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Abstract: As interest in plasmonics grows the optical properties of thin 
metal films becomes increasingly significant. Here we explore the 
transmissivity of thin metal films at normal incidence, from the ultraviolet 
to microwaves, and show how, contrary to simplistic treatments, the 
microwave transmissivity may be much less than the optical transmissivity 
for films which are well below the skin depth in thickness. This arises 
because the film is acting as a zero order Fabry-Perot with very high 
reflectivity at each interface. The skin depth then becomes irrelevant for thin 
metal films at microwave frequencies. We also note in passing that the 
expected exponential dependence on thickness at higher thicknesses has an 
asymptotic limit at zero thickness which may be as high as four times the 
input intensity.  
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The optical properties of thin metal films has long been a subject of scientific research. Over 
the past decade there has been a resurgence of interest in this area primarily as a result of 
Ebbesen and coworkers observation of strongly enhanced transmission through holey metal 
films [1]. Further interest in thin metal films has also been stimulated by Pendry’s suggestion 
of using thin metal layers as perfect lenses [2] while at much the same time the same author 
[3] has re-stimulated general interest in the idea of negative index materials – metals, with 
negative permittivities structured to give also negative permeabilities then lead 
consequentially to the possibility of ‘cloaking’ [4]. It is in this context of renewed interest in 
the optical properties of structured metal films that we here revisit the rather old problem of 
the transmissivity of unstructured films. 

There are various standard texts which give expressions for the transmissivity of a thin 
slab of any material. Stratton [5] gives the transmissivity T (Stratton p515 Eq. (24)) for normal 
incidence in air as: 
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with 0)/( knnc mm == ωα , 0)/( kkkc mm == ωβ  (the refractive index of the metal is mm ikn + , 

the thickness is d and 0k is the free-space wavevector of the light). Also, 
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where 22
mmr kn −=ε  and mmi kn2=ε , where the subscripts r and i correspond to the real and 

imaginary parts (as they do throughout this text). 
Another version is found in Reitz, Milford and Christy [6]. Beginning from the 

transmission coefficient of amplitude (Ref. 6 p. 464 Eq. (18.86))  
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These two seemingly rather different expressions for T are readily found to be equivalent 
using the substitutions: ( )2/cos δRAr =  and ( )2/sin δRAi = . Such expressions, and their more 
complex off-normal forms, can of course be readily written into a computer code and it is a 
simple matter then to compute the transmissivity of any metal film at any angle of incidence.  

To illustrate the interesting results which may be forthcoming from using such expressions 
we plot in Fig. 1 the transmittance as a function of sample thickness for silver films modeled 
with a Drude approximation having ωp = 1.32 x 1016s−1  (kp=ωp/c) as the plasma frequency 
and τ = 1.45 x 10−14s the relaxation time, for which: 
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Figure 1(a) shows this modeling in linear form while Fig. 1(b) illustrates it in logarithmic 
fashion.  
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Fig. 1. Plots of the transmissivity T as a function of silver film thickness d for a wide range of 
frequencies (permittivities in brackets). (a). linear; (b). logarithmic (Note that the line for f = 3 
x 1015 Hz corresponds to light above the plasma frequency and as such the silver is no longer 
acting as a metal – it is added for comparison only).  

 
These figures illustrate some obvious key points. Firstly, there is a clear oscillation evident 

in the high frequency data set (f = 3x1015Hz). At this frequency the film is acting as a 
dielectric with the oscillations arising from interference between reflections from the front and 
back interfaces of the slab. This data set is only plotted here for comparative purposes; the 
important points to note are those arising from the regime in which the material of the slab is 
acting as a metal. Secondly, for thicknesses above approximately 60 nm, regardless of 
frequency, a silver film allows less than a few percent of light to be transmitted. Thirdly, for 
all thicknesses above about 40 nm the thickness dependence is exponential, as expected, 
seemingly dominated in form by the skin depth (we shall return to this later). Finally, as is 
most apparent in Fig. 1(b), at microwave frequencies the initial thickness dependence is far 
from exponential and indeed much faster than for shorter wavelengths. Further, by 80 nm in 
thickness the transmissivity for microwaves is greater than for shorter wavelengths, although 
in reality by that thickness both are almost negligible (<10−5).  

