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We investigate the nonlinear equilibration of magnetic fields in a smooth helical flow
at large Reynolds number Re and magnetic Reynolds number Rm with Re � Rm � 1.
We start with a smooth spiral Couette flow driven by boundary conditions. Such flows
act as dynamos, that is are unstable to growing magnetic fields; here we disregard
purely hydrodynamic instabilities such as Taylor–Couette modes. The dominant
feedback from a magnetic field mode is only on the mean flow and this yields
a simplified ‘mean-flow system’ consisting of one magnetic mode and the mean
flow, which we solve numerically. We also obtain the asymptotic structure of the
equilibrated fields for weakly and strongly nonlinear regimes. In particular the field
tends to concentrate in a cylindrical shell where all stretching and differential rotation
is suppressed by the Lorentz force, and the fluid is in solid-body motion. This shell is
bounded by thin diffusive layers where the stretching that maintains the field against
diffusive decay is dominant.

1. Introduction
In this paper we discuss the nonlinear evolution and equilibration of growing

magnetic fields in a family of dynamos first investigated by Ponomarenko (1973).
These are axisymmetric helical flows taking the general form

u = (0, v(r), w(r)), v(r) ≡ rω(r), (1.1)

in cylindrical polar coordinates (r, θ, z). Provided the fluid conducts electrical currents
sufficiently well, many flows of this type are kinematic dynamos and amplify seed
magnetic fields, which may be taken of the form

b = (a(r), b(r), c(r)) exp(imθ + ikz + i$t) + c.c. (m > 0, k 6= 0), (1.2)

where ‘c.c.’ denotes complex conjugate. These Ponomarenko dynamos have been dis-
cussed as models of magnetic field generation in galactic jets (Shukurov & Sokoloff
1993), and as the basis of a possible experimental realization of a dynamo (Gailitis
& Freiberg 1980; Gailitis et al. 1987; Gailitis 1993). Numerical simulations of dy-
namo action in convective flows also show magnetic fields concentrating in swirling
downdraughts (e.g. Brandenburg et al. 1990), reminiscent of Ponomarenko dynamos,
although finite in the axial extent.

Flows of this family are probably the simplest kinematic dynamos known and, in
the form where ω(r) and w(r) are piecewise constant, were some of the earliest to
be analysed mathematically (Ponomarenko 1973). Numerical studies have been con-
ducted by Solovyev (1985a,b,c, 1987), Ruzmaikin et al. (1989), Lupian & Shukurov
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(1992) and Léorat (1994). In the limit of high electrical conductivity the kinematic be-
haviour of the field can be analysed asymptotically (Ruzmaikin, Sokoloff & Shukurov
1988; Gilbert 1988a). In fact they are basic members of a very wide class of slow
dynamos (Soward 1990), including models of Braginsky (1964a,b). Of course flows
such as (1.1) can also be unstable to Taylor–Couette instabilities (e.g. Stuart 1963),
but in this paper we are only interested in the development of magnetic fields; so
we disregard purely hydrodynamical instabilities. We remark that this could perhaps
make it difficult to verify our results numerically or experimentally if our solutions
only exist in regimes of parameter space for which the flow is hydrodynamically
unstable. On the other hand, it is plausible that for certain parameter combinations
the flow is both Taylor–Couette and magnetically stable. Further work would be
required in order to determine which of these possibilities occurs in practice.

The properties of these flows as kinematic dynamos are largely understood. How-
ever little is known about how an unstable seed magnetic field eventually equilibrates
through the nonlinear effects of the Lorentz force on the fluid flow: it is this we inves-
tigate, at large magnetic Reynolds number Rm and Reynolds number Re, given by

Rm ≡ 1/ε = UL/η, Re ≡ 1/δ = UL/ν, (1.3)

where U and L are typical velocity and length scales of the flow, η is the magnetic
diffusivity, and ν the viscosity. It is also useful to define the magnetic Prandtl number

PrM = ν/η ≡ Rm/Re, (1.4)

as our analysis will apply for Rm and Re with Re � Rm � 1 (i.e. PrM � 1), an
ordering appropriate to both the solar dynamo and the geodynamo.

