case by
Lemmas 5.2 and 5.3. Finally, to show the tightness of the sequence of measures the argument in
DDJ, Theorem 3.1, can be applied with appropriate substitutions. (See also the addendum to this
theorem in Davidson (2001)). Noting the equivalences set out above, the condition corresponding
to DDJ (B-35) follows directly from Lemmas 5.2 and 5.3.

A.14 Proof of Theorems 5.4 and 5.7

First note that
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Copying the argument from the proof of Lemma 5.1, note that

1

n2

n�1
X

m=�Nn

�Nn
X

i=�1

a2nim =

Z 1

�N

�Z �N

�1
AXY (r; p)

2dp

�

dr + o(1)

as n!1 where

Z 1

�N

�Z �N

�1
AXY (r; p)

2dp

�

dr �
Z 1

�N

�Z �N

�1

�AXY (r; p)
2dp

�

dr

=
1

�(1 + dX)2�(dY + 1)2

Z 1

�N

�

(1� r)dY � (�r)dY
�2
dr

�
Z 1

�N

h

(1 + p)dX � pdX
i2
dp
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as n!1, and by previous arguments, letting K denote a �nite positive constant, we have
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dr �
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The case of Theorem 5.7 is essentially similar.
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