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Abstract 
 
This paper proposes a simplified multivariate GARCH model that involves the 
estimation of only univariate GARCH models, both for the individual return series and 
for the sum and difference of each pair of series. The covariance between each pair of 
return series is then imputed from these variance estimates. The model that we propose 
is considerably easier to estimate than existing multivariate GARCH models and does 
not suffer from the convergence problems that characterize many of these models. 
Moreover, the model can be easily extended to include more complex dynamics or 
alternative forms of the GARCH specification. We use the simplified multivariate 
GARCH model to estimate the minimum-variance hedge ratio for the FTSE 100 index 
portfolio, hedged using index futures, and compare it to four of the most widely used 
multivariate GARCH models. The simplified multivariate GARCH model performs at 
least as well as the other models that we consider, and in some cases better than them. 
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1. Introduction 

 

There are many applications in finance that rely on an estimate of the multivariate 

conditional covariance matrix of returns. Such applications include conditional asset 

pricing models, portfolio optimization, minimum-variance hedging, value at risk and the 

pricing of options that depend on more than one underlying asset. Perhaps the most 

widely used approach to modeling the conditional covariance matrix of returns is the 

multivariate GARCH class of models.1 A number of different multivariate GARCH 

models have been proposed, each imposing a different set of restrictions on the dynamic 

process that governs the covariance matrix of returns. These models include the Vech 

and Diagonal Vech models of Bollerslev, Engle and Woolridge (1988), the BEKK 

model of Engle and Kroner (1995), the Constant Correlation model of Bollerslev 

(1990), the Factor ARCH model of Engle, Ng and Rothschild (1990) and the Dynamic 

Conditional Correlation model of Engle and Sheppard (2001).2  

 

While commonly employed in the academic literature, multivariate GARCH models 

suffer from a number of problems in practice. First, they tend to be computationally 

burdensome, typically involving the simultaneous estimation of a large number of 

parameters. This is particularly true of the Vech and BEKK models, both of which 

impose relatively few restrictions on the dynamic process that governs the evolution of 

the covariance matrix. Despite recent advances in technology, there are many instances 

when computational cost is important such as when estimating out-of-sample forecasts 

of the conditional covariance matrix using a rolling window over a large sample, or 

where forecasts of the conditional covariance matrix of returns must be computed for a 

large number of assets in a short period of time (such as when estimating intra-day VaR 

for a derivatives trading desk). In these instances, multivariate GARCH models are 

often eschewed by practitioners in favour of simpler alternatives such as exponentially 

weighted estimators of the covariance matrix.  Second, owing to the large number of 

parameters that must be estimated simultaneously, and the non-concavity of the 

                                                 
1 Other approaches to estimating the conditional covariance matrix include rolling 
estimators of the sample covariance matrix, exponentially weighted estimators (JP 
Morgan, 1994) and multivariate stochastic volatility models (Harvey, Ruiz and 
Shephard, 1994). 
2 For a summary of multivariate GARCH models see Bollerslev, Chou and Kroner 
(1992) and Kroner and Ng (1998). 

 2



likelihood function, maximum likelihood estimation of multivariate GARCH models 

can be problematic. Establishing that estimation has properly converged (i.e. to 

parameter values that represent a global maximum of the likelihood function rather than 

a local maximum) involves a potentially computationally intensive grid-search over all 

of the parameters in the model. Third, compared with their univariate counterparts, it is 

relatively difficult to construct multi-period forecasts of the covariance matrix using 

multivariate GARCH models (see, for example, Kroner and Ng, 1998). Fourth, owing to 

their computational complexity, it is often difficult to extend multivariate GARCH 

models to include more complicated dynamics such as longer lag specifications, the 

asymmetric response of volatility to return shocks, and dummy variables to capture 

seasonality, outliers and structural breaks.   