The axisymmetric flows (1.1) have a number of advantages for studying general
questions of dynamo saturation, about which little is known. Dynamo action is
obtained in flows of the form (1.1) with no need for an imposed alpha effect, or
other parameterized transport effects (see e.g. Moffatt 1978). An alpha effect can
be identified – the diffusion of field in curved geometry (see Soward 1990) – but
this arises in the primitive equations, and is not externally imposed, there being
no free parameters and no arbitrary functional forms. Because of this there are
no uncertainties as to how the alpha effect is suppressed in the presence of strong
fields, whereas when the alpha effect is imposed one usually has to guess how it will
be suppressed. The dynamo operates by a combination of an omega effect, that is
differential rotation in the flow (1.1), and this alpha effect from diffusion in curved
geometry. It can thus be thought of as a dynamo of alpha–omega type.

Another advantage is that flows of the Ponomarenko family are easily driven by
imposing appropriate boundary conditions, for example by placing the fluid between
two infinite rotating and translating cylinders. The fluid can then adopt a spiral
Couette flow, which is of the form (1.1) and is a dynamo at sufficiently large Rm
(Solovyev 1985a,b,c, 1987). The driving through boundary conditions is attractive
mathematically. Although driving of a flow by thermal convection is probably more
desirable for many astrophysical applications, it leads to additional complications.

At high Rm and high Re it is perhaps at first sight surprising that any analysis of
equilibrated dynamos in this geometry is possible, and needless to say, our ambitions
have to be somewhat modest. In fact for small PrM the problem may be reduced
to a system of nonlinear ODEs depending solely on radius r under certain mild
assumptions discussed later; these describe steadily rotating states, which we often
refer to as ‘steady states’ for brevity. We sketch how this is achieved. Starting with
a flow and field given by (1.1) and (1.2) above, in nonlinear regimes the field will
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generally depend on three variables (r, mθ + kz, t). However we seek steadily rotating
states, in which case the dependence is reduced to just two variables (r, mθ+ kz+$t),
where $ is the frequency and becomes an eigenvalue of the problem.

The key simplification, however, is that at large Re (holding Rm and other
parameters fixed) the dominant feedback from a magnetic mode of the form (1.2)
is on the mean flow (1.1), and this is always sufficient to saturate a growing field.
The field does of course also generate fluctuating flows, with modes proportional to
exp(±2imθ ± 2ikz), but this is a subdominant effect in a nearly inviscid rotating flow
of the form (1.1). Thus at leading order no non-axisymmetric modes are excited in the
flow, and so no modes other than those in (1.2) are created in the field. When seeking
steadily rotating states, the problem becomes a nonlinear eigenproblem involving
ODEs for the three complex fields (a(r), b(r), c(r)) and two real fields (v(r), w(r)), with
$ as an eigenvalue (§2.2). This is valid when the limit of large Re is taken with Rm
held fixed, and we refer to this as the ‘mean-flow system’. (A similar system was stud-
ied by Gilbert 1988b; however there it was not justified as a rational approximation.)
Detailed justification for these assertions is presented later.

The nonlinear system involves essentially two important parameters, m and Rm (Re
may be scaled out), and we are faced with the question of how best to analyse it.
The method we shall use is to start with the standard machinery of weakly nonlinear
analysis to establish the amplitude and structure of solutions near a bifurcation,
and then to extend the solution branch numerically and asymptotically into more
strongly nonlinear regimes. Perhaps the most natural starting point would be to
imagine increasing Rm from zero, corresponding to an experimentalist increasing the
velocities of the boundaries, until the bifurcation of the first magnetic mode, with
m = O(1). This solution branch would then be followed for increasing Rm and its
structure for high Rm elucidated. The problem with this approach, however, is that
when an m = O(1) mode bifurcates, its structure cannot be obtained analytically (only
numerically), since Rm = O(1) and so large-Rm asymptotics do not apply. Thus we
shall not take this route: we shall ultimately find the structure of the equilibrated
m = O(1) mode at high Rm by an analytically more tractable if somewhat less direct
method.

To use analytical approximations for the field modes we have to take Rm � 1 from
the start; we could then imagine an experimentalist setting up the flow and introducing
a seed magnetic field. However at large Rm we are faced with the problem that there
is a large range of unstable modes, 1 6 m 6 mcrit � 1. Their growth rates are shown
schematically as a function of m in figure 1(a). The critical mode at high Rm has
large wavenumber mcrit = O(Rm1/3) and the linearly most unstable mode m = mmax
also resides within the same scaling regime (see §4.1). Mathematically we can start
with the flow, introduce just one magnetic mode with a given m, and observe how it
equilibrates at high Rm; we can thus trace a branch of equilibrated states of varying
amplitude, one for each unstable mode, parameterized by m (figure 1b).

