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The relaxation of a smooth two-dimensional vortex to axisymmetry, also known as
‘axisymmetrization’, is studied asymptotically and numerically. The vortex is perturbed
at t = 0 and differential rotation leads to the wind-up of vorticity fluctuations to form
a spiral. It is shown that for infinite Reynolds number and in the linear approximation,
the vorticity distribution tends to axisymmetry in a weak or coarse-grained sense:
when the vorticity field is integrated against a smooth test function the result decays
asymptotically as t−λ with λ = 1 + (n2 + 8)1/2, where n is the azimuthal wavenumber
of the perturbation and n > 1. The far-field stream function of the perturbation
decays with the same exponent. To obtain these results the paper develops a complete
asymptotic picture of the linear evolution of vorticity fluctuations for large times t,
which is based on that of Lundgren (1982).

1. Introduction
In fluid flow at high Reynolds number there is a tendency for vorticity to aggregate

to form coherent vortices, both for planar flows (e.g. McWilliams 1984, 1990; Benzi
et al. 1986; Brachet et al. 1988) and in three dimensions (e.g. Kuo & Corrsin 1971,
1972; Siggia 1981; Kerr 1985; She, Jackson & Orszag 1990; Vincent & Meneguzzi
1991). Such concentrations of vorticity are associated with differential rotation of
the fluid, both inside and outside the vortex. This causes stretching of fluid elements
and means that fluctuations of vorticity (or a passive scalar) are wound up into
characteristic spiral structures, and so are driven to small scales. Our goal is to
discuss some of the consequences of differential rotation and this winding-up process
and its implications for the behaviour of vorticity and scalars in coherent planar
vortices.

We consider an idealized problem in which a smooth axisymmetric vortex with
vorticity Ω = Ω0(r) and associated stream function Ψ = Ψ0(r) is perturbed so as to
gain small non-axisymmetric components, and we study their subsequent evolution.
If this event occurs at t = 0 then for t > 0 the total vorticity and stream function
may be written

Ω = Ω0(r)+ εω(r, t)einθ +c.c.+O(ε2), Ψ = Ψ0(r)+ εψ(r, t)einθ +c.c.+O(ε2), (1.1a , b)

where (r, θ) denote the usual plane polar coordinates, n > 1 and ε � 1. Here ω and
ψ are generally complex and ‘c.c.’ refers to the complex conjugate of the preceding
expression. Our study will apply to a wide class of perturbations, but as an important
example (Lingevitch & Bernoff 1995, henceforth referred to as LB95) we can imagine
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Figure 1. (a) log |2nq(t)| (solid) plotted against log t for the vortex (1.3) with n = 2, L = γ = 1.
The three regimes labelled (A)–(C) are described in the text and the dotted line has slope −4.464.
(b) log |Re 2nq(t)| (solid) and log |Im 2nq(t)| (dotted) plotted against scaled time t/1000.

briefly and impulsively imposing a small external irrotational flow at t = 0. This
perturbation creates a non-axisymmetric component of vorticity, and is equivalent to
imposing a certain initial condition at t = 0+. For t > 0 the non-axisymmetric part
of the distribution is subject to differential rotation and the vorticity becomes wound
into a spiral.

We study this process within linear theory, i.e. only to order ε, and at infinite
Reynolds number, Re. The first problem of interest is the evolution of the far field
of the vortex. At large distances the perturbation stream function will be irrotational
and so behaves as

ψ(r, t) ∼ q(t) r−n (r →∞). (1.2)

What can be deduced about the behaviour of q(t) and, in particular, what is its
inviscid asymptotic behaviour for large time t?

To indicate why we find this question intriguing we show in figure 1(a) a plot of
log |2nq(t)| against log t obtained numerically for a vortex with a Gaussian distribution
of vorticity (Lamb 1932, § 334a). (The factor 2n is for convenience; see equation (2.22)
below.) This vortex takes the form

Ω0(r) =
γ

4πL2
exp(−r2/4L2), Ψ0(r) = − γ

2π

∫ r

0

[1− exp(−r2/4L2)]
dr

r
, (1.3a , b)

having length scale L and total circulation γ. Figure 1(a) illustrates the evolution
of q(t) for the particular choices n = 2, L = 1 and γ = 1 and the result is a
somewhat confusing curve with some strange kinks and a final power law like t−λ

with λ ' 4.5. There are in fact three distinct regimes here: two transients labelled
(A) and (B), followed by the asymptotic t−λ power law (C). The different regimes
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are seen more clearly in figure 1(b) which shows the phase behaviour of q(t) by
plotting log |Re 2nq(t)| (solid) and log |Im 2nq(t)| (dotted) against t/1000 (rather than
log t). The downward spikes correspond to zero crossings. It may be seen that the
three regimes correspond to different frequency behaviour, and that the kinks mark a
transition from regime (A) to (B). The primary objective in this work is to understand
these various regimes and especially the origin of the power law in (C) and the value
of λ.

A second aim is to quantify and understand the inviscid relaxation of the vortex to
axisymmetry. This process of ‘axisymmetrization’ has been observed widely in two-
dimensional turbulence and contour dynamics simulations (e.g. Melander, McWilliams
& Zabusky 1987; Yao & Zabusky 1996; Rossi, Lingevitch & Bernoff 1997) and more
generally in geophysical fluid dynamics (e.g. McCalpin 1987; Sutyrin 1989; Smith &
Montgomery 1995). Fluctuations that are generated tend to wind up into a spiral
structure because of the differential rotation of the vortex. As time increases the
spiral becomes ever tighter and the vortex becomes axisymmetric. However, this is
not a process in which the vorticity tends pointwise to an axisymmetric distribution;
indeed there remain vorticity fluctuations of order unity indefinitely, in the absence
of viscosity. Rather it is that the fluctuations are driven to ever smaller scales, and
so the vorticity only becomes axisymmetric in a coarse-grained or average sense. To
quantify this process we study the evolution of vorticity in a ‘weak’ sense. This is
defined precisely below, but the idea is that we take a fixed smooth test function f
and look at the evolution of the inner product (f, ω), i.e. the integral of f∗ω over
space. This taking of the inner product provides a suitable averaging process and it
is found that (f, ω) decays, with an asymptotic power law again of t−λ for typical
test functions f. The exponent λ depends only on the harmonic n and is independent
of the underlying vortex provided that it has a ‘generic’ structure, obeying a set of
natural conditions given in § 2 below.

In an average sense then the non-axisymmetric vorticity distribution ω tends to
zero, and so the original axisymmetric vortex is linearly ‘asymptotically stable’ in this
weak sense even for Re = ∞. This complements the result of Bernoff & Lingevitch
(1994, hereafter referred to as BL94) that for finite Re a vortex is asymptotically stable
in the sense of pointwise convergence to axisymmetry (discussed further below). It is
also known that such a vortex is nonlinearly Liapunov stable for Re = ∞ (Saffman
1985, 1992; Wan & Pulvirenti 1985; Dritschel 1988a). The question of the weak
convergence of ω as t→∞ is closely related to the evolution of q(t) discussed above:
the decay of the far field with time is just one measure of the relaxation of the vortex
to axisymmetry. The focus on weak measures of convergence appears a useful way to
discuss the creation of fine structure in systems such as this, and has found application
in broadly related magnetic dynamo problems (see e.g. Childress & Gilbert 1995).

To understand these weak decay processes, it is necessary to obtain a complete
asymptotic description of the winding-up of vorticity, valid for all space in the limit
t → ∞, and this is our third and final aim. Our starting point is Lundgren’s (1982)
asymptotic framework; here we are referring to the analysis of planar vortices in
his appendix A, rather than the transformation to three-dimensional axially strained
vortices, which is the main focus of that paper. The key idea is that as the vorticity
ω winds up and goes to smaller scales, the stream function decays for geometrical
reasons and, at late times, the vorticity behaves as a passive scalar in the flow
field given by Ω0, with the stream function giving only small corrections. While this
asymptotic analysis captures many of the essential features of the winding-up of ω
and decay of ψ, it does not throw any light on the behaviour of q(t). The expansion
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also becomes non-uniform at the points where differential rotation is small (as noted
by Lundgren) and this occurs at the origin of the vortex, in a region r = O(t−1/2).
Although this is a small and shrinking region of space, because ψ is determined
non-locally from ω, the region exerts an influence over the flow throughout space
and, perhaps surprisingly, determines the far-field behaviour of ψ and so q(t).

Our analytical study is strictly inviscid, and although we use low levels of viscosity
in our numerical calculations, it is not significant in any of the results we show. The
problem of the evolution of perturbations to an axisymmetric vortex at high finite Re
is considered by BL94. The emphasis of that work is on the interaction of viscosity
and the generation of small scales by shear to eliminate non-axisymmetric vorticity.
This is titled a ‘shear–diffuse mechanism’ and operates on a rapid time scale of order
Re1/3, leading to the asymptotic stability of axisymmetric vortices, in a strong sense:
at each point in space the vorticity tends to an axisymmetric distribution at large
time. This is also implicit in Lundgren’s (1982) paper, and has been discussed for
a passive scalar or vorticity by Rhines & Young (1982, 1983), Moffatt & Kamkar
(1983) and Gilbert (1988). Of course there are close parallels with our study: in BL94
the generation of fine scales by shear enhances viscosity and leads to rapid viscous
decay and axisymmetry, while in our work it is the same creation of small scales that
leads to the decay of weak measures of the vorticity, and so to axisymmetry in a
coarse-grained sense. In our paper the emphasis is on Re = ∞ and stability in this
weak sense, which means we have to probe the asymptotic structure of the flow more
deeply than was done in BL94.

Nevertheless there is one key idea that we take from their work with only minor
modification. They introduce and provide evidence for a

Mixing hypothesis (BL94): If an axisymmetric vorticity distribution is subject to a
linear non-axisymmetric perturbation that preserves the first moment of vorticity, this
perturbation will decay on a time scale of order Re1/3.

The condition that the first moment

(x, y) = γ−1

∫
(x, y)Ω d2r

(
γ =

∫
Ω d2r

)
, (1.4)

is zero is to factor out solid body translations of the vortex, which cannot decay in
time. BL94 also impose conditions on the class of vortices to which this hypothesis
applies, and these amount to conditions (2.15) below. For Re = ∞ pointwise decay of
vorticity cannot be expected, and so our version of this hypothesis is

Mixing hypothesis for Re = ∞: If an axisymmetric vorticity distribution is subject
to a linear non-axisymmetric perturbation that preserves the first moment of vorticity,
this perturbation will decay weakly to zero on the turnover time scale.