 

In an attempt to overcome these computational issues, a number of simpler 

specifications of the multivariate GARCH model have been proposed. However, the 

simplifications that these models entail generally come at the cost of imposing severe, 

and often implausible, cross-equation restrictions on the elements of the covariance 

matrix. For example, in the Diagonal Vech model, each element of the covariance 

matrix is assumed to evolve independently, meaning that shocks to the variances of 

individual assets have no impact on the future covariance between them. In the Constant 

Correlation model, the covariance between individual assets is determined solely by 

their individual variances. The Factor ARCH model assumes that the covariance 

between any two assets derives solely from a common covariance with one or more 

underlying factors. None of these models is able to capture, for example, the well 

documented feature that correlation among financial assets tends to increase as volatility 

increases (see, for example, Longin and Solnik, 1995). 

 

In this paper, we propose an alternative, simplified multivariate GARCH model. The 

model that we propose involves the estimation of only univariate GARCH models, both 

for the individual return series and for the sum and difference of each pair of series. The 

covariance between each pair of return series is then imputed from these variance 

estimates. The model that we propose is considerably more straightforward to estimate 

than the Vech and BEKK models, and because the estimation involves only univariate 

GARCH models – and hence only a small number of parameters in any single 

estimation – it does not suffer from the convergence problems that typically characterize 
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these models. Moreover, it is easily extended to include the more complex dynamics 

that are commonly found in the univariate GARCH literature, or to use alternative 

forms of the GARCH specification. The model that we propose is less restrictive than 

the Diagonal Vech, Constant Correlation and Factor ARCH models, allowing the 

covariance between two assets to depend on the history of both their covariance and 

their individual variances, without imposing the restriction that the correlation 

coefficient between them is constant over time or that their covariance derives solely 

from a common covariance with an underlying factor. 

 

We illustrate the simplified multivariate GARCH model by estimating the minimum-

variance hedge ratio for the FTSE 100 index portfolio, hedged using index futures. We 

compare the simplified model to four of the most widely used multivariate GARCH 

models, namely the Diagonal Vech, Constant Correlation, BEKK and Dynamic 

Conditional Correlation models. We evaluate the performance of each model both 

statistically, using a regression of each element of the realized covariance matrix on the 

corresponding element of the estimated covariance matrix, and economically, by 

considering the performance of the hedged portfolio. We find that the simplified 

multivariate GARCH model performs at least as well as the other models that we 

consider, and in some cases better than them. Moreover, the computation time for the 

simplified model is considerably lower than for the other models. 

 

The rest of the paper is organised as follows. The following section introduces the 

simplified multivariate GARCH model. Section 3 presents the empirical application. 

Section 4 concludes.  

 

2. The Simplified Multivariate GARCH Model 

 

Consider two assets, i and j, whose per-period abnormal returns are given by 

tititi r ,,, µε −=  and tjtjtj r ,,, µε −= , where  and  are actual returns and itr jtr ti,µ  and tj ,µ  

are conditional mean returns. Given the time 1−t  information set, 1−Ωt , an estimate of 

the conditional covariance matrix requires estimates of the conditional variances 

 and , and an estimate of the conditional 

covariance 

)|var( 1,
2
, −Ω= ttiti εσ )|var( 1,

2
, −Ω= ttjtj εσ

)|,cov( 1,,, −Ω= ttjtitij εεσ . 
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The multivariate GARCH model that we propose involves firstly estimating the 

conditional variances,  and , using a univariate GARCH model. We then 

construct the new series 

2
,tiσ

2
,tjσ

tjtit ,,, εεε +=+  and tjtit ,,, εεε −=−  and use a univariate 

GARCH model to estimate  and . An estimate 

of the conditional covariance, 

)|var( 1,
2
, −++ Ω= ttt εσ )|var( 1,

2
, −−− Ω= ttt εσ

tij ,σ , can then be obtained using the following identities. 

 

tijtjtit ,
2
,

2
,

2
, 2σσσσ ++≡+        (1) 

 

tijtjtit ,
2
,

2
,

2
, 2σσσσ −+≡−        (2) 

 

In particular, combining (1) and (2), we have 

 

))(4/1( 2
,

2
,, tttij −+ −≡ σσσ        (3) 

 

The identity given by (3) is commonly used in the statistics literature in order to derive 

(unconditional) covariance estimators from (unconditional) variance estimators when no 

obvious multivariate extension of the variance estimator exists such as in the case of 

robust estimation of the covariance matrix (see, for example, Huber, 1981). In the 

context of conditional volatility, Harris and Shen (2003) employ this identity to 

generalise a univariate robust EWMA estimator to the multivariate case. In this paper, 

we extend the application of this identity to the multivariate GARCH model. 