Now although the most unstable mode has m = mmax = O(Rm1/3) according to
purely linear theory, it does not follow that the equilibrated state with this value of m
will be most important when nonlinearity is accounted for. We shall in fact establish
in this paper that modes with smaller values of m equilibrate at greater amplitudes
than m = mmax. In fact the amplitude of the equilibrated state increases as m is
reduced from the critical value mcrit right down to m = 1 – a situation summarized by
figure 1(b). Experimentally, if we begin with a high-Rm flow and a general seed field,
then although modes with m = O(Rm1/3) will initially experience very fast growth,
they will soon equilibrate, whilst longer-wavelength disturbances that initially grow
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Figure 1. (a) Schematic picture of linear growth rates as a function of m for large, fixed Rm.
(b) Schematic picture of the amplitude of a nonlinear equilibrated mode as a function of m for
large, fixed Rm.

more slowly eventually settle at much larger amplitudes and so probably dominate
the flow. It seems likely that dynamically the field will evolve in such an ‘inverse
cascade’, to be dominated only by very low wavenumbers m. While the full dynamical
evolution of the field is beyond the scope of this paper, these considerations motivate
our analysis of the whole branch of equilibrated states 1 6 m 6 mcrit. To do this we
fix Rm � 1 and then use m as a control parameter, reducing it from mcrit down to O(1)
values. This procedure is mathematically convenient for us to establish the structure
of this branch of equilibrated states. Of course the final results of high-Rm states
remain valid even if other routes are taken to obtain them, for example increasing
Rm from zero and following an m = O(1) mode, as mentioned above.

We begin by formulating the governing equations for our model in §§2.1, 2.2, and in
§2.3 discuss the circumstances under which the flow may be described by our mean-
flow system; in particular we show that the dynamo cannot support so-called Taylor
states. Section 3 contains the derivation of the Rm � 1 nonlinear equations which
are valid for wavenumbers m = O(Rm1/3). Linear and weakly nonlinear analyses of
these equations are possible in the vicinity of the linear critical wavenumber mcrit and
these calculations are summarized in §§4.1, 4.2. As m is reduced further the amplitude
of the field increases (recall figure 1b) and we follow this branch numerically in
§5.1. We describe these modes as ‘strongly nonlinear’ and argue that this label is apt
because, although at this stage the wavenumber is still O(Rm1/3), the leading-order
magnetic field structure is completely altered from its corresponding linear and weakly
nonlinear forms.

The nature of figure 1(b) reminds us that as we decrease m so our equilibrated
amplitudes grow. It is therefore of interest to determine how far m may be reduced
within our assumed framework. In §5.2 we demonstrate that it is possible to follow
this strongly nonlinear mode branch into parameter regions where m � O(Rm1/3) by
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a suitable asymptotic analysis of the nonlinear equations of §3. We prove that in this
wavenumber regime the structure of the field undergoes a dramatic change: one is left
with a core region in which the alpha effect operates and the motion is solid-body,
bounded by thin layers in which the omega effect is dominant. We show in §6 that it
is possible to obtain nonlinear equilibrated states for all values of wavenumber right
down to the physically sensible limit of m = O(1) so long as Re � Rm � 1. We remark
that although §6 is somewhat technical in nature, it is only at this late stage of the
paper that we can pin down the exact parameter regimes for which our approach is
valid. We cannot do this until the structure of the nonlinear states is known precisely
and this can only be uncovered after proceeding through the stages described in
§§3–5. Furthermore, this means that a certain amount of forward referencing to §6 is
inevitable within the paper, but this is a consequence of the fact that in asymptotic
work one typically derives solutions under certain assumptions and then has to check
a posteriori that they satisfy these constraints.

Finally, in §7 we draw a few conclusions and finish with a short discussion of
the implications of our findings. We address such topics as the level at which the
magnetic field equilibrates and how the energy scales with Rm and Re. In particular,
does the magnetic energy reach equipartition with the kinetic energy? Some of these
issues are the subject of recent controversy (see, for example, Brandenburg et al. 1992;
Vainshtein & Cattaneo 1992; Childress & Gilbert 1995, chapter 12 and references
therein). In fact we shall see that the Ponomarenko flows are quite special as dynamos,
since the streamsurfaces are cylindrical and the magnetic field saturates at levels that
are viscously limited. Thus the level of the equilibrated field is probably atypically
low for nonlinear dynamos. Nevertheless study of this example does give information
in an area where little is known, and is a necessary first step to studying more
complicated but perhaps more realistic examples.