Note that the turnover time scale is the only one left in the problem for Re = ∞. We
are not in a position to prove either hypothesis, although our numerical simulations
offer support for the latter. Instead we assume the Re = ∞ hypothesis, and build an
asymptotic framework to describe the vorticity as t → ∞ and its weak decay. Given
this hypothesis, our results describe the evolution of a wide class of perturbations to
an extensive family of vortices.

The remainder of this paper is structured as follows. The vorticity problem is set
up in § 2 and the notion of weak convergence discussed. Both for insight and as
a convenient point of comparison we first set up an analogous scalar problem, the
development of a passive scalar in a given flow field. This scalar problem is studied
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analytically in § 3 and numerical simulations are presented in § 4. These simulations
not only verify the analytical results, but the program proved a useful precursor for
that used for the vorticity problem. Some counterparts to the vorticity results shown in
figure 1 are obtained in § 4: these results bear many similarities with figure 1 although
there are also some significant differences. Guided by these results, we return in § 5
to the study of vorticity and begin by developing Lundgren’s (1982) solution valid
for radial distances r = O(1) and as time t → ∞. This solution is non-uniform at
r2t = O(1) and so an inner region is identified which must be analysed separately in
order to provide a complete asymptotic picture of the vorticity at large times t. An
important outcome of our study is that Lundgren’s solution is not the only one which
is valid for r = O(1) and t→ ∞. We identify a second possible form, which we term
the ‘Helmholtz solution’; this also becomes invalid when r = O(t−1/2).

The detailed study of the inner region is tackled in § 6 and we find that the
vorticity here is governed at leading order by a third-order ordinary differential
system subject to suitable matching conditions. Although the analysis of this system
is somewhat elaborate, analytical solutions may be obtained in terms of standard
Kummer functions. The most significant outcome of this work is that the vorticity
distribution tends to axisymmetry in the weak sense described above: furthermore
when the vorticity field is integrated against a smooth test function the result decays as
t−λ with λ = 1+(n2 +8)1/2, where n is the azimuthal wavenumber of the perturbation.
This explains the origin of the power law decay of regime (C) shown in figure 1 and
our findings are supported by numerical simulations, which are described in § 7. In
§ 8 we give some concluding remarks, and some important but technical issues are
relegated to an Appendix.

2. Formulation of the vorticity problem
The equations for a planar vortex in a prescribed external irrotational flow may be

written

∂tΩ = J(Ψ +Ψext, Ω) + Re−1∇2Ω, (2.1)

∇2Ψ = −Ω, ∇2Ψext = 0, (2.2a , b)

∇2 ≡ ∂2
r + r−1∂r + r−2∂2

θ, J(a, b) ≡ r−1(∂ra ∂θb− ∂θa ∂rb). (2.3a , b)

In these equations Ω denotes the vorticity; Ψ is the corresponding stream function
determined by inverting (2.2a) and is permitted to grow no faster than log r for large
r. The externally imposed irrotational flow is given by the harmonic function Ψext

which may increase as a power of r. This external flow can be imagined as being
imposed by the motion of distant boundaries, paddles or vortices; however it must
not introduce vorticity into the region of interest.

We start with an axisymmetric vortex Ω = Ω0(r), Ψ = Ψ0(r) for t < 0. Without
loss of generality the non-dimensionalization implicit within equation (2.1) may be
taken to be such that the total circulation γ and length scale L of the vortex are
both unity. At t = 0 the vortex is supposed to be perturbed instantaneously so as to
generate small non-axisymmetric components ω and ψ as in the expansions (1.1) by,
for example, switching Ψext on and off briefly as discussed below. The subsequent free
evolution of ψ and ω at order ε is given by linearizing equations (2.1), (2.2a) about
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the basic vortex distribution (Ψ0, Ω0) and taking Ψext = 0 to yield

∂tω + inα(r)ω + inβ(r)ψ = Re−1∆ω (2.4)

and

∆ψ = −ω (∆ ≡ ∂2
r + r−1∂r − r−2n2). (2.5a , b)

The angular velocity α(r) and the quantity β(r) are given by

α(r) = −r−1∂rΨ0, β(r) = r−1∂rΩ0 (2.6a , b)

and we note that Ω0 = −r−1∂r(r∂rΨ0). The generation of vorticity from the axisym-
metric vorticity Ω0 is contained in the term inβ(r)ψ and for the vortex (1.3) (with
L = γ = 1)

α(r) = (2πr2)−1 [1− exp(−r2/4)], β(r) = −(8π)−1 exp(−r2/4). (2.7a , b)

In the remainder of this work frequent reference will be made to the Gaussian vortex
(1.3), so that we can apply our results to a concrete example. However, we emphasize
that our findings have wider application.

A natural way to generate a non-axisymmetric perturbation to the vortex at t = 0
is to apply the external irrotational flow Ψext impulsively, with

Ψext = εδ(t)rneinθ + c.c., (2.8)

in which δ(t) denotes the Dirac delta function. This disturbance is equivalent to
imposing the initial condition on the vortex at time t = 0+:

ω(r, 0+) = −inrnβ(r), ∆ψ(r, 0+) = −ω(r, 0+), (2.9a , b)

with the vortex then evolving freely for t > 0. Equations (2.4)–(2.6) and (2.9) represent
the linear initial value problem that is studied in this paper and, except for numerical
simulations, Re will be taken to be infinity. In this case there are no free parameters
left in the problem once the structure of the basic vortex is fixed by specification of
α(r) and β(r) (by (2.7) for example).

Switching Ψext on impulsively in this way is a convenient way of generating an
initial condition for the vorticity fluctuations, and will play no further role in our
study, which will apply to a broad class of initial perturbations subject only to the
mixing hypothesis for Re = ∞ discussed in § 1. Note however that this initial value
problem can be thought of as giving the Green’s function for the linear response to
external irrotational flows: the response to a continuous irrotational forcing would be
given by a convolution integral in the normal way. Thus the initial condition chosen
is special but nonetheless natural. This connection with the Green’s function has been
stressed in LB95 and the function studied for Re < ∞.

We are assuming that perturbations to the vortex satisfy the condition of the mixing
hypothesis for Re = ∞ stated in the introduction. Condition (1.4) is automatically
satisfied for n > 2, but for n = 1 it means that the initial perturbation must obey∫ ∞

0

ω(r) r2 dr = 0 (n = 1), (2.10)

which ensures that the initial condition is orthogonal to the time-invariant translation
mode of the vortex (see BL94 for discussion of this point). For n = 1 the stream
function (2.8) corresponds to uniform flow and in this case the initial condition
(2.9) is an infinitesimal translation which is precisely the time-independent solution
that condition (2.10) is designed to exclude. Thus (2.9) cannot be used as a starting
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condition when n = 1 and so we restrict its use to n > 2. Particular attention
will be paid to the case when n = 2 as this is the lowest value for which irrotational
disturbances lead to spiral wind-up. However, by the mixing hypothesis our asymptotic
results do hold for n = 1 perturbations satisfying (2.10) and this is verified numerically
in § 7.

Crucial in our analysis is the structure of the basic vortex, defined by Ω0 and Ψ0,
in regions where the differential rotation α′(r) = ∂rα(r) is smallest. We therefore need
to consider carefully its behaviour as r → 0 and r → ∞ and this leads to a set of
conditions which characterize the family of vortices to which our analysis applies.
These conditions are natural, define a class of ‘generic’ vortices, and are of course
satisfied by the Gaussian vortex (1.3).

The first requirement is that all physical quantities describing the flow field should
be ‘smooth’: that is, infinitely differentiable throughout space and in particular at the
origin. This means that if the Fourier component a(r)eimθ of a physical quantity is
extracted, and the function a(r) expanded in a power series in r for small r, this power
series must take the form

a(r)eimθ = rm(a0 + r2a1 + r4a2 + · · ·)eimθ (m > 0). (2.11)

That this is a necessary condition is seen by noting that ∇2rpeimθ = (p2 − m2)rp−2eimθ:
if a power other than those in (2.11) occurs in the series one could repeatedly apply
∇2 and thereby obtain a non-zero term in a negative power of r, contradicting the
requirement of being infinitely differentiable at the origin.

This smoothness condition applies to the axisymmetric stream function Ψ0 and
vorticity Ω0 which expand near the origin in a series of the form (2.11) with m = 0.
From the definitions of α and β in (2.7) this leads to similar expansions

α(r) = α0 + α1r
2 + α2r

4 + · · · , β(r) = β0 + β1r
2 + β2r

4 + · · · (2.12a , b)

and, since β = r−1∂r(r
−1∂r[r

2α]) from (2.6), the coefficients are related by

β0 = 8α1, β1 = 24α2, . . . . (2.13a , b)

For the vortex (1.3) (with γ = L = 1)

α0 = 1/8π, α1 = −1/64π = β0/8. (2.14a , b)

Our next constraint on the basic vortex is that the differential rotation α′(r) satisfies

α′(r) 6= 0 for r > 0. (2.15a)

This quantity necessarily vanishes at the origin (see (2.12a)), but we insist that it does
not vanish too quickly and so impose

α1 6= 0; (2.15b)

this is simply the requirement that the angular velocity not be especially flat at the ori-
gin. Also since the vortex has total circulation of unity in our non-dimensionalization,

α(r) ∼ 1/2πr2, α′(r) ∼ −1/πr3 as r →∞. (2.16a , b)

Finally we require that the basic vortex is ‘localized’, meaning here that the field Ω0(r)
should fall off faster than any power of r as r →∞. The perturbation vorticity ω(r, t)
is also taken to be localized at t = 0 and the reasonable assumption is made that this
continues to hold at later times.