 

The simplified multivariate GARCH model involves the estimation of only univariate 

GARCH models and is therefore considerably easier to implement than the Vech and 

BEKK models. In particular, because only a few parameters are estimated in each 

model, it is more likely that maximum likelihood estimation will converge properly and 

hence much less experimentation is required with different starting values for the model 

parameters. In the empirical example below, we use the simplest GARCH(1,1) model in 

order to estimate , ,  and . However, it would be straightforward to 

extend the model to allow for more complicated dynamics in both the mean and 

2
,tiσ

2
,tjσ 2

,t+σ
2
,t−σ
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volatility of returns using, for example, a more general ARMA(p,q)-GARCH(r,s) 

specification, or one of the many alternative specifications of the univariate GARCH 

model, such as the EGARCH model of Nelson (1990). In particular, it would be 

straightforward to include terms that capture the asymmetric response of volatility to 

return shocks due to changes in financial leverage, or dummy variables that capture 

seasonality, outliers and structural breaks, in either the mean or the volatility of returns. 

 

In the simplified model,  is determined by  and , which are functions of  

 and . From the definitions of  and  it can be seen that  is a 

function of both  and , and 

tij ,σ 2
,t+σ

2
,t−σ

2
1, −+ tε 2

1, −− tε 2
1, −+ tε 2

1, −− tε tij ,σ

2
1, −tiε

2
1, −tjε 1,1, −− tjti εε . Therefore the specification of the 

simplified model allows shocks to the variances of  and  to affect their future 

covariance (as well as their respective variances), without imposing the restriction that 

their correlation is constant over time. In this respect, the simplified model is 

considerably more flexible than the Diagonal Vech model (which assumes that the 

covariance between 

ti,ε tj ,ε

ti,ε  and tj ,ε  is determined solely by their lagged covariance) and 

the Constant Correlation model (which assumes that the covariance between  ti,ε  and 

tj ,ε  is determined solely by their lagged variances). 

 

3. Empirical Illustration: Estimation of the Minimum Variance Hedge Ratio 

 

In this section, we illustrate the simplified multivariate GARCH model by estimating 

the minimum-variance hedge ratio for the FTSE 100 index portfolio, hedged using the 

FTSE100 index futures contract. When the conditional covariance matrix of spot and 

futures returns is time-varying, the minimum-variance hedge ratio at time t is equal to 

 

2
,

,

tf

tsf
th

σ
σ

=          (4) 

 

where tsf ,σ  is the conditional covariance of spot and futures returns and  is the 

conditional variance of futures returns (see, for example, Kroner and Sultan, 1993).   

2
,tfσ
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Data 

 

We obtained daily closing prices for the FTSE 100 index from Datastream, and for the 

FTSE 100 index futures contracts from LIFFE, for the period 04 May 1984 to 03 May 

2002, which is the longest common sample available. At any one time, there are four 

futures contracts outstanding. On each day, we use the nearest contract to delivery but 

rollover to the next nearest contract on the first day of the delivery month in order to 

avoid thin trading and expiration effects. Using the daily closing spot and futures prices, 

we computed continuously compounded returns. We removed the returns on the 

rollover dates from the sample in order to avoid spurious jumps in the futures price that 

arise from suddenly increasing the maturity of the futures contract. Table 1 gives 

summary statistics for the spot and futures returns. The mean returns are almost 

identical for the two series, and very close to zero. The volatility of futures returns is 

somewhat higher than the volatility of spot returns, which is a common empirical 

finding (see, for example, Kroner and Sultan, 1993). The ARCH(4) portmanteau test for 

up to fourth order serial correlation in squared returns shows that both spot and futures 

returns display significant volatility clustering. Both spot and futures returns are highly 

leptokurtic (which is consistent with the existence of time-varying volatility) and 

negatively skewed. The Jarque-Bera statistic very strongly rejects the null hypothesis of 

normality. 