2. The inviscid limit and saturation through the mean flow
2.1. MHD equations and flow geometry

We use the equations for incompressible MHD written in the form

∂tb+ u · ∇ b = b · ∇ u+ η ∇2 b, (2.1a)

∂tu+ u · ∇ u = b · ∇ b− ∇P + ν ∇2 u, (2.1b)

∇ · u = 0, ∇ · b = 0. (2.1c,d)

In these equations units are chosen so that b has dimensions of velocity and the
electric current is given by j = ∇× b. To obtain (2.1b) the Lorentz force j × b has
been written as

j × b = b · ∇ b− ∇ b2/2, (2.2)

and the last term absorbed into the pressure P ; the term b · ∇ b = F is the magnetic
tension force.

We prefer to work in cylindrical coordinates (r, θ, z), although the use of helical
coordinates (e.g. Landman 1990; Dritschel 1991) may lead to some simplifications.
We consider fluid in an infinite cylindrical shell, r1 < r < r2, driven by imposing
constant angular and axial velocities on the boundaries,

uθ(r1) = r1ω1, uθ(r2) = r2ω2, uz(r1) = w1, uz(r2) = w2, (2.3)
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and subject to no-slip boundary conditions. For the magnetic field we take perfectly
conducting boundaries,

br = ∂rbθ + bθ/r = ∂rbz = 0 (r = r1, r2). (2.4)

However since we will be considering only fields localized in the interior of the
cylindrical shell, exponentially small at the boundaries, the details of the boundary
conditions on the field will be unimportant. Overall, the choice of particular fluid and
magnetic boundary conditions will have only a tiny effect on our ensuing analysis
and therefore discussion of the relative merits of various boundary conditions is
superfluous.

We shall have occasion to use the magnetic energy per unit length in z defined by

EM = 1
2

∫ r2

r1

〈|b|2〉 2πr dr, (2.5)

where 〈·〉 is an average over θ and z. We will always be considering fields which are
periodic in z so that the meaning of averages over z is clear. For convenience, we
non-dimensionalize at the outset. Letting U be a typical velocity and L a typical length
of the flow, which we will fix more precisely later on, we define Rm, Re, ε and δ as in
(1.3). The above equations (2.1)–(2.4) involve dimensional variables, and if we need
to emphasize or distinguish these, we attach a superscript ‘dim’; the quantities above
could (or perhaps should) be so labelled. We then relate the dimensional quantities
to dimensionless counterparts by writing

rdim = Lr, udim = Uu, tdim = (L/U)t, bdim = Ub, (2.6)

and for geometric quantities,

rdim
i = Lri, ωdim

i = (U/L)ωi, wdim
i = Uwi (i = 1, 2). (2.7)

Using dimensionless variables the equations for the magnetic field are now

∂tb+ u · ∇ b = b · ∇ u+ ε∇2 b, (2.8a)

∂tu+ u · ∇ u = b · ∇ b− ∇P + δ ∇2 u, (2.8b)

together with (2.1c,d), (2.3), which are the same in dimensionless and dimensional
variables.

2.2. Nonlinear feedback through the mean flow

In this section we obtain equations coupling the evolution of a field mode (1.2) and
the mean flow. To begin with we proceed without any approximation. First consider
the flow in the absence of field, b = 0. The unique steady solution depending only on
radius r,

u = (0, v(r), w(r)), v(r) ≡ rω(r), (2.9)

to equation (2.8b) is spiral Couette flow, which takes the form

ω = C1 − C2/r
2, w = C3 + C4 log r. (2.10a,b)

The constants Ci are determined from the boundary conditions (2.3). Note that it is
viscosity which controls the spiral Couette flow (2.10) and so the smaller δ is, the
longer the spin-up time.