In order to measure the weak behaviour of the vorticity field we introduce the
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inner product

(a, b) =
1

2π

∫ 2π

0

∫ ∞
0

a∗b r drdθ, (2.17)

along with a family of test functions f(r, θ). These are taken to be smooth in space
and localized in the sense described above. Since we focus on the behaviour of the
perturbation vorticity ω(r)einθ (with n > 1), it suffices to take a test function of the
same form, f(r)einθ . The requirement that such a function be smooth means that near
the origin f(r) must expand according to

f(r) = rn(f0 + f1r
2 + f2r

4 + · · ·); (2.18)

here use has been made of (2.11) with m = n. In the remainder of this work we will
use the family of test functions

f(r) = rn exp(−r2/4l2) (l < ∞), (2.19)

parameterized by the length scale l.
From now on we abbreviate the cumbersome expression (feinθ, ωeinθ) to

(f, ω) =

∫ ∞
0

f∗(r)ω(r, t) r dr (2.20)

with little risk of confusion. Taking an inner product of this form represents a coarse-
graining or local averaging of the vorticity field, and its decay with time quantifies
the relaxation of the perturbation vorticity to zero and the vortex to axisymmetry. It
may be checked that for test functions

−(f, ω) = (f,∆ψ) = (∆f, ψ) (2.21)

using integration by parts.
One useful function that falls outside our family of test functions is rn; although it

is the limiting case l = ∞ of (2.19) it is not localized. Following integration by parts
as used to derive (2.21) leads to the identity

(rn, ω) = − lim
r→∞

r2n+1∂r(r
−nψ) = 2nq(t); (2.22)

we recall that q(t) is defined in (1.2) and gives the far-field behaviour of ψ. This link
between 2nq(t) and the inner product (rn, ω) is the reason we base our plots on the
quantity 2nq(t) rather than q(t).

3. Analysis of passive scalar wind-up
Before tackling the vorticity problem as summarized by (2.4)–(2.6), (2.9), it is helpful

to examine the analogous but rather easier question of the wind-up and weak decay
of a passive scalar σ(r)einθ in the flow field determined by Ψ0(r). The scalar obeys

∂tσ + inα(r)σ = P−1∆σ, (3.1)

which should be compared with (2.4), where P denotes a Péclet number. For our
analysis it is assumed that P = ∞ and n > 1 while for numerical simulation and
comparison with the vorticity problem we use the initial condition analogous to
(2.9a),

σ(r, 0+) = −inrnβ(r), (3.2)
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although this form has no particular significance for the passive scalar. With these
assumptions the exact solution is

σ(r, t) = g(r)e−inα(r)t, g(r) = σ(r, 0+), (3.3a , b)

which represents the winding-up of the initial condition. At large times, it is plain
that σ does not decay pointwise although it does vary ever more rapidly as a function
of radius r, and so should decay weakly. To quantify this behaviour we take a test
function f(r)einθ and consider

(f, σ) =

∫ ∞
0

f∗(r)g(r)e−inα(r)t r dr (3.4)

as t→ ∞. This is a generalized Fourier integral and can be evaluated asymptotically
by standard methods (e.g. Erdélyi 1956, § 2.9). It may be shown that

(f, σ) = O(t−n−1) (3.5)

and so in a weak sense the scalar distribution does indeed converge to zero. Although
it is not difficult to verify this result, we give the argument here as it highlights the
role of the assumptions made in § 2 above. It is convenient to set H0(r) = rf∗(r)g(r)
and write (3.4) as

I0 =

∫ ∞
0

H0(r)e
−inα(r)t dr. (3.6)

Now H0 = O(r2n+1) as r → 0, which follows from (2.11) since feinθ and geinθ are
smooth at the origin with f ∼ f0r

n, g ∼ g0r
n. We take

H0(r) ∼ r2m+1(H00 +H01r
2 + · · ·), H00 = f∗0g0 (3.7a , b)

near the origin and we have set m = n in anticipation of an inductive step that reduces
the power r2m+1 of the integrand at the origin to r2m−1. The integral is rewritten as

I0 = t−1

∫ ∞
0

H0(r)

−inα′
{
−inα′te−inα(r)t

}
dr (3.8)

and we remember that α′ vanishes nowhere except at r = 0 where it is strictly of
order r from (2.15). Also α′ decays algebraically as r → ∞ (2.16b) while H0 tends to
zero faster than any power of r. It follows that the quantity H0/(−inα′) is finite at the
origin, tends to zero rapidly as r → ∞ and is bounded. Integrating {·} in (3.8) using
integration by parts and evaluating the boundary term yields

I0 =

{
t−1I1 (m > 1),

t−1I1 + t−1H00e
−inα0t/2inα1 (m = 0),

(3.9)

where

I1 =

∫ ∞
0

H1(r)e
−inα(r)t dr (3.10)

and

H1(r) = ∂r

(
H0

inα′

)
∼ r2m−1

inα1

(
mH00 + (m+ 1)

(
H01 − 2H00

α2

α1

)
r2 + · · ·

)
(3.11)

as r → 0.
Therefore, after starting with the integral I0 in which H0 = O(r2m+1), integration

by parts has led to an integral I1 of similar type with H1 = O(r2m−1) together with a
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boundary term if m = 0. Plainly this procedure can be used repeatedly to reduce m
from n in (3.7) right down to zero and then generate a sequence of boundary terms
from (3.9) which represents an asymptotic series for the original integral in inverse
powers of t. Applied to (3.4) this yields the leading term

(f, σ) =
n!

2

(
1

inα1t

)n+1

f∗0g0 e−inα0t + O(t−n−2), (3.12)

which confirms the result (3.5) concerning the weak convergence of the scalar field.
We have given results for the generic case in which the initial scalar field σ(r, 0+) =

g(r) has behaviour near the origin g(r) ∼ g0r
n with g0 6= 0, and similarly for the test

function f(r). We point out the role of assumption (2.15a) in ensuring that all the
contributions to the integral come from the origin, and (2.15b) in determining the
leading asymptotic form. However if one of f or g vanishes as o(rn) near the origin
then the decay of (f, σ) will occur at a faster rate, depending on the leading asymptotic
form of these functions. If f(r) or g(r) vanishes completely in a neighbourhood of
the origin then the convergence will be faster than algebraic and will arise from the
rapid oscillations away from the origin; the form of the decay is likely to be quite
sensitive to the precise form of f and g in this case, and we have not tried to obtain
general results.

4. Numerical study of scalar wind-up and transient behaviour
The predictions of § 3 were checked numerically by solving the system (3.1), (3.2)

subject to the Gaussian vortex distribution (2.7). The code integrated the partial
differential equation (3.1) with mode number n = 2 and the Péclet number P = 108

using N = 6001 points spread uniformly between r = 0 and r = rmax = 12. It might
seem more sensible to evaluate the integral (3.4) directly but we chose to solve the
PDE as the program was developed partially as a prototype for the vorticity code
used and discussed below in § 7.

Figure 2(a) shows α(r), α′(r) and β(r) for the basic axisymmetric flow field (2.7);
note that α′(r) vanishes only at r = 0, as stipulated. Figure 2(b) illustrates the resulting
scalar distribution σ as a function of r at t = 3000. To test the weak convergence
result (3.12), figure 3(a) shows log |(f, σ)| (solid) as a function of log t for the test
function of the type (2.19) with the parameter l = 1/2. Clear power law scaling is seen
with the correct power law of t−3; in fact for log t > 5 it is largely indistinguishable
from the asymptotic leading term (3.12) which is depicted by the dotted line. Note
that the range 0 6 t 6 104 of t used in the figure at first sight appears rather
large (also see figure 1). This is because even though the vortex has circulation and
scale of unity, the decay is governed by the combination nα1t (see (3.12)) and the
coefficient α1, although strictly O(1), is numerically small for the Gaussian vortex,
with α1 = −1/64π ' −1/200 from (2.14b).

The value l = 1/2 used in figure 3(a) shows most clearly the power law scaling. For
larger values of l, the asymptotic power law eventually emerges after a transient, which
can be long. To illustrate this, and for comparison with the vorticity problem (see
figure 1a), in figure 3(b) we plot log |(f, σ)| for the limiting case l = ∞, that is f(r) = r2.
The transient occurs for log t 6 8, after which the correct power law emerges. A hint
as to the cause of the transient may be seen from the scalar distribution shown in
figure 2(b); the asymptotic result (3.12) arises from the region of slow oscillations near
the origin; by ‘slow’ we mean oscillations varying relatively slowly in space compared
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Figure 2. (a) The flow structure: α(r) (solid), α′(r) (dashed) and β(r) (dotted) as given by (2.7).
(b) Scalar distribution Re σ (solid) and Im σ (dashed) against r, at t = 3000 for n = 2.

with the rapid oscillations for r = O(1). However there is also a zone of slow variation
for moderately large r around r ' 4.5 and this is the source of the transient, which is
of course subdominant to (3.12) for large time t.

To analyse this transient we consider the contribution from large r to the integral
(f, σ) (cf. BL94, § III). Substituting f (2.19) and σ (2.7), (3.2), (3.3) in (f, σ) yields

(f, σ)large r =
in

8π

∫
large r

r2n+1 exp(−r2/4l̂
2
− int/2πr2) dr, (4.1)

where l̂
−2
≡ 1 + l−2 and the approximation α(r) ∼ 1/2πr2 for large r has been used.

The argument of the exponential is stationary when

r = i1/4ρ, ρ = (2nl̂
2
t/π)1/4 (4.2a , b)

and if the contour of integration is distorted to go through the point with i1/4 = eiπ/8

the contribution from large-r values is evaluated by the method of steepest descents
as

(f, σ)large r = (in/8π)π1/2 ρ2n+1 l̂ exp(−ρ2(1 + i)/2
√

2 l̂
2

+ iπ(2n+ 1)/8). (4.3)

We remark that this calculation of the transient relies heavily on the explicit form of
the flow, the initial scalar distribution and the test function. In particular the result
lacks the general applicability of the t−n−1 contribution from the origin as given by
(3.12).

In order to confirm result (4.3), figure 3(c) shows a plot of log |Re (f, σ)| against
t/1000, giving phase information and good agreement between numerical values
(solid) and the asymptotic formula (4.3) (dotted) within the transient regime. Note
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Figure 3. (a) log |(f, σ)| as a function of log t for l = 1/2 and n = 2; numerical values are solid,
asymptotic values (3.12) are dotted. (b) As (a) but for l = ∞. (c) log |Re (f, σ)| plotted for l = ∞ as
a function of scaled time t/1000; numerical values are solid, asymptotic values (4.3) dotted.

for comparison with figure 3(b) that t = 3000 in figure 3(c) corresponds to log t ' 8.
After the transient the t−3 power law is recovered and the rapid oscillations show
the dominance of the origin where σ ∝ e−inα0t. This gives a period of oscillation of
Re (f, σ) of 2π/nα0 = 8π2 ' 78.96 for n = 2 in agreement with numerical results; the
superposed envelope in figure 3(c) is a result of aliasing as the data are collected every
10 time units. Finally we note that in the latter half of our simulation scalar diffusion
is beginning to play a role and plots similar to figure 2(b) show a damping of the rapid
scalar oscillations on the O(P 1/3) shear–diffuse time scale (not shown). However, the
contributions to a weak measure (f, σ) of scalar structure come mostly from regions
of slow oscillation, where diffusion is least effective, and the results shown in figure 3
are insensitive to diffusion, remaining unchanged when P is reduced further.