 

[Table 1] 

 

Methodology 

 

In order to implement the multivariate GARCH model, we first estimate the conditional 

variances of  and . In principal, any conditional volatility model could be used, 

but to illustrate our approach, we use the simplest GARCH(1,1) specification. Since our 

interest is in modeling the conditional covariance matrix of spot and futures returns, and 

not expected returns, we include only a constant in the mean equation for both spot and 

futures returns. The model for  is therefore given by 

tsr , tfr ,

tsr ,

 

tsstsr ,, εµ +=          (5) 
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2

1,2,
2

1,1,0,
2
, −− ++= tsstsssts εβσββσ       (6) 

 

The model for  is given by tfr ,

 

tfftfr ,, εµ +=          (7) 

 
2

1,2,
2

1,1,0,
2

, −− ++= tfftffftf εβσββσ       (8) 

 

After estimating these two models, we compute the residuals ts,ε̂  and tf ,ε̂ , and using 

these, compute the new series tftst ,,, ˆˆˆ εεε +=+  and tftst ,,, ˆˆˆ εεε −=− . We then estimate the 

conditional variances of t,ˆ+ε  and t,ˆ−ε  using a GARCH(1,1) model with no mean 

equation specified (since ts,ε̂  and tf ,ε̂ , and hence t,ˆ+ε  and t,ˆ−ε , have zero mean by 

construction).3 The models for t,ˆ+ε  and t,ˆ−ε  are therefore given by 

 
2

1,2,
2

1,1,0,
2
, ˆ −++−++++ ++= ttt εβσββσ       (9) 

 
2

1,2,
2

1,1,0,
2
, ˆ −−−−−−−− ++= ttt εβσββσ       (10) 

 

The estimated conditional variances of t,ˆ+ε  and t,ˆ−ε  are then used to compute the 

conditional covariance of  and  using equation (3): tsr , tfr ,

 

))(4/1( 2
,

2
,, tttsf −+ −= σσσ        (11) 

 

The estimated conditional variance of futures returns, , and conditional covariance 

of spot and futures returns, , are then used to compute the minimum-variance hedge 

2
,tfσ

tsf ,σ

                                                 
3 The series t,ˆ+ε  and t,ˆ−ε  are subject to measurement error but since the information 
matrix is block diagonal, maximum likelihood estimation is consistent, and when the 
conditional distribution is normal, fully efficient (see, for example, Kroner and Ng, 
1998). 
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ratio using equation (4). We estimate each of the univariate GARCH models above by 

maximum likelihood with a conditional normal distribution, using the BHHH algorithm 

with a convergence criterion of 0.00001 applied to the coefficient values. Note that if 

 and  are both conditionally normally distributed, then tfr , tsr , t,+ε  and t,−ε  will also be 

conditionally normally distributed by construction. If  and  are conditionally non-

normal then we can rely on the consistency results of Quasi-Maximum Likelihood (see 

Bollerslev and Woolridge, 1992).

tfr , tsr ,

4   

 

Evaluation 

 

We compare our results with four of the most commonly used multivariate GARCH 

models, namely the Diagonal Vech (DVech) model of Bollerslev, Engle and Woolridge 

(1988), the BEKK model of Engle and Kroner (1995), the Constant Correlation (CC) 

model of Bollerslev (1990) and the Dynamic Conditional Correlation (DCC) model of 

Engle and Sheppard (2001). As with the simplified model, we estimate each of these 

multivariate GARCH models by maximum likelihood with a conditional normal 

distribution, using the BHHH algorithm with a convergence criterion of 0.00001 applied 

to the coefficient values. In each case, the mean equation for both spot and futures 

return is specified to include only a constant. 

 

In order to evaluate the performance of the five multivariate GARCH models, we 

employ two approaches. The first is a statistical evaluation. If a multivariate GARCH 

model is correctly specified then it should generate estimates of the realized covariance 

matrix that are conditionally unbiased. For each element of the covariance matrix, we 

test this using a regression of the realized variance (or covariance) on the estimated 

variance (or covariance). As a measure of the realized covariance matrix, we use the 

squares and cross-product of ts,ε̂  and tf ,ε̂ . We therefore estimate the following three 

equations. 