In view of the unexpected thickness dependence at microwave frequencies and in order to 
explore further the thickness dependence of the transmissivity we look to express this 
transmissivity as a function of film thickness. 
First it is helpful to re-express T as: 
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For high thicknesses it is apparent that the dominant term will be simply:  

( )[ ] 02221 kmdk
ir eAAT −+−≈              (1) 

Then, on a logarithmic plot, we find ln T has an intercept given by ( )[ ]221ln ir AA +−  and a 

slope of −2kmk0. Note the presence of the intercept, the thickness dependence is not just 
exponential with an origin at T = 1. This illustrates the danger of simply treating the thickness 
dependence of the transmissivity of a metal film as an exponential, since extrapolating to zero 
thickness could readily yield an apparently nonsensical result. Examination of Fig. 1 for 
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frequencies above 5 x 1014 Hz illustrates this point fully. The model data will fit a straight line 
with an intercept beyond 1! The transmission at large d can easily be described by 

)exp()exp( 0
**

23
*
1202312 dkkttdkktt mm −−  because we can neglect multiple reflections. In other words 

the field on the transmission side of the first interface (t12) is attenuated through the film 
(exp(−kmk0d)) before being transmitted through the second interface (t23). The assumption that 
the intercept of the exponential should be less than 1 comes from the assumption that the field 
on the transmission side of the first interface will be less than 1. This is not the case. Consider 
frustrated total reflection in the case of two prisms close together with light incident beyond 
the critical angle. When they are far apart the evanescent field amplitude just beyond the 
interface is twice the input amplitude. When the second prism is introduced within the tail of 
the evanescent field this value of 2 at the first interface will only change when the influence of 
multiple reflections within the air gap are taken into account. Consequentially the exponential 
part of the transmission as a function of the gap may have an intercept greater than 1. The 
maximum this may be occurs when nm = 0, km = 1 so that t12 = 1−i and t23 = 1+i. Hence t12t23 = 
2 and the form of the exponential decay of the transmitted intensity becomes (2exp(−k0d))2 
with an intercept at d = 0 of 4.  

In addition, the varying gradient at large thickness evident in Fig. 1(b) can also be 
explained via inspection of Eq. (1), from which the slope at large thickness is expected to be 
equal to −2kmk0. How does this fit with the data in Fig. 1(b), where for long wavelengths the 
transmission through a thicker film can be larger than for shorter wavelengths? In Fig. 2 the 
value of −2kmk0 is plotted as a function of frequency. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 2. 2kmk0 as a function of frequency with km being calculated using the values of ωp and τ as defined in the text. 
 

It is evident from Fig. 2 that the gradients of the transmission plots in Fig. 1(b) at large 
thickness values are expected to vary depending upon the frequency of the light. The greatest 
gradient occurs for a frequency range of 1014-1015Hz, with lower gradients for both higher and 
lower frequencies. The much shallower gradient for low frequencies as compared to those in 
the 1014-1015Hz range results in a higher transmission at large film thickness. This is due to 
the particular form of the dispersion of km with changing frequency.  

However we are here rather more concerned with lower thicknesses. The above general 
expression may be rewritten as: 
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which leads directly to T = 1, not a particularly illuminating result. To the next order: 
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Substituting in for Ar and Ai from above one finds that 
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Thus the final expression for the transmissivity of a very thin metal film is, to first order, 

0/)1( dkTT iε≅− . Note that to this approximation the transmissivity is entirely dominated by 

εi and is linear in d.  
How good an approximation is this? Is it of any use over a broad spectral range? To 

illustrate this the calculated transmissivity of thin silver and aluminium films at 632.8 nm are 
examined.  

The graph in Fig. 3 shows T for silver and aluminium as a function of d for a full 
numerical calculation based on the 3 layer Fresnel model and for successive higher order 
approximations (see below) using experimental values for εm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 3. Transmission as a function of film thickness d for silver and aluminium at 632.8 nm. For 
silver εm = −19+0.5i [7] and for aluminium −37+13i [8]. 

 
It is immediately apparent that for silver the first order approximation is very poor but that in 
the case of aluminium, with a much larger εi, it is far better. This is, of course, as expected for 
the first order approximation since it only contains εi and as such any material which has a 
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larger ratio of εi to εr will obey the approximation more closely. Also note that aluminium has 
a much lower transmissivity than silver at this wavelength of 632.8 nm. 

It is worthwhile noting what happens if a Drude model is used to extend this type of 
calculation far beyond the visible. This is shown in Fig. 4 for silver films of 20 and 40 nm 
thickness with Drude parameters ωp = 1.32 x 1016 and τ = 1.45 x 10−14.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4. First order calculation for transmissivity T, using the Drude model for silver, with ωp = 
1.32 x 1016 s−1 and τ = 1.45 x 10−14 s for d = 20 nm and d = 40nm. The solid line is exact. 

 
Note that the transmissivity is very small for all longer wavelengths, even though the metal 
films are only 20 nm and 40 nm thick. These thicknesses are very much less than the skin 
depths at these longer wavelengths. Indeed, the transmissivity at these low thicknesses falls 
far more rapidly with increasing thickness than a skin depth model would suggest. This is due 
to the enormous impedance mismatch between the air and the metal at these longer 
wavelengths where εi >> 1 and the very strong reflectivity at both interfaces results in the 
metal layer acting as a zero order Fabry-Perot resonator. Consequently the very weak 
transmission one sees at small thicknesses for long wavelengths has little directly to do with 
the skin depth effect but rather reflects the thickness dependence of the multiple interference 
of the radiation within the metal layer. 