In this section we have analysed the weak convergence to zero of a passive scalar
in axisymmetric flow. Under quite general assumptions an asymptotic power law of
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t−n−1 is obtained, although there can also be a long transient arising from the far field.
The transient is sensitive to the detailed structure of the vortex, perturbation and test
function. In the particular case studied here, the transient decays as exp(−t1/2) with a
period of oscillation lengthening as t1/2, as the contribution arises from greater radii
r ∝ t1/4.

We have treated the case of the passive scalar in some depth since it gives clues
to the vorticity problem. Recall that figure 3(b,c) depicts (rn, σ) while the analogous
quantity (rn, ω) is equal to 2nq(t) by (2.22), which is shown in figure 1(a,b). Comparison
of these figures is worthwhile and it is immediately apparent that the scalar transient
in figure 3(c) is similar to vorticity regime denoted (B) in figure 1(b). Particular note
should be made of the way in which the frequency decreases with time in (B). We can
therefore identify regime (B) as a transient contribution to q(t) from the vorticity at
large r. Regime (C) of figure 1(a,b) is not dissimilar from the eventual power law of
figure 3(b,c) and the high frequency of the oscillations suggests that it too arises from
the centre r = 0 of the vortex. However the power law is notably steeper for vorticity
and clearly the coupling to the stream function is likely to be important.

5. Vorticity asymptotics for r = O(1): the intermediate solution
We next return to the wind-up of vorticity as governed by equations (2.4), (2.5).

The purpose of this section is to develop the asymptotic solution for spiral wind-up
taking r = O(1) and t→∞. We should record that despite the order of presentation,
the results of this section and the next were only obtained in conjunction with careful
study of the numerical simulations discussed in § 7.

Our starting point is the expansion in Lundgren (1982, appendix A); note that this
expansion includes nonlinear terms, but we have introduced the small parameter ε
and will retain only linear terms (as in BL94). It is a useful first move to factor out
the differential rotation in the basic flow by writing

ω = X(r, t) exp(−inα(r)t), ψ = Y (r, t) exp(−inα(r)t), (5.1a , b)

after which the system (2.4), (2.5) becomes (when Re = ∞)

∂tX + inβY = 0, (5.2a)

−X = (−n2α′2t2 − inα′′t)Y − 2inα′t∂rY − r−1inα′tY + ∆Y . (5.2b)

The structure of these equations suggests a large-t expansion of the type

X(r, t) ∼ X0(r) + t−1X1(r) + · · · , Y (r, t) ∼ t−2Y0(r) + t−3Y1(r) + · · · (5.3a , b)

under which (5.2a) becomes

jXj = inβYj−1 (5.4a)

and (5.2b) may be rewritten as

Yj = (n2α′2)−1[Xj − inα′′Yj−1 − 2inα′Y ′j−1 − r−1inα′Yj−1 + ∆Yj−2]. (5.4b)

These relationships apply for all j with the convention, which we shall adopt elsewhere
without comment, that Xj and Yj are zero for negative j.

This system of equations does not determine X0 and we write X0(r) = g(r). The
complex function g(r) is determined by the initial perturbation to the vortex and its
evolution through times t = O(1); as a result we know very little about it. From X0

(5.4b) determines Y0, then (5.4a) determines X1 and so on. This procedure thus yields
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the linearized form of Lundgren’s solution

ω =

[
g(r) +

iβg(r)

nα′2t
+ O(t−2)

]
e−inα(r)t, ψ =

[
g(r)

n2α′2t2
+ O(t−3)

]
e−inα(r)t, (5.5a , b)

valid for r = O(1) and t→ ∞. The expansion describes the decoupling of the stream
function as the vorticity becomes small-scaled through differential rotation and breaks
down at points where this differential rotation vanishes, α′(r) = 0 (Lundgren 1982).
In particular the appearance of the factor (n2α′2)−1 on the right-hand side of (5.4b)
shows that the series solution (5.3) is valid for α′2t � 1 but becomes non-uniform
when α′2t = O(1): this is also apparent in (5.5a). Given the form of α (2.15) employed
in this study the solution is non-uniform for small r where r2t = O(1). An inner
expansion is required to address this non-uniformity, and this is considered in the
following section where the governing equations are rewritten in terms of s ≡ r2t and
t. There is also non-uniformity at large r but it turns out that it can be ignored for
most purposes, and, in the interests of clarity, it is omitted from discussion in §§ 5, 6.
However this issue is taken up briefly in the Appendix, §A.2.

Lundgren’s solution (5.5) is not the only one valid for r = O(1) and t→∞. In fact
the inner solution will also drive what we shall call ‘Helmholtz solutions’ in r = O(1):
this name is chosen because of the form of (5.9a), (5.12a) below. These are described
by the expansions

ω = X(r, t) exp(−inα0t), ψ = Y (r, t) exp(−inα0t), (5.6a , b)

X(r, t) ∼ t−λ(X0(r) + t−1X1(r) + · · ·), Y (r, t) ∼ t−λ(Y0(r) + t−1Y1(r) + · · ·); (5.7a , b)

to avoid a plethora of symbols, we reuse X and Y for the various different expansions
of ω and ψ. The exponential in (5.6) represents the rotation of the centre of the
vortex, from where these solutions are driven, and the exponent λ is to be determined.
Substituting into (2.4) and (2.5) yields

(−λ− j + 1)Xj−1 + in(α− α0)Xj + inβYj = 0, −Xj = ∆Yj (5.8a , b)

and combining the equations for X0 and Y0 leads to

∆Y0 −
β

α− α0

Y0 = 0 (5.9a)

for the leading-order part of the solution, while higher orders are determined by

∆Yj −
β

α− α0

Yj =
λ+ j − 1

in(α− α0)
∆Yj−1. (5.9b)

As r → 0 so α−α0 ∼ α1r
2 and β ∼ β0, and equations (5.8b), (5.9a) show that solutions

behave as

X0 ∼ (−β0/α1)r
±w−2, Y0 ∼ r±w (w ≡ (n2 + β0/α1)

1/2). (5.10a , b, c)

Note that β0/α1 = 8 according to (2.13a); however we prefer not to substitute the
numerical value for the present, as the algebraic form is more revealing of the structure
of the problem.

For large r, where β ' 0, solutions Y0 to (5.9a) behave as a linear combination of
rn and r−n and for a physically sensible solution growth as r → ∞ must be excluded.
We therefore write the Helmholtz solution in the form

X0 = −βh(r)/(α− α0), Y0 = h(r), (5.11a , b)
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in terms of a function h(r) which satisfies

∆h− β

α− α0

h = 0 (5.12a)

subject to

h(r) ∼ r−n as r →∞, h(r) ∼ h0r
−w as r → 0, (5.12b, c)

in which h0 is a constant. Boundary condition (5.12b) precludes unphysical behaviour
and normalizes h(r) while (5.12c) reflects the fact that at small r, h(r) will contain
a mixture of the two behaviours r±w in (5.10b), of which r−w is the dominant. Like
Lundgren’s solution, this one is also non-uniform at the origin. It can be checked
from (5.8), (5.9) that the leading powers in X1 and Y1 as r → 0 are a factor of r−2

times those in X0 and Y0 and so both Helmholtz and Lundgren solutions become
non-uniform when r2t = O(1).

A combination of Lundgren’s form (5.5) and a multiple C of the physically
acceptable Helmholtz solution (5.11) yields the complete expansion

ω =
[
g(r) + O(t−1)

]
e−inα(r)t + Ct−λ

[
− β

α− α0

h(r) + O(t−1)

]
e−inα0t, (5.13a)

ψ =

[
g(r)

n2α′2t2
+ O(t−3)

]
e−inα(r)t + Ct−λ

[
h(r) + O(t−1)

]
e−inα0t (5.13b)

in r = O(1) for large t, valid for r2t� 1. For large r, β(r)→ 0 rapidly, and we expect
g(r) and other terms in the Lundgren solution to do the same – this is verified in the
Appendix, §A.2. Thus as r →∞ so ψ ∼ Ct−λe−inα0tr−n and from (1.2) the identification
q(t) ∼ Ce−inα0tt−λ may be made. The exponent λ is indeed that describing the decay
of the far field as introduced in § 1.

In order to resolve the non-uniformity in solution (5.13) and to match onto the
appropriate inner solution we will need to consider behaviour for small r in an overlap
region t−1/2 � r � t−1/4. Here (5.13) is approximated as

ω ∼
[
g0r

µe−inα1r
2t − Ch0β0

α1

r−w−2 t−λ
]

e−inα0t, (5.14a)

ψ ∼
[
g0

4n2α2
1

rµ−2t−2e−inα1r
2t + Ch0r

−wt−λ
]

e−inα0t, (5.14b)

in which it has been assumed that

g(r) ∼ g0r
µ as r → 0, (5.15)

where µ is a power to be determined later.
In § 6 we will use the variable s = r2t to analyse the inner region. The expressions

(5.14), when cast in terms of s and t, give that in the overlap region with 1� s� t1/2,

ω ∼
[
g0s

µ/2t−µ/2e−inα1s − Ch0β0

α1

s−w/2−1tw/2−λ+1

]
e−inα0t, (5.16a)

ψ ∼
[
g0

4n2α2
1

sµ/2−1t−µ/2−1e−inα1s + Ch0s
−w/2tw/2−λ

]
e−inα0t (5.16b)

and we recall that w is given by (5.10c). The aim of analysing the inner expansion is
to fix the exponents µ and λ, and also to fix Ch0 in terms of g0. One likely condition is
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suggested immediately: since we would expect the Lundgren and Helmholtz solutions
in (5.16) to have a common power of t (to give greatest flexibility in the inner
problem), the tentative identification

2λ = w + µ+ 2 (5.17)

may be made. To confirm this and in order to tie down the individual constants we
next analyse the inner region.