The axisymmetric flow (2.10a,b) is unstable to dynamo action provided Rm is large
enough, and provided that the flow is sufficiently three-dimensional, in the sense that
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ω(r) and w(r) are non-constant (see Solovyev 1985a,b,c, 1987; Ruzmaikin et al. 1988;
Gilbert 1988a). Very weak magnetic fields b are governed solely by the linear induction
equation (2.8a). We specialize to a single magnetic mode of the form (1.2), where $ is
the frequency and is real when we seek nonlinear steadily rotating states. Substituting
(1.2), (2.9) into the induction equation yields

(i$ + imω + ikw)a = ε

[
∇2
r a−

(
m2 + 1

r2
+ k2

)
a− 2im

r2
b

]
, (2.11a)

(i$ + imω + ikw)b = ar∂rω + ε

[
∇2
r b−

(
m2 + 1

r2
+ k2

)
b+

2im

r2
a

]
, (2.11b)

(i$ + imω + ikw)c = a∂rw + ε

[
∇2
r c−

(
m2

r2
+ k2

)
c

]
, (2.11c)

with ∇2
rφ ≡ r−1∂r(r∂rφ) as the radial part of the Laplacian operator. We may drop

equation (2.11c) for c(r) since for k 6= 0 the solenoidal condition (2.1d ), which takes
the form

r−1∂r(ra) + imr−1b+ ikc = 0, (2.12)

enables us to calculate c from a and b, should we require it.
The feedback on the flow from a given magnetic mode (1.2) through the tension

force term F = b·∇ b in (2.8b) contains a mean component, 〈F 〉, and second-harmonic
flow components proportional to exp(±2imθ ± 2ikz): in §§2.3, 6.2 we shall show that
when the limit Re→∞ is taken at fixed Rm the second harmonics may be neglected.
Using integration by parts and the solenoidal condition (2.1d ) the mean azimuthal
and axial tension forces may be written as

〈Fθ〉 = 〈r−2∂r(r
2brbθ)〉, 〈Fz〉 = 〈r−1∂r(rbrbz)〉 (2.13)

for general fields b. The mean radial tension force can be balanced by pressure, and
so need not be considered. Specializing to the one mode (1.2), we have

〈Fθ〉 = r−2∂r[r
2(ab∗ + a∗b)], 〈Fz〉 = r−1∂r[r(ac

∗ + a∗c)]. (2.14)

Neglecting higher harmonics in the flow, the equation governing the mean flow follows
from (2.8b),

− δr−2∂r(r
3∂rω) = r−2∂r[r

2(ab∗ + a∗b)], (2.15a)

− δr−1∂r(r∂rw) = r−1∂r[r(ac
∗ + a∗c)]. (2.15b)

Note that only viscous terms survive from (2.8b); there is no contribution from the
term u · ∇ u, nor from ∂tu as the mean flow is constant in a steadily rotating state.

Neglect of the fluctuating component of the tension force has left us with an
approximate ‘mean-flow system’ for the mean fluid flow (2.9) and a single magnetic
field mode (1.2). Equilibrated steadily rotating states are governed by equations
(2.11a,b) for the field and equations (2.15a,b) for the flow, supplemented by boundary
conditions. These equations are in fact valid for any fixed Rm, in the limit of large Re,
as discussed in the next section. We remark that in this system the Reynolds number
Re = 1/δ can be scaled away by writing equations for the scaled field b′ = δ−1/2b.
This immediately suggests equilibration at the low level b = O(δ1/2) for large Re.

The system may be generalized to describe several magnetic modes, interacting
through a single mean flow, which would be forced by a sum of terms like (2.14), one
for each mode. However in this work we shall focus attention on a single magnetic
mode.
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2.3. The inviscid limit and absence of Taylor states

We derived the mean-flow system in §2.2 by neglecting the feedback of the field onto
the second harmonic of the flow. This is a valid approximation as Re→ ∞ for fixed
Rm under some mild assumptions. The justification for our approximation lies in
the fact that the equations (2.15a,b) for the mean flow involve a balance between
the mean tension force and only viscous terms. The net torque (and net axial force)
on an infinitesimal cylinder of fluid between r and r + dr can only be balanced by
viscous stress. As Re → ∞ a given mean tension force drives a large mean flow,
and this is the dominant feedback mechanism. On the other hand for the second
(and higher) harmonics, the tension force term can be balanced by other, non-viscous
terms. Therefore for Re � 1 a magnetic field generally evokes a response from the
mean flow which is nominally a factor Re larger than that from the higher flow
modes. (This assumes that the mean tension force and fluctuating tension force have
similar magnitudes as functions of Re, an assumption which is valid, as discussed
further below.) This indicates that the magnetic field will equilibrate at the low level
O(δ1/2), limited by viscosity.