The general series expansion for the transmissivity is of the form: 
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This gives, to fourth order: 
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Analytic forms for the Drude model 

For a metal which follows the Drude approximation, and neglecting the background ionic 
contribution at low frequencies where this will be negligible, one may define: 
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By substitution into the fourth order expansion, this gives: 
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In the limit of relatively low frequencies, 1<<ωτ , this expression further reduces to give: 
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The dominant term is in general the quadratic term in d, unless d or τ are very small. Notice 
that T is now independent of frequency, only depending on the material parameters. If now for 
this limit situation (microwave frequencies and below), 1/T is plotted against d2 an extremely 
good straight line is obtained. This is illustrated in Fig. 5. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Plot of 1/T against d2 for silver at f = 3x1011 and 3x1012Hz (inset: close up for low 
values of d). All plots for lower frequencies overlie that of the line for f = 3x1011.  
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It is very obvious from Fig. 5 that this second order approximation predicts very well the 
thickness dependence of the inverse transmissivity at low thicknesses at microwave 
frequencies and below (black line). Of course this is in reality of very little interest since the 
transmissivity is itself so low. However we can take this approximation to even lower 
thicknesses as shown in the inset of Fig. 5. Note that this simple quadratic relationship fails 
for the very lowest thicknesses (unrealistically less than 1 nm) as a contribution from the 
linear term begins to have an effect. The red line corresponds to THz frequencies where the 
approximation has begun to fail and other terms begin to take effect. At higher frequencies 
this becomes even more pronounced. (It should be noted however, that in the low thickness 
regime the approximation still agrees well). 

So what is the fundamental physical cause of this d2 dependence?  Why, at microwave 
frequencies, is the simple exponential expected from skin depth considerations not manifest at 
these low thicknesses? The first thing to note is that the refractive index at these frequencies is 
very large, with equal magnitude real and imaginary components. The imaginary part governs 
the exponential thickness dependence at large thicknesses but for very thin films (much less 
than the wavelength and skin depth within the metal) this exponential term is insignificant. 
The primary effect in this regime is the interference of the strong reflections from the front 
and back faces of the thin metal plate. The impedance mismatch with air is so large that to 
first order the reflection coefficient at each interface is 1. Thus the film is a high Q Fabry-
Perot resonator, of zero order. Generally one expects the cavity of a Fabry-Perot to have a 
thickness of order the external wavelength divided by twice the refractive index of the 
material. However this is for the first order mode, which at microwave frequencies 
(wavelength ~10 mm) with the real part of the metal refractive index of order 103 to 104, gives 
a required thickness of microns (typical of the skin depth thickness). Here one is dealing with 
much thinner layers, the zero thickness limit, or the zero order Fabry-Perot mode. Then, as the 
thickness is increased from zero (T = 1) the transmittance falls rapidly with d, as  described by 
the equations given above, following the behaviour expected of a high Q Fabry-Perot cavity.  

Returning to the starting equation one has: 
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After substituting in for 12r and β  this may be reexpressed as:  
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From this the key d dependent term is: 
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This may be perhaps more helpfully written as 
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the typical sinc like behaviour. Now one can see that as β ′  tends to 0 so, for large εi, the 
simple εik0d/2 dependence in 1/t will arise, leading in turn to T ≈ 1− εik0d. Finally, returning to 
the general expression note that the fourth order term is likely to be the next order correction 
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through the term ( ) ( ) ( )224)12/1( ωττω ppdk . This however contains an ω2 term which means 

that it will be insignificant - as will all other higher order terms. This explains why the second 
order expression is such a good approximation in the low frequency limit. 

Another route to the simpler expressions is to appreciate that in the long wavelength limit 
εi will dominate all other terms. This leads from the general quadratic to 
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Then using the substitutions ( )2τωε pr −≈  and ωτωε /2
pi ≈  in this expression leads to: 
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Which is of course identical to our previous approximation. 
 
Conclusions 

It is often naively assumed that the thickness dependence of the transmission of light through 
metal films is a simple exponential dictated by the skin depth. While for high thicknesses (for 
which the transmittance is actually often negligible) this is certainly true, it is generally not 
true for thicknesses relevant to many experimental thin film situations. Furthermore when it is 
true the extrapolated zero thickness value may well be greater than unity. Significantly, for the 
visible domain, there may be a substantially enhanced transmission, above that naively 
expected for ‘good’ metals such as silver, while in the microwave domain the transmittance 
for thin samples is governed not by the skin effect but by the metal film acting as a zero order 
Fabry-Perot resonator. The consequence is that, somewhat surprisingly, thin metal films, even 
at normal incidence, readily transmit a higher percentage of visible than of microwave 
radiation. 
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