6. Vorticity asymptotics for r2t = O(1): the inner solution
In terms of the inner variable s = r2t the vorticity and stream function may be

written

ω = X(s, t) exp(−inα0t), ψ = Y (s, t) exp(−inα0t), (6.1a , b)

to give from (2.4), (2.5),

∂tX + st−1∂sX + in(α1st
−1 + α2s

2t−2 + · · ·)X + in(β0 + β1st
−1 + · · ·)Y = 0, (6.2a)

and

−t−1X = 4s∂2
s Y + 4∂sY − n2s−1Y . (6.2b)

The structure of these partial differential equations with respect to the time variable
suggests the expansions

X(s, t) = t−κ(X0(s)+t
−1X1(s)+· · ·), Y (s, t) = t−κ−1(Y0(s)+t

−1Y1(s)+· · ·), (6.3a , b)

and the substitution of these into system (6.2) gives at leading order

−κX0 + sX ′0 + inα1sX0 + inβ0Y0 = 0, (6.4a)

−X0 = 4sY ′′0 + 4Y ′0 − n2s−1Y0. (6.4b)

A solution of (6.4) is sought that is well-behaved at the origin in the precise sense that
ω and ψ must be smooth there. This means from (2.11) that a power series in s for
X0 or Y0 must begin as sn/2+j where j is a non-negative integer (which would usually
be zero); moreover the solution must also match onto the intermediate solution (5.16)
for large s.

It is a routine exercise to find the possible behaviours of the third-order system
(6.4) for s� 1. There are three linearly independent forms:

X0 = sκe−inα1s(4n2α2
1 + O(s−1)), Y0 = sκ−1e−inα1s(1 + O(s−1)), (6.5a , b)

X0 = sw/2−1(−β0/α1 + O(s−1)), Y0 = sw/2(1 + O(s−1)), (6.6a , b)

X0 = s−w/2−1(−β0/α1 + O(s−1)), Y0 = s−w/2(1 + O(s−1)). (6.7a , b)

A comparison with the intermediate solutions (5.16) makes it obvious that the second
of these s � 1 solutions (6.6) must be rejected and this provides one constraint on
the solution of the inner problem. Furthermore, if the inner solution is to match onto
the Lundgren part of the intermediate forms (5.16) it is necessary that

µ = 2κ. (6.8)

Lastly, note that with the relations (5.17) and (6.8) the large-s behaviour (6.7) of
the inner problem matches automatically onto the Helmholtz component of (5.16).
In consequence, we expect that an appropriate inner solution of system (6.4) may
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contain parts of both (6.5) and (6.7) as s → ∞, as each component can be matched
satisfactorily onto the r = O(1) solutions.

Next, it is necessary to consider the small-s behaviour of (6.4) in an attempt to fix
the parameter κ. A solution to (6.4) of Frobenius type is based on the ansatz

X0 =

∞∑
j=0

xjs
ρ+j−1, Y0 =

∞∑
j=0

yjs
ρ+j , (6.9a , b)

in which we choose the normalization y0 = 1, and yields the recurrence relations

(ρ+ j − 1− κ)xj + inα1xj−1 + inβ0yj−1 = 0, −xj = [4(ρ+ j)2 − n2]yj. (6.10a , b)

Putting j = 0 and eliminating x0 gives the indicial equation

(ρ− 1− κ)(4ρ2 − n2) = 0, (6.11)

which has roots ρ = n/2, −n/2 and κ + 1. Plainly the solution corresponding to
−n/2 must be rejected, otherwise the smoothness requirements on the solutions at
the origin would be violated.

Now suppose that κ−n/2 is an integer. Then all three roots of the indicial equation
(6.11) differ by integers and generally only one solution is well-behaved at the origin.
If this one remaining solution is integrated from s = 0 then, with κ fixed and with
no free parameters left in the problem, the large-s behaviour of system (6.4) will
in general contain a mixture of all three far-field behaviours (6.5)–(6.7). This is not
permitted for the reasons discussed below (6.5)–(6.7) and therefore the possibility
that κ − n/2 is an integer must in general be rejected. This turns out to be correct
for azimuthal wavenumber n > 2 and the validity of this assumption will later be
confirmed. However it turns out that n = 1 is a very special case: for n = 1 and
κ − n/2 = 1, the unique acceptable small-s solution of (6.4) turns out to have no
component of (6.6) present as s → ∞ and so is an acceptable solution of the inner
problem. We shall postpone further discussion of the peculiarities in the n = 1 problem
until § 6.2 below; until then we restrict to n > 2 only.

6.1. The inner solution for n > 2

The upshot of the above is that we take n > 2 for the moment, and κ − n/2 not
equal to an integer. This means that the root ρ = κ+ 1 of (6.11) gives a solution for
ω and ψ that is not infinitely differentiable at the origin and which must therefore
be discarded. All that remains is the single solution with ρ = n/2 emerging from the
origin, which takes the form

X0 = sn/2(inβ0(κ− n/2)−1 + O(s)), Y0 = sn/2(1 + O(s)), (6.12a , b)

and κ is a parameter yet to be tied down.
We are left with an eigenvalue problem: system (6.4) must be solved subject to

the small-s behaviour (6.12) and κ chosen so that the large-s asymptote is a linear
combination of (6.5) and (6.7); in other words, there must be no component of
(6.6). This problem was tackled numerically. Accurate small- and large-s forms were
calculated by generating several terms in the expansions (6.5), (6.7), (6.12). The one
small-s and two large-s asymptotes were integrated numerically and matched together
at a suitable point. For a given value of κ all but one derivative could be matched
automatically at this point (by appropriate choices of the coefficients of the linearly
independent solutions) and iteration on κ enabled this last derivative to be matched.
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Intriguingly, our work indicated that to within numerical accuracy

κ =
1

2
(n2 + β0/α1)

1/2 =
w

2
. (6.13)

We have already mentioned that for the physical problem n is an integer and β0/α1 = 8
(see (2.13)), but this eigenvalue problem in an abstract sense is well-posed for any
positive n and β0/α1 and the result (6.13) appeared to continue to hold even for
non-physical values of these constants.

This suggested that this eigenvalue problem might be amenable to a theoretical
approach and motivated a search both for analytical justification of (6.13) and for
exact inner solutions. To this end, if xj is eliminated in favour of yj in (6.10) with
ρ = n/2 it is found that

(j + 1)(n+ j + 1)(κ− n/2− j)yj+1 = (j(n+ j)− β0/4α1)inα1yj. (6.14)

When the suggested value κ = w/2 is used to substitute β0/4 = α1(κ
2 − n2/4) in

this recurrence relation, there is a remarkable cancellation of a (non-zero) factor
κ− n/2− j from both sides to leave

yj+1 = −inα1yj
j + n/2 + κ

(j + 1)(j + 1 + n)
. (6.15)

This recurrence relation essentially gives coefficients of the power series expansion of
Kummer’s function M(a, b, z). For properties of this function the reader is referred to
Abramowitz & Stegun (1965, referred to as AS65 below): we make extensive use of
§ 13 of this book, in this case (13.1.2). Having identified the origin of the recurrence
relation (6.15) the explicit solution to the eigenvalue problem may be obtained as

X0 =
inβ0

κ− n/2 s
n/2M(n/2 + κ+ 1, n+ 1, ŝ), Y0 = sn/2M(n/2 + κ, n+ 1, ŝ), (6.16a , b)

in which ŝ ≡ −inα1s. This solution agrees with the small-s asymptote (6.12) and it may
also be checked that the solution obeys equations (6.4) directly using results (13.1.1,
4.10, 4.11) of AS65. However, this throws little light on why this exact solution exists.

Lastly, it has to be ensured that (6.16) takes the correct asymptotic form as s→∞.
In this limit, (13.5.1) of AS65 shows that

X0 ∼ inβ0(κ− n/2)−1(A1s
κe−inα1s +A2s

−κ−1), Y0 ∼ (A3s
κ−1e−inα1s +A4s

−κ), (6.17a , b)

with constants

A1 = (−inα1)
κ−n/2 Γ(n+ 1)

Γ(n/2 + κ+ 1)
, A2 = e±iπ(n/2+κ+1)(−inα1)

−n/2−κ−1 Γ(n+ 1)

Γ(n/2− κ)
,

(6.18a , b)

A3 = (−inα1)
κ−n/2−1 Γ(n+ 1)

Γ(n/2 + κ)
, A4 = e±iπ(n/2+κ)(−inα1)

−n/2−κ Γ(n+ 1)

Γ(n/2− κ+ 1)
.

(6.18c, d )
The upper sign is taken if α1 < 0, as for the Gaussian vortex (1.3), and the lower
sign for α1 > 0. This solution is indeed a linear combination of the large-s asymptotic
solutions (6.5), (6.7), and excludes (6.6).

The conclusion is that we have successfully constructed the inner solution explicitly
and so have shown that the parameter κ is given by equation (6.13). In deriving
this solution we assumed that κ − n/2 is not an integer. Revisiting this, we see that
since β0/α1 = 8 from (2.13a), κ = (n2 + 8)1/2/2 and this assumption is verified for all
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n > 2. However, the case n = 1 would give κ = 3/2, which violates the assumption, as
indicated earlier; in view of the condition (2.10) of the mixing hypothesis it is perhaps
unsurprising that n = 1 is a special case, and we deal with it separately in § 6.2 below.

Now that κ is known we can identify the exponent giving the asymptotic decay
rate of the far field. From (5.17), (6.8) and (6.13),

λ = 1 + w = 1 + (n2 + β0/α1)
1/2 = 1 + (n2 + 8)1/2 (6.19a)

and this is the main result of our paper. The exponent governing the small-r depen-
dence of g(r) has the somewhat unexpected value

µ = w = (n2 + β0/α1)
1/2 = (n2 + 8)1/2 (6.19b)

and as a consequence for n > 2, g(r) is a function which is not smooth at the origin:
this lack of smoothness, of course, is dealt with by the inner solution. Comparing
vorticity with a passive scalar, the coupling to the stream function leads to a greater
suppression of vorticity near the origin (as µ > n); together with this comes the
steeper power law t−λ as compared with t−n−1 for a passive scalar.

Finally, we can obtain the ratio of the sizes of the Lundgren and Helmholtz
solutions in the r = O(1) region by requiring (6.17), (6.18) to match with (5.16). This
shows that

Ch0

g0

= −n/2 + κ

inβ0

Γ(n/2 + κ)

Γ(n/2− κ)
(−inα1)

−2κe±iπ(n/2+κ). (6.19c)

6.2. The inner solution for n = 1

We have already indicated that the inner problem described above requires some
special care for n = 1. In fact n = 1 is a special case for the full linear vortex stability
problem, since there is an exact time-independent solution

ω = −irβ(r), ψ = irα(r) (6.20)

of equations (2.4), (2.5), corresponding to a translation of the basic vortex. This
solution has a non-zero and constant q(t). Now the mixing hypothesis applies only
to initial conditions which obey (2.10) for n = 1, and so which are orthogonal to the
solution (6.20) (BL94). In fact (2.10) is equivalent to (r, ω) = 0 and (r, ω) = 2q(t)
from (2.22), and so the condition of the mixing hypothesis amounts to q(t) = 0 for
n = 1.