We expand on this argument below. Similar arguments are well established within
the geodynamo literature (see e.g. Roberts & Soward 1992; Fearn 1994). To make
closer contact with this work, note that we can define an Ekman number E = ν/ωr2,
using dimensional quantities, where ω is the angular velocity in the region of the flow
where the magnetic field is localized. Provided ω 6= 0, E is proportional to δ = 1/Re
and the limit Re→∞ then corresponds to the geophysically important limit of small
Ekman number. In our problem the field then saturates at a level which is O(E1/2);
the geodynamo problem in a spherical shell is complicated by Ekman layers on
the boundaries, but similar arguments involve balancing mean forces against Ekman
fluxes and lead to saturation at a level O(E1/4); the fluctuating forces are balanced
against Coriolis terms and again do not play a role. The physical situation and
scalings in our problem are similar to those used by Jones & Roberts (1990) in a
study of magnetoconvection in a rotating duct (see the discussion at the beginning of
their §4).

To see that it is a consistent approximation to neglect the fluctuating tension force,
first assume that the magnetic field is O(δ1/2), the mean and fluctuating tension forces
are O(δ), the mean flow is O(1), and the fluctuating flow is O(δ). If we take the
Navier–Stokes equations (2.1b,c) and average them with 〈·〉, we obtain the leading
equations for the mean flow at order δ and these are precisely equations (2.15) above.
(The contribution to the mean from products of fluctuating quantities is O(δ2) and
so a higher-order effect.)

Next we consider the fluctuating flow, specifically the second-harmonic component,
u′ exp(2imθ+ 2ikz + 2i$t), which is driven by the O(δ) tension force. With the orders
of magnitude postulated in the last paragraph, taking the leading fluctuating part
of the Navier–Stokes equation and neglecting terms smaller than O(δ), we obtain
equations for u′ = (u′, v′, w′):

(2i$ + 2imω + 2ikw)u′ − 2ωv′ = −∂rP ′ + F ′r, (2.16a)

(2i$ + 2imω + 2ikw)v′ + 2ωu′ + ru′∂rω = −2imP ′/r + F ′θ, (2.16b)

(2i$ + 2imω + 2ikw)w′ + u′∂rw = −2ikP ′ + F ′z, (2.16c)

∂ru
′ + u′/r + 2imv′/r + 2ikw′ = 0. (2.16d)

Here P ′ and F ′ = O(δ) are the second-harmonic components of the pressure and
tension force. This is essentially the Navier–Stokes equation linearized about the mean
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flow (2.9) with O(δ2) viscous terms neglected. Provided these equations have a finite
solution u′ = O(δ) driven by the O(δ) tension force then our framework is consistent;
difficulties would arise if this system had no solution for u′ and then viscosity would
need to be reinstated, as happens for the mean flow.

Deciding whether this system can be solved for u′ has to be done later, when $
and asymptotics of the equilibrated mean-field system are known, and we take up
this issue in §6.2. Nevertheless we wish to make it plausible at this early stage that the
system is generally soluble, and so we anticipate later analysis: it turns out that in
the thin cylindrical ‘core’ region where the bulk of the magnetic field will be localized,
the terms $ + mω + kw, ∂rω and ∂rw are negligible because the field is frozen in a
flow that is approximately in solid-body rotation. The resulting system is

−2ωv′ = −∂rP ′ + F ′r, (2.17a)

2ωu′ = −2imP ′/r + F ′θ, (2.17b)

0 = −2ikP ′ + F ′z, (2.17c)

∂ru
′ + u′/r + 2imv′/r + 2ikw′ = 0. (2.17d)

Provided the field is localized at a radius where the flow has non-zero angular
velocity, ω 6= 0, which can always be arranged by suitable boundary conditions, this
system may be solved for u′ and the approximation is consistent. Explicitly, P ′ is
determined from F ′z using (c), then u′ and v′ from (a,b), and finally w′ from (d ).
The core region is bounded by thin diffusive layers; here the picture is a little more
complicated and is discussed in §6.2.

The above discussion of saturation of field through the mean flow at low O(δ1/2)
levels determined by viscosity is based on the key assumption that the mean tension
force is of similar size to the fluctuating tension force. As is discussed in the geodynamo
literature, an alternative possibility at high Re is that the field evolves into a ‘Taylor
state’ (Taylor 1963; Malkus & Proctor 1975; see also Moffatt 1978; Fearn 1994),
in which the mean tension force is very small relative to the fluctuating tension
force and the above arguments break down. The field grows to O(1) values, and
saturation occurs through higher harmonics. The requirement that the mean force on
cylinders must vanish becomes the ‘Taylor constraint’ which determines partially the
structure of the equilibrated field. Taylor states are found in magnetoconvection and
in dynamos with prescribed alpha effects (see, for example, Jones & Roberts 1990;
Roberts & Soward 1992; Fearn 1994).