 
                                                 
4 Although Quasi-Maximum Likelihood estimation is consistent if  and  are 
conditionally non-normal, more efficient estimators of the conditional covariance matrix 
can be obtained by using, for example, the APARCH model of Ding, Granger and Engle 
(1993) (see Nelson and Foster, 1996). This is easily accommodated in the simplified 
multivariate GARCH model. 

tfr , tsr ,
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tstsssts v ,
2
,1,0,

2
,ˆ ++= σδδε        (12) 

 

tftffftf v ,
2

,1,0,
2

,ˆ ++= σδδε        (13) 

 

tsftsfsfsftfts v ,,1,0,,, ˆˆ ++= σδδεε        (14) 

 

If the estimated covariance matrix is conditionally unbiased, the intercept in each 

regression should be zero and the slope coefficient should be unity (see, for example, 

Andersen and Bollerslev, 1998). We estimate these regressions using OLS. The null 

hypothesis of conditional unbiasedness is tested for each regression using an F-statistic. 

The second approach is an economic evaluation. In particular, we report the standard 

deviation of the hedged portfolio for each model. The more accurate the estimated 

conditional covariance matrix, the lower should be the standard deviation of the hedged 

portfolio. We also report the standard deviation of the hedge ratio itself, which gives 

some indication of the likely transaction costs associated with a dynamic hedging 

strategy based on each model. 

 

Results 

 

Table 2 reports the correlation matrices for ,  and  across the five models. 

As expected, owing to the different restrictions that they impose, the five multivariate 

GARCH models yield quite different estimates of the covariance matrix of spot and 

futures returns. For all three elements of the covariance matrix, the lowest correlation is 

between the DCC and CC models, while the highest correlation is between the 

simplified model and the CC model, except for , where the correlation between the 

DCC and DVech models is marginally higher than between the simplified model and 

the CC model. Overall, the lowest correlation is 0.81 (between the DCC model and the 

CC model for ), while the highest correlation is 0.99 (between the simplified model 

and the CC model for ).  

2
,tsσ

2
,tfσ tsf ,σ

2
,tfσ

2
,tfσ

2
,tsσ

 

[Table 2] 
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Table 3 reports the results of the regressions to test the conditional unbiasedness of , 

 and  for each of the five multivariate GARCH models. For , the null 

hypothesis of conditional unbiasedness is rejected at the five percent significance level 

for all of the models except the simplified model, although for the CC and DCC models, 

the rejection is marginal. The rejection is particularly strong for the BEKK model. In 

contrast, for , the null hypothesis of conditional unbiasedness is rejected for all five 

models, although the rejection is weakest for the CC model, followed by the DVech 

model, the simplified model and the DCC model. Again, the null hypothesis of 

conditional unbiasedness is very strongly rejected for the BEKK model. For , the 

null hypothesis of conditional unbiasedness is rejected at the five percent level for all of 

the models except the CC and BEKK models, although for the remaining models, the 

rejection is very marginal. Overall, it would appear that in terms of conditional 

unbiasedness, there is little to choose between the simplified model and the DVech, CC 

and DCC models, but that the BEKK model performs significantly worse than these 

models.  

2
,tsσ

2
,tfσ tsf ,σ 2

,tsσ

2
,tfσ

tsf ,σ

 

 [Table 3] 

 

The first row of Table 4 reports the standard deviation of the estimated hedge ratio for 

the five multivariate GARCH models. The CC model yields the lowest hedge ratio 

standard deviation, reflecting the fact that it imposes the restriction that the correlation 

coefficient between spot and futures returns is constant, while the other models allow 

the correlation coefficient to vary over time. The BEKK model yields the highest hedge 

ratio standard deviation. The simplified model yields a hedge ratio standard deviation 

that is marginally higher than the DCC model. The second row of Table 4 reports the 

standard deviation of the hedge portfolio daily return for the five multivariate GARCH 

models. The DVech and DCC models yield the lowest hedge portfolio standard 

deviation, although the simplified model yields a standard deviation that is only 

marginally higher than these. The standard deviation for the CC and BEKK models is 

significantly higher than for the other models. Thus, in terms of hedge portfolio 
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standard deviation, the simplified model performs almost as well as the DVech and 

DCC models, and substantially better than the CC and BEKK models. 