Because n = 1 is a special case it is worth revisiting the development of § 5 as well
as § 6. Other than noting that the exact solution (6.20) above does not fit into any of
our asymptotic frameworks, the analysis of § 5 goes through without modification, in
particular the Lundgren and Helmholtz solutions remain valid. However, on reaching
the discussion after equation (5.13), we realize that the Helmholtz solution is associated
with a non-zero q(t), which decays and oscillates with a frequency characteristic of the
vortex centre. Since the mixing hypothesis demands q(t) = 0, it is clear that we cannot
allow the Helmholtz solution to be excited. Thus for n = 1 only, the vorticity and
stream function in the intermediate region must consist only of the Lundgren solution,
that is, the multiple C of the Helmholtz solution in (5.13), (5.14), (5.16) must be zero.

We move now to the inner region and take β0/α1 = 8 only. Of the large-s solutions
(6.5)–(6.7), we must reject not only (6.6) but also the solution (6.7) which matches to
the non-existent Helmholtz solution in the intermediate region. Following the large-s
asymptotic solutions, we reach the Frobenius analysis of § 6. It turns out, however,
that it pays to skip the derivation and move directly to assess the validity of the final



128 A. P. Bassom and A. D. Gilbert

results of this analysis. Equation (6.13) gives κ = 3/2 and although this violates our
earlier assumption that κ− n/2 should not be an integer, the corresponding solution
(6.16) is well-defined, satisfies the governing equations (6.4), and has the correct
smoothness properties at the origin. Furthermore, for these values n = 1 and κ = 3/2
the constants A2 and A4 are zero (as Γ(n/2 − κ) and Γ(n/2 − κ + 1) diverge). Thus
the inner solution matches onto the Lundgren solution in the intermediate region,
but contains no element of the Helmholtz solution, as required.

We therefore conclude that despite the caveats raised earlier about the case n = 1,
κ = 3/2, the final results of the analysis (6.13), (6.16) do represent the solution of the
inner problem, and the results (6.19) for the exponents remain valid in the case n = 1.
In particular λ = 4 and this governs the decay of weak measures of vorticity (f, ω) as
will be shown in the Appendix, §A.1 (q(t) is zero and so λ does not govern its decay).
Also the Kummer functions in (6.16) simplify in this case (as does the recurrence
relation (6.15)) to leave the n = 1 inner solution as

X0 = 8iα1s
1/2(1− iα1s/2)e−iα1s, Y0 = s1/2e−iα1s. (6.21a , b)

Why then do our arguments that κ − n/2 cannot be an integer break down?
Although we typically expect logarithmic terms to arise when two solutions ρ of the
indicial equation (here ρ = n/2 = 1/2, ρ = κ + 1 = 5/2) vary by an integer, this is
not the case here. There is another solution of the governing equations (6.4) for n = 1
and any κ:

X0 = −16iα1s
1/2, Y0 = (1− 2κ)s1/2 + 2iα1s

3/2. (6.22a , b)

For the root ρ = n/2 = 1/2 either (6.21) or (6.22) (with κ = 3/2) may be taken as the
Frobenius solution. For ρ = κ+1 = 5/2 a suitable linear combination of (6.21), (6.22)
may be taken to eliminate terms in s1/2, s3/2 in the series for Y0 and provide another
Frobenius solution. No logarithms arise. Note that the extra solution (6.22) cannot
be matched to the intermediate solution and so is absent in the physical problem,
leaving only (6.21).

Although we have identified the correct n = 1 inner solution, we mention at this
stage that there is another solution that comes very close to satisfying the constraints
of the inner problem. This solution has κ = 1, and it was only noted because of
spurious numerical results for n = 1 discussed below in § 7. When n = κ = 1 one
solution of (6.4) is (6.22) with κ = 1 substituted, which can be written

X0 = 16iα1ŝ
1/2, Y0 = ŝ1/2(1 + 2ŝ), (6.23a , b)

with ŝ ≡ −iα1s as before. We can also repeat the Frobenius analysis of (6.4) along the
lines described previously and these calculations show that a second solution of this
system is

X0 = iα1[(4ŝ
3 + 10ŝ2)M ′ + (2ŝ2 + 15ŝ)M], Y0 = ŝ2M, (6.24a , b)

where M ≡M(1/2, 5/2, ŝ) and ′ denotes differentiation with respect to ŝ.
Now solution (6.24) has a mixture of algebraic and oscillatory behaviour for large s

(cf. (6.17)), while (6.23) has purely algebraic behaviour. Remarkably it turns out that
one can take a linear combination of these solutions (specifically (6.23) plus ∓8i/3π1/2

times (6.24)) to eliminate all algebraic behaviour for large s, leaving only a growing
oscillatory solution. This far-field behaviour is exactly what is required. However this
solution violates smoothness at the origin, which requires that inner solutions expand
in powers s1/2+j for non-negative integers j by (2.11); the Kummer part of the solution
introduces integer powers of s. Specifically the leading term of X0 is, correctly, s1/2,
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but this is followed by a term in s, which is not allowed. Similarly the expansion for
Y0 begins s1/2, s3/2, s2, and this s2 term is not allowed. Thus this n = κ = 1 form is
not an eigensolution of system (6.4) subject to the necessary constraints. However,
the loss in regularity is small compared to the leading-order terms and so it is not
surprising that our numerical simulations fail to reject this ‘near’ solution. We will
comment further on this in § 7 below.

7. Numerical study of vorticity wind-up and transient behaviour
In order to obtain and test the results of § 6, a code was written to solve the initial

value problem (2.4), (2.5), (2.7), (2.9). The equations were rewritten as eight first-order
partial differential equations for the real and imaginary parts of ω, ωr , ψ and ψr ,
with only those for ω containing a time derivative. This system was then integrated
forward in time with a routine from the nag suite that uses a Keller box method,
together with the boundary conditions

ω = ψ = 0 at r = 0, ω = r∂rψ + nψ = 0 at r = rmax. (7.1)

The last boundary condition imposes that ψ ∼ Ar−n for large r. For the first set of
results the parameter values

n = 2, Re = 108, rmax = 15 (7.2)

were used with a grid of N = 7501 points. Large values of rmax, certainly bigger than
10, were needed to allow accurate evaluation of inner products (using another nag

routine), especially (rn, ω).
Weak diffusion is included for numerical reasons, but has a negligible effect on

the results we display. The basic axisymmetric flow (1.3) does not diffuse in our
simulations, as it would only do so on an O(Re) time scale, well beyond our runs (cf.
BL94). The principal time scale on which diffusion acts on the perturbation is the
shear–diffuse time scale of O(Re1/3). At first this appears rather short with Re = 108;
however in fact the decay is as exp(−n2α′2t3/3Re) (Lundgren 1982; BL94) and α′

is numerically small (see figure 2a) with |α′| <∼ 0.01. This increases the shear–diffuse

time scale to about 104. Indeed by the end of our longest runs diffusion is having
some effects on the finest spiral fluctuations but not at the centre of the vortex which
dominates the power law decay and the driving of the Helmholtz solution.

The main case we study is n = 2. Figure 4(a) shows the distribution of vorticity ω(r)
with real part solid, imaginary part dotted, at time t = 3000; this may be compared
with the similar figure 2(b) for the scalar distribution. Figure 4(b) shows the function
g(r) calculated from the vorticity distribution at t = 3000 using g(r) ∼ ω(r)einα(r)t for
large times t (see (5.13a)). Except near the origin g(r) has converged to its final form;
this depends both on the initial conditions and on the evolution during t = O(1),
which is beyond our analysis. However, we have uncovered the small-r behaviour
(5.15), (6.19b) and, in fact, g(r) is approximately given by the initial condition for
large r, as is discussed in the Appendix, §A.2.

From the results of § 6 we have complete knowledge of the asymptotic form of
the vorticity and stream function in the inner region r = O(t−1/2). In figure 4(c,d) we
compare the numerical solution (solid) and the asymptotic solution (dotted) in this
region. Specifically we set

X̃0 = Aeinα0ttκs−n/2ω, Ỹ0 = Aeinα0ttκ+1s−n/2ψ. (7.3a , b)

The right-hand side of these equations is obtained from the numerical solution at a
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Figure 4. (a) Vorticity distribution Reω (solid) and Imω (dotted) against r, at t = 3000 for n = 2.

(b) g(r) for n = 2 calculated from ω at t = 3000, with real part solid, imaginary part dotted. (c) X̃0

plotted against s for n = 2 and t = 5000, with numerical values solid and asymptotic values (7.4)

dotted. (d) As (c) but for Ỹ0.
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approximation using (4.3) is shown dotted.

given time and the normalization constant A fixed to make Ỹ0 = 1 at r = 0. From
(6.2), (6.3), (6.16) the asymptotic form of these quantities, as functions of s should
then be

X̃0 = inβ0(κ− n/2)−1M(n/2 + κ+ 1, n+ 1, ŝ), Ỹ0 = M(n/2 + κ, n+ 1, ŝ). (7.4a , b)

The Kummer functions may be evaluated directly from the series (13.1.2) in AS65. In

figure 4(c) we show the real and imaginary parts of X̃0 against s at t = 5000; good
agreement is observed between numerical results (solid) and the asymptotic results
(dotted), and in fact the agreement improves as time increases (not shown). Figure

4(d) shows the same for Ỹ0.
For n = 2 the exponent λ = 1 +

√
12 ' 4.464. This governs the final decay of

q(t) as seen in figure 1(a). It also gives the decay of typical weak measures of the
vorticity distribution. This is because for n > 2 and a typical test function f, (f, ω)
is dominated by the Helmholtz component of ω, which decays at precisely this rate,
a point justified in the Appendix, §A.1. Granted this, the t−λ power law can be seen
more clearly using a test function which is localized closer to the origin. Figure 5(a)
shows log |(f, ω)| with the test function f given by (2.19) with l = 1/2 and decay at
the correct rate is clearly seen.