Can the analogue of a Taylor state emerge from our mean-flow system? In the
Taylor state the magnetic energy would remain O(1) while Re → ∞ and so the
average azimuthal and axial forces 〈Fθ〉, 〈Fz〉 would tend to zero. The first condition
is familiar from discussion of the geodynamo problem in, say, spherical geometry:
only viscosity can balance a mean azimuthal torque. The second condition, 〈Fz〉 = 0,
arises because in infinite cylindrical geometry only viscous terms can balance a mean
axial force; this condition does not arise in the spherical case since such a force can
be absorbed by the boundary of the fluid.

However the analogue of a Taylor state cannot occur in the mean-flow system, as
can be seen by examining its energy equation. In a steady state:

0 =
dEM
dt

= −
∫ r2

r1

(rω〈Fθ〉+ w〈Fz〉) 2πr dr − ε
∫ r2

r1

〈|j |2〉 2πr dr. (2.18)

The last term represents the Ohmic dissipation, which can be bounded below by
a constant times εEM in the present geometry. The dissipation is balanced by the
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working of the fluid against the mean tension forces 〈Fθ〉 and 〈Fz〉. Thus these forces
cannot tend to zero as Re → ∞ (with ε fixed) in a steady state with O(1) magnetic
energy, as there would be nothing to balance Ohmic dissipation. In fact neither of
these mean forces can vanish individually, as can be established by looking at the
energy budget for (br, bθ) components and the bz component separately.

We conclude that no Taylor states can emerge from the steady mean-flow/magnetic
field system described above. The absence of Taylor states here is a consequence of the
fact that in the mean-flow system the energy source for the field is precisely through
the forces that would vanish in a Taylor state. This is property of the basic spiral
Couette flow u(r) chosen, and the result that the feedback from the field preserves
this simple dependence of u on r. This is not to say that there is no possibility of
Taylor states in the full system, that is a fluid and field obeying the MHD equations
and the boundary conditions (2.3) – it would be unwise to speculate here given
the complexity of flow that may be supported in Couette geometry with the given
boundary conditions – but just that Taylor states cannot be connected to a linear
regime of weak magnetic field through steady states of the mean-flow system. Put
differently, at large Re the mean-flow system considered here is certainly sufficient to
saturate growing magnetic modes at a low level.

However, alternative routes to saturation are also plausible (and could coexist in a
complicated bifurcation diagram for a highly supercritical fluid system such as this),
in which non-mean modes would be excited in the flow field. In this case the fluid
could adopt a flow u(r, θ, z, t), not dependent solely on r but still consistent with the
boundary conditions (2.3), for example Taylor rolls. Growing magnetic fields could
then perhaps adopt a Taylor state, with vanishing mean tension forces, by being
supplied with energy through interaction between field modes and non-mean flow
modes. In terms of the energy equation (2.18), an energy input term such as rω〈Fθ〉
would be replaced by 〈rωFθ〉 and there would be no difficulty in maintaining a Taylor
state with 〈Fθ〉 ' 0. This however cannot be captured in the mean-flow system we
consider.

3. The mean-flow system at large Rm

3.1. Choice of scalings

The system (2.3), (2.11a,b), (2.12), (2.15) for mean flow and field is valid for large Re
with other quantities held constant. However it is analytically intractable even for
linear dynamo behaviour unless we also consider the limit of large Rm. With two
large parameters the question of their relative size, in other words the magnitude of
the magnetic Prandtl number (1.4), arises. We defer addressing this point until §6.2,
since the restriction, which turns out to be simply Re � Rm, depends on the structure
that the field adopts, an unknown at this stage. For the time being we fix Rm large,
and then choose Re sufficiently large so that the mean-flow system may be used.