 

[Table 4] 

 

Finally, Table 5 reports the estimation time for each of the five multivariate GARCH 

models. Even in this simple bivariate case, it is clear that estimation of multivariate 

GARCH models can be relatively time-consuming, with the BEKK model taking almost 

six minutes to estimate.5 However, the estimation time for the simplified model is less 

than half that of the other models. Moreover, these figures significantly understate the 

true computational advantage of the simplified model since they are based on the final 

estimation for each model after experimenting with different starting values for the 

model parameters. The simplified model converged directly, irrespective of the starting 

values for the parameters, while, in contrast, estimation of the other models required 

considerable experimentation with different starting values in order to achieve 

convergence. The DVech and BEKK models proved to be particularly problematic in 

this respect.  

 

[Table 5] 

 

4. Conclusion 

 

While commonly employed in the academic literature, multivariate GARCH models 

suffer from a number of problems in practice owing to the complexity of their 

specification. In particular, because of the large number of parameters that must be 

estimated simultaneously, multivariate GARCH models tend to be computationally 

burdensome. Moreover, because the likelihood function of these models is not globally 

concave, there is no guarantee that maximum likelihood estimation will converge to the 

correct parameter values, particularly when the models are supplemented by more 

complicated dynamics, asymmetric terms or dummy variables.   

 

                                                 
5 The models were estimated using the RATS 5.01 package on a Pentium IV 2.8 GHz 
PC. 
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In this paper, we propose a simple but effective multivariate GARCH model that 

overcomes these problems. The model that we propose involves the estimation of only 

univariate GARCH models, both for the individual return series and for the sum and 

difference of each pair of series. The covariance terms in the covariance matrix are then 

imputed from these variance estimates. Since the estimation involves only univariate 

GARCH models, it is considerably more straightforward to estimate than existing 

multivariate GARCH models and does not suffer from the convergence problems that 

typically characterise many of these models. 

 

We illustrate the simplified multivariate GARCH model, and compare it to four of the 

most widely used multivariate GARCH models – the Diagonal Vech model, the 

Constant Correlation model, the BEKK model and the Dynamic Conditional Correlation 

model – by estimating the minimum-variance hedge ratio for the FTSE 100 index 

portfolio, hedged using index futures. We evaluate the performance of each model both 

statistically, using a regression of each element of the realized covariance matrix on the 

corresponding element of the estimated covariance matrix, and economically, by 

considering the performance of the hedged portfolio. We find that by both measures, the 

simplified multivariate GARCH model performs at least as well as the other models that 

we consider, and in some cases better than them. 
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Table 1 Summary Statistics of FTSE 100 Spot and Futures Returns 
 

 tsr ,  tfr ,  
Mean 0.034% 0.034% 

Standard Deviation 1.002% 1.144% 
Skewness -0.706 -1.101 

Excess kurtosis  9.507 16.602 
Jarque-Bera 17414.126 52870.870 

ARCH(4) 734.221 340.620 
 
 
 
Notes: The table reports summary statistics for continuously compounded spot and 
futures returns for the FTSE 100 for the period 04 May 1984 to 03 May 2002. The 
Jarque-Bera statistic tests the null hypothesis of zero skewness and excess kurtosis, and 
has a  distribution with a critical value of 5.99 at the 5% significance level. The 
ARCH(4) statistic tests the null hypothesis that the first four partial autocorrelations of 
squared returns are zero, and has a  distribution with a critical value of 9.49 at the 
5% significance level. 