Because of the global nature of the Helmholtz solution, this weak decay law will
be the same for a typical test function f even if it happens to decay more quickly
than O(rn) at the origin, or even if it is zero in a neighbourhood of the origin. This
may be contrasted with the situation for the passive scalar discussed at the end of § 4,
where the behaviour of f near the origin is crucial. Note also that the behaviour of
(f, σ) also depends on the form of the scalar initial condition σ(r, 0+) at the origin;
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for the vorticity problem this is unlikely to be important. For example if one took the
initial condition ω(r, 0+) to be non-zero only in a limited range of radii, it would not
remain so because of the non-local inβψ term in the vorticity evolution equation. One
would expect that it would be hard to find initial conditions which did not lead to the
generic behaviour g(r) ∼ g0r

µ with g0 6= 0. Thus in terms of both initial conditions
and test functions the O(t−λ) decay for (f, ω) has much wider applicability than the
O(t−n−1) decay for a passive scalar.

Having confirmed the t−λ power law and the general asymptotic structure at large
time t, we return to the transients observed for n = 2 in figure 1(a,b). The transient
(B) arises from passive scalar behaviour in the far-field vorticity for large r. In the
appendix, §A.2 we show that the function g(r) is simply given by the initial condition
g(r) ∼ ω(r, 0+) at leading order for large r. Thus the calculation for the passive
scalar transient in § 4 can be applied here to vorticity and the vorticity transient in
2nq(t) = (rn, ω) is simply given by equation (4.3) with n = 2. To check this figure
5(b) plots log |Re 2nq(t)| against t/1000, showing this analytical approximation dotted
and the numerical result (as in figure 1a) solid. Good agreement is seen during the
transient (B) with the two lines being nearly indistinguishable.

The first transient (A) is characterized in figure 1(b) by an oscillation of constant
period of approximately 360. As we have seen, frequency behaviour indicates the
radius from which the contribution to (rn, ω) and so q(t) arises. In this case the
oscillation corresponds to a radius of r ' 4.3. We observe that at this radius there is a
peak in the imaginary part of g(r) (dotted) in figure 4(b). The exponentially decaying
transient (A) then appears to be connected with the presence of this peak. Since we
have essentially no information about g(r) for r = O(1) beyond the numerical simula-
tion, we are unable to describe this peak in our asymptotic framework. Furthermore
the transient occurs at moderate times, probably before our long-time asymptotics
becomes valid, and probably while the peak is still emerging from the initial condition.
For these reasons we have no good model to account for this transient at present.

Having studied n = 2 exhaustively we now quickly move on to other values of n.
For n = 3, λ = 1 +

√
17 ' 5.123. In figure 6(a) we confirm this value of the exponent

by plotting log |(f, ω)| (solid) with the test function (2.19) with l = 1/4; decay at the
correct rate (dotted) is seen clearly. Our asymptotic analysis appears good for n = 2
and 3 and presumably continues to be so for higher values.

We have already alluded to the special nature of the n = 1 problem, which is
complicated by the mixing hypothesis. In particular the usual initial condition (2.9)
violates the conditions of the hypothesis and so we do not use it. Instead we specify

ω(r, 0+) = (r2 − 3π1/2r/2)e−r
2/4 ∆ψ(r, 0+) = −ω(r, 0+) (7.5a , b)

(as in BL94), which automatically satisfies the condition (2.10). The theory for n = 1
gives λ = 4 and so we expect to see an asymptotic decay of t−4.

Figure 6(b) illustrates the decay of (f, ω) with l = 1/2 for n = 1. We see a clear
asymptotic power law decay (solid); however the theoretical prediction shown by the
dotted line with slope −4 is plainly too steep. In fact the slope is approximately 3.5,
corresponding to a value of κ = 1. In this case it appears that the numerical code is
picking up the spurious n = 1 solution identified in § 6.2. To confirm this, we calculate

X̃0 and Ỹ0 for κ = 1 from (7.3); figure 6(c) shows comparison of the numerical values

of X̃0 (solid) and the spurious solution (the appropriate linear combination of (6.23),

(6.24)) (dotted). There is good agreement, and also for Ỹ0 shown in figure 6(d). On
the other hand comparison with the correct n = 1 solution (6.21) shows complete
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disagreement (not shown). Thus the numerical solution appears to have latched on to
this incorrect solution, not surprisingly, since the solution satisfies all the constraints
on the inner problem, except a weak violation of regularity at the origin.

8. Discussion
We have studied the relaxation of non-axisymmetric disturbances to a vortex within

the linear approximation. In an inviscid framework, fluctuations of vorticity cannot
be dissipated, but cascade harmlessly to small scales during the process of spiral wind-
up. To study this relaxation to axisymmetry we look at the decay of weak measures
(f, ω) of the vorticity field and a closely related quantity, the amplitude q(t) of the
far-field stream function. These show a universal power law, falling off as t−λ with
λ = 1 + (n2 + 8)1/2. This is independent of the detailed structure of the vortex and the
initial perturbation, subject only to the assumption that these are generic as detailed
in § 2 and the condition of the mixing hypothesis of BL94 in § 1; our numerical results
confirm this. For a passive scalar σ the decay is shallower, (f, σ) = O(t−n−1). The
active nature of vorticity and its coupling to the stream function appears to suppress
fluctuations within the linear approximation. This occurs especially in the centre of
the vortex, and is particularly striking when figures 2(b) and 4(a) are compared; recall
that identical initial conditions were used for σ and ω. In fact, comparing the vertical
scale, vorticity is also suppressed for r = O(1). We at present lack a simple physical
explanation of this process whereby vorticity is more highly suppressed than a passive
scalar, and do not know whether it has applicability beyond the Gaussian vortex.

The t−λ decay can be thought of broadly as a ‘phase mixing’ process whereby
vorticity fluctuations at different radii have different angular velocities and so become
incoherent. This is a result of our assumption that the vortex has a non-trivial radial
gradient of angular velocity, encapsulated by the condition α′(r) 6= 0 for r > 0 which
is at the heart of our analysis. Other ideas of coarse graining have been used to
discuss planar vortex dynamics, in particular, averaging in a multiple scales context
(e.g. Ting & Klein 1991, § 2.2) and in a statistical approach (e.g. Robert & Sommeria
1991).

We should however note that this phase mixing effect, and the consequent weak
decay is absent when an axisymmetric vortex is modelled as a circular vortex patch;
this has ω constant inside a circle and zero outside, and violates condition (2.15).
Perturbing the vortex patch leads in the linear approximation to waves on the vortex
boundary that do not dissipate (e.g. Lamb 1932, § 158; Saffman 1985), and so the
function q(t) oscillates but does not decay. Clearly models of vortices based on
single contours are too simple to capture the internal structure of a smooth vortex,
and overestimate the ‘memory’ of a smooth vortex to an external perturbation;
similar remarks apply to truncated ‘moment models’ of contour dynamics (Melander,
Zabusky & Styczek 1985; Legras & Dritschel 1991; Dritschel & Legras 1991), which
replace contours by truncated systems, typically of Hamiltonian form. Of course
nonlinear effects in contour dynamics can cause waves on contours eventually to
overturn and filament (Dritschel 1988b), and hence a decay of q(t); however in
a sense the vortex is then mimicking a smooth vorticity distribution and these are
highly nonlinear effects, whereas the decay we see results from purely linear dynamics.

It is therefore important to emphasize that our results hold for vortices which
are sufficiently smooth. In this context we should mentioned the role of ‘stripping’;
this terminology refers to the situation in which a vortex has its peripheral ‘skirt’
of vorticity removed by external straining (Legras & Dritschel 1993). The resulting



Spiral wind-up of vorticity in an inviscid planar vortex 135

vorticity profiles have sharp edges, and so fall outside the class of smooth vortices
investigated here. Recent nonlinear computations by Dritschel (1998) suggest that
vortices which are far from axisymmetry and with profiles having a sharp edge tend
not to axisymmetrize. Our study suggests that a worthwhile task would be to extend
the present analysis to cope with profiles having steep edges. It would then be possible
to examine theoretically, within linear theory, whether strong vorticity gradients can
protect vortices from axisymmetrization.

Viscosity could be included in our asymptotic expansions, to make more contact
with BL94 and LB95, and this remains the subject of further research. It is clear
that for Re � 1 viscosity is in the nature of a fine-scale cut-off. From the work of
Lundgren (1982) and BL94 it is clear that the fine spiral fluctuations decay on a
O(Re1/3) time scale by the shear–diffuse mechanism. However, strictly the fluctuations
decay as exp(−n2α′2t3/3Re), and the time scale as a function of radius is O(α′−2/3Re1/3).
This becomes non-uniform near the origin where α′(r) = 0, and an inner solution is
required here. This problem remains to be analysed. In summary, while the details of
the times at which the viscous cut-off comes into operation for different parts of the
vortex remain to be clarified, in particular the centre, it is apparent that our results
will hold provided 1� t� O(Re1/3).

Our study has been linear and although limited in this sense, it is a necessary
step in the direction of studying nonlinear problems such as the influence of spiral
wind-up on resonance phenomena, vortex motion and stability (e.g. LB95; Ting &
Klein 1991). From the point of view of the full Euler equation we should also note
that we have two limits ε → 0 (i.e. linearization) and t → ∞: given ε � 1 do our
results remain uniformly valid as t→ ∞? The answer appears to be ‘yes’, because as
the vortex relaxes to an axisymmetric state, nonlinear effects become subdominant
compared to linear terms. In fact in Lundgren’s (1982) expansion nonlinear effects
are included for large times t, but occur at higher orders of the expansion in inverse
powers of t, beyond the linear problem we have been studying. Although further
investigations here would be desirable and are underway, these results lead us to be
confident that the analysis is valid for moderately small values of ε, uniformly in the
limit t → ∞. Furthermore when nonlinear effects begin to play a role, they will in
the first instance lead to a modification of the dynamics for t = O(1) and so only to
changes in the form of the function g(r).

These comments are broadly supported by nonlinear simulations of Rossi et al.
(1997), who show that for moderate perturbations a Gaussian vortex relaxes to
axisymmetry. However for large perturbations the vortex can bifurcate to a totally
distinct stable state, in their case a tripole. Other computations in the literature
have exhibited persistent non-axisymmetry (e.g. Dritschel 1989; Koumoutsakos 1997).
While we expect axisymmetrization to occur in linear theory and for the nonlinear
evolution of weakly perturbed vortices, these results certainly indicate that the picture
can change when large perturbations are allowed.