In this section we derive nonlinear equations for the field taking into account
feedback from the mean flow. These equations include the linear theory of Ruzmaikin
et al. (1988), Gilbert (1988a) and, as motivation, we recall scalings used in Gilbert
(1988a). In linear theory at high Rm = 1/ε the most unstable and the marginal modes
have m,k = O(ε−1/3). The field for each (m, k) mode is localized a distance of order
ε1/3 about a radius r0 determined by a resonance condition given below in (3.6). We
set

r = r0 + ε1/3ζ, m = ε−1/3m0, k = ε−1/3k0, (3.1)
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with ζ, m0, k0 of order one. In the linear problem the field is expanded in powers
of ε1/3,

a(r) = λ(ε1/3a0 + ε2/3a1 + · · ·), b(r) = λ(b0 + ε1/3b1 + · · ·) (3.2)

(we do not need to consider c(r), which scales and behaves similarly to b(r)). Here λ
is an amplitude which plays no role in the linear problem, but which we shall need
to fix to bring in nonlinear terms at the correct level. We expand the frequency as

$ = ε−1/3$0 + ε1/3$2 + · · · . (3.3)

The first term we need to deal with is the advective term on the left-hand side of
(2.11a,b). This is expanded close to r0 in a series

i$ + imω + ikw = ε−1/3(i$0 + im0ω(r0) + ik0w(r0)) + ζ(im0ω
′(r0) + ik0w

′(r0))
+ε1/3[i$2 + 1

2
ζ2(im0ω

′′(r0) + ik0w
′′(r0))] + · · · , (3.4)

with primes denoting radial derivatives. The leading constant and linear parts are
eliminated by setting

i$0 + im0ω(r0) + ik0w(r0) = 0, (3.5)

which determines the leading frequency $0 as that given by advection at the radius
r0, and

im0ω
′(r0) + ik0w

′(r0) = 0. (3.6)

This resonance condition fixes the critical radius r0 at which the (m, k) mode is
localized. At this radius the shearing action of the flow is along lines of constant
field, and so here the field is least vulnerable to the creation of small scales by
advection and their destruction by diffusion. We assume that r1 < r0 < r2 so that our
mode is confined away from either boundary; our subsequent analysis is then largely
independent of the boundary conditions imposed on the field and flow.

The next term in the expansion (3.4) of the advection operator is

ε1/3[i$2 + 1
2
ζ2(im0ω

′′(r0) + ik0w
′′(r0))] (3.7)

and this gives the leading effect of the flow on the field near to r0. This important term
enters into the linear problem and the ζ2 dependence, which arises from differential
rotation, localizes the magnetic modes in the form of parabolic cylinder functions.
The real part of the frequency $2 gives the motion of field relative to the fluid flow.
We will fix the amplitude λ of the field so as to bring in nonlinear effects at the level
O(ε1/3) of this term.

We now look at the nonlinear feedback on the flow from the field. Equations
(2.15a,b) may be formally integrated to give

ω = −δ−1

∫ r

r0

r−1(ab∗ + a∗b) dr + ω̃(r), (3.8a)

w = −δ−1

∫ r

r0

(ac∗ + a∗c) dr + w̃(r). (3.8b)

The integrals are particular integrals, giving localized feedback on the flow from
the field, while the terms ω̃ and w̃ are complementary functions, solutions of the
homogeneous equations of the form

ω̃ = C1 − C2/r
2, w̃ = C3 + C4 log r. (3.9a, b)
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The four constants C1–C4 are determined by the boundary conditions (2.3); for
example, C1 and C2 are given by the simultaneous equations

δ−1

∫ r0

r1

r−1(ab∗ + a∗b) dr + C1 − C2/r
2
1 = ω1, (3.10a)

− δ−1

∫ r2

r0

r−1(ab∗ + a∗b) dr + C1 − C2/r
2
2 = ω2, (3.10b)

and similar equations hold for C3 and C4. For zero magnetic field these, with (3.8),
(3.9), give the original spiral Couette flow but the presence of magnetic field leads
to a modification of the constants and hence an adjustment of the whole flow field.
Fortunately we shall see that this ‘global adjustment’, which is sensitive to the detailed
boundary conditions imposed, is small and may be neglected.

The flow affects the field in equations (2.11a,b) through just two terms. The first of
these is the azimuthal stretching term,

r∂rω = −δ−1(ab∗ + a∗b) + r∂rω̃, (3.11)

from (3.8a). The second is the advection term,

imω + ikw = −δ−1

∫ r

r0

(a∂ra
∗ − a∗∂ra) dr + imω̃ + ikw̃; (3.12)

this has been rewritten in terms of a using (3.8a,b) and the condition ∇ · b = 0, (2.12)
and is exact. With the scalings (3