)2(2χ

)4(2χ
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Table 2 Correlation Matrices of ,  and  2
,tsσ

2
,tfσ 2

,tsfσ

 
 

Panel A: Correlation Matrix of  2
,tsσ

 
 
 

 
DVech 

 
CCR 

 
BEKK 

 
DCC 

Simplified 
Model 

DVech 1.000 0.913 0.938 0.975 0.933 
CCR  1.000 0.905 0.855 0.994 

BEKK   1.000 0.935 0.936 
DCC    1.000 0.895 

Simplified 
Model     1.000 

 
Panel B: Correlation Matrix of  2

,tfσ

 
 
 

 
DVech 

 
CCR 

 
BEKK 

 
DCC 

Simplified 
Model 

DVech 1.000 0.879 0.882 0.967 0.959 
CCR  1.000 0.881 0.809 0.966 

BEKK   1.000 0.919 0.934 
DCC    1.000 0.929 

Simplified 
Model     1.000 

 
Panel C: Correlation Matrix of  tsf ,σ

 
 
 

 
DVech 

 
CCR 

 
BEKK 

 
DCC 

Simplified 
Model 

DVech 1.000 0.882 0.886 0.976 0.916 
CCR  1.000 0.9140 0.825 0.986 

BEKK   1.000 0.892 0.940 
DCC    1.000 0.885 

Simplified 
Model     1.000 

 
 
Notes: The table reports the correlation matrices of ,  and  across the five 2

,tsσ
2

,tfσ 2
,tsfσ

multivariate GARCH models. 
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Table 3 Results for Conditional Bias Regressions 
 
 
   Panel A  tstsssts v ,

2
,1,0,

2
,ˆ ++= σδδε

 
 

 
 

 
DVech 

 
CCR 

 
BEKK 

 
DCC 

Simplified 
Model 

0,ŝδ  6.4E-06 -7.0E-06 -3.1E-05 6.6E-06 9.7E-06 

1,ŝδ  0.881 1.115 1.263 0.881 0.918 

F-statistic 4.436 3.771 27.654 4.793 2.190 
 
 

Panel B  tftffftf v ,
2

,1,0,
2

,ˆ ++= σδδε
 

 
 
 

 
DVech 

 
CCR 

 
BEKK 

 
DCC 

Simplified 
Model 

0,
ˆ

fδ  1.9E-05 1.7E-05 3.1E-05 2.0E-05 2.0E-05 

1,
ˆ

fδ  0.804 0.849 0.722 0.797 0.824 

F-statistic 7.664 6.277 32.771 9.181 8.213 
 
 

Panel C  tsftsfsfsftfts v ,,1,0,,, ˆˆ ++= σδδεε
 

 
 

 
DVech 

 
CCR 

 
BEKK 

 
DCC 

Simplified 
Model 

0,ŝfδ  3.5E-06 -4.0E-06 -1.1E-05 2.9E-06 1.0E-05 

1,ŝfδ  0.908 1.066 1.052 0.913 0.909 

F-statistic 3.440 1.848 2.372 3.392 3.150 
 
 
Notes: The table reports the results of estimating the conditional bias regressions for 

2
,tsσ ,  and . The F-statistic tests the null hypothesis that  and  

( ), and has an F(2, 4518) distribution with a critical value of 3.00 at the 5% 
significance level. 

2
,tfσ 2

,tsfσ 0ˆ
0, =iδ 1ˆ

1, =iδ
sffsi ,,=
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Table 4 Results for Minimum Variance Hedge Portfolio 
 
 

 
 
 

 
DVech 

 
CC 

 
BEKK 

 
DCC 

Simplified 
Model 

ĥ
σ  0.083 0.072 0.105 0.097 0.100 

pσ  0.400% 0.481% 0.512% 0.400% 0.403% 

 
 

Notes: The table reports the standard deviation of the estimated hedge ratio, 
ĥ

σ , and the 
standard deviation of the hedge portfolio return, pσ , for each of the five multivariate 
GARCH models. 
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Table 5 Estimation Time 
 
 

 
DVech 

 
CC 

 
BEKK 

 
DCC 

Simplified 
Model 

5mins 23secs 4mins 31secs 5mins 49secs 4mins 36secs 2mins 15secs 
 
 

Notes: The table reports the estimation time for each of the five multivariate GARCH 
models. The models were estimated using RATS 5.01 on a Pentium IV 2.8 GHz PC.  
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