The key to our complete asymptotic picture for large t was to understand the non-
uniformity of Lundgren’s spiral solution at the origin. Where differential rotation is
strong the Laplacian acting on a spiral distribution can be estimated as ∆ ∼ −n2α′2t2.
At the origin, where differential rotation becomes small, this breaks down. We note
that a similar estimation of the Laplacian is involved in the study of flux expulsion
(Moffatt & Kamkar 1983; Rhines & Young 1983) and there is a similar non-uniformity
there, which has been noted but not studied. Our basic state of an axisymmetric vortex
is very simple, and it might be of interest to develop the theory for relaxation to
other steady flows, for example, the strained high-Re vortices of Moffatt, Kida &
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Ohkitani (1994) and Jiménez, Moffatt & Vasco (1996). As a model problem one could
consider switching on a persistent, rather than impulsive, external flow field. In this
case the vortex remains subjected to an irrotational strain and so remains distorted
while vorticity fluctuations are wound up in a flow field of elliptical streamlines. This
problem is currently receiving our attention, our aim being to find out how the power
law scalings of this paper are changed. More generally there is the question of how
a fluid flow might relax inviscidly to a Prandtl–Batchelor state in which vorticity is
uniform along streamlines (see Batchelor 1956).
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Appendix. Weak convergence and the outer solution
In this appendix we tie up two loose ends from the analysis of §§ 5, 6. First, we

consider the evolution of weak measures (f, ω) and verify that their decay is governed
by the exponent λ obtained in § 6. Secondly we consider non-uniformities in the
Lundgren solution (5.5) for large r and show that these are negligible for large times
t, although they do contribute to transient behaviour.

A.1. Weak convergence

Weak measures of the vorticity distribution ω are related to those of the stream
function ψ by (2.21). We therefore begin by considering the evolution of (f, ψ) for a
test function f. We first restrict attention to n > 2 and show that the decay rate is
O(t−λ).

The stream function ψ is given by the Helmholtz and Lundgren solutions for
r = O(1) and the inner solution for r = O(t−1/2). We consider the various contributions
to (f, ψ) from these various pieces of ψ. Integrating f against the Helmholtz solutions
for r = O(1) and r � 1 will give a contribution with a decay rate of O(t−λ) from
(5.13). The remaining contributions come from the oscillatory Lundgren solution
and the inner solution. From the experience gained with the scalar problem in § 3,
it is clear that the main contribution arises from close to the origin, in the region
r = O(t−1/2) or s = O(1), where the stream function ψ = O(sn/2t−κ−1) from (6.3),
(6.16). Taking f = O(rn) = O(sn/2t−n/2) and evaluating the contribution to (f, ψ) from
s = 0 to s = O(1) (replacing 2r dr = t−1ds) gives an estimate (f, ψ) = O(t−n/2−κ−2) =
O(t−n/2−w/2−2) (from (6.13)). Now n/2 + w/2 + 2 > λ (since λ = 1 + w and w < n+ 2
for n > 2) and so this represents a contribution which is steeper than O(t−λ) for n > 2.
We therefore conclude that the exponent λ gives the typical asymptotic decay rate
of weak measures (f, ψ) of the stream function and that the dominant contribution
arises from the Helmholtz solution in r = O(1).

For n = 1, the Helmholtz solution is not present for r = O(1), and so the dominant
contribution can only come from the inner region s = O(1). This contribution can
be estimated from the above paragraph as again (f, ψ) = O(t−n/2−κ−2) = O(t−4) for
κ = 3/2. Now for n = 1, λ = 4, and so the decay rate is still O(t−λ) in this case. Thus
we surmise that the appropriate decay rate for (f, ψ) is given by λ ≡ 1 + (n2 + 8)1/2 for
all n > 1. However for n > 2 the largest part of (f, ψ) has its origins in the Helmholtz
solution which exists for r = O(1), while for n = 1 this comes from the inner zone
s = O(1) as the Helmholtz part is then absent.
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This completes the question of the decay of (f, ψ). From identity (2.21), which is
−(f, ω) = (∆f, ψ), it follows that weak measures (f, ω) of vorticity must decay as
t−λ or steeper (to be shallower would contradict the result of the previous paragraph
applied to (∆f, ψ)). In fact we observe decay at the rate t−λ in our simulations,
confirming that this is a sharp estimate for the decay of typical weak measures of
vorticity.

The reader may question why we took the circuitous route of dealing with (f, ψ)
rather than (f, ω) directly. The reason is that a naive consideration of (f, ω) can
give too shallow an answer; this is because full use is not made of the fact that
ω = −∆ψ. If one straightforwardly estimates the contribution from the inner region,
with ω = O(sn/2t−κ) from (6.3), (6.16), as above, one obtains a contribution of
O(t−n/2−w/2−1) to (f, ω). This is shallower than that for (f, ψ) by a factor of t and
cannot be a sharp estimate as it would then contradict the argument of the previous
paragraph (for example for n = 1 it would give t−3 for (f, ω) whereas we have
(f, ψ) = O(t−4) from above).

The resolution of this paradox is to peel off the leading O(rn) behaviour from
f ∼ f0r

n + O(rn+2) and write

(f, ω) = (rn, ω)f0 + (f(r)− f0r
n, ω) = 2nq(t)f0 + (f(r)− f0r

n, ω).

The first term decays as t−λ at most, while the contribution in the inner region from
f(r) − f0r

n = O(rn+2) is O(t−n/2−w/2−2), as for (f, ψ). In short, with these manoeuvres
complete agreement is obtained between results for (f, ψ) and (f, ω) for typical test
functions f.

A.2. Non-uniformity for large r

Here we consider the far field r � 1. This zone is characterized primarily by the
very rapid vanishing of β(r) as our vortex is assumed localized, and the system of
equations (2.4), (2.5) becomes, approximately,

∂tω + inα(r)ω = 0, ∆ψ = −ω. (A 1a , b)

Driving the outer solution are the Lundgren and Helmholtz solutions for r = O(1)
and large t. It may be checked that the Helmholtz expansion (5.9) in fact remains
uniform for arbitrarily large r, because β vanishes rapidly, and so this solution blends
seamlessly into a solution in the outer region of the form

ωH = 0, ψH = qH(t)r−n. (A 2a , b)

We have established the long-time behaviour of qH(t) = O(t−λ) but in doing this
the issue of the far-field behaviour of the Lundgren solution was ignored: in fact
the Lundgren solution also gives a contribution qL(t) to the far field with q(t) =
qH(t) + qL(t). The role of qL(t) was not discussed below (5.13) where we asserted
that q(t) ' qH(t) = O(t−λ), in accordance with numerical simulation. However qL(t) is
certainly non-zero and so disregarding this term needs to be justified.

Related to this is the fact that the expansion (5.3) for the Lundgren solution
becomes non-uniform at large r for the same reason it does at small r: that is the
differential rotation becomes small. Inspection of (5.4) with β ' 0 and α ∼ 1/2πr2

for large r reveals that the series becomes non-uniform when r = O(t1/2) and at these
values of r the estimation of ψ breaks down. However β is already exponentially
small and so the stream function is effectively totally decoupled. It is clear that for
large values of r the Lundgren solution must match to a far-field solution of (A 1) of
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the form

ωL = g(r)e−inα(r)t, ∆ψL = −ωL (A 3a , b)

and so in the Lundgren solution (5.5a) the leading term for ω remains valid for
arbitrarily large r. On the other hand subsequent terms for ω, and all terms for ψ in
(5.5b) are invalid for r = O(t1/2).

To this point only the smallness of β(r) for large r has been used: however g(r) will
also be small, as the vorticity distribution has been taken to be localized. Therefore
ω is small for large r and the solution (A 3) becomes

ωL = g(r)e−inα(r)t, ψL = qL(t)r−n. (A 4a , b)

Since the leading Lundgren solution for ω (5.5a), (A 4a) remains valid for arbitrarily
large r, it can be used to yield information on ψ even when the ψ expansion has
broken down. In particular it transpires that qL(t) is dominated by the contribution
from the slow oscillations in vorticity for large values of r.

To confirm this, let k(r) be a smooth function with k(r) = 0 for 0 6 r 6 1, k(r) = 1
for r > 2, and monotonically increasing for 1 < r < 2. Define f(r) = rnk(r) (this is
not a test function) and consider

(f, ωL) = −(∆f, ψL) + 2nqL(t) (A 5)

(cf. (2.22)). Now ∆f = (k′′+ (2n+ 1)k′/r)rn is a smooth function that vanishes outside
the range 1 < r < 2. In this range ψ = O(t−2) and oscillates at a frequency bounded
away from zero; so (∆f, ψL) will vanish quickly, and generally faster than (f, ωL),
leaving

(f, ωL) ' 2nqL(t). (A 6)

As was seen in the example of a scalar transient of § 4, the dominant contribution
to such an integral comes from slow oscillations at a radius which grows with time.
(The contribution from the slow oscillations at the origin is zero since f is zero
in 0 6 r 6 1.) The decay of (f, ωL) and so of qL(t) is then faster than algebraic,
and so we are justified in ignoring qL(t) in obtaining the asymptotic power law
q(t) ' qH(t) = O(t−λ). Nevertheless qL(t) can be observed as a significant transient in
the manner of regime (B) of figure 1, as we confirmed in § 7.

In some cases the far-field behaviour of g(r) is simply given by the initial condition
g(r) = ω(r, 0+) and so the contribution (A 6) can be evaluated. To assess contributions
to the far field, we integrate (2.4) (for Re = ∞) exactly as

ω(r, t) = ω(r, 0+)e−inαt − inβ

∫ t

0

ψ(r, τ)e−inα(t−τ) dτ. (A 7)

In the far field ψ ' q(t)r−n with q(t) decaying quickly and so the integral over time
in (A 7) is O(1) in time and O(r−n) in space. Hence

ω(r, t) = ω(r, 0+)e−inαt + O(βr−n) for r � 1 (A 8)

and, provided ω(r, 0+) � βr−n, the second term is negligible and so g(r) ' ω(r, 0+)
for large r from (5.13a). This inequality is certainly satisfied for the initial condition
(2.9) and then (A 6) can be evaluated explicitly. The calculation follows that of § 4
concerning a passive scalar with the same initial condition and gives that 2nqL(t) is
equal to the expression in (4.1). If however ω(r, 0+)� βr−n then the initial condition
has relatively low vorticity in the far field and this vorticity is swamped by that
generated by the inβψ term in the governing equations. In this case we know of no
simple expression for g(r) as r →∞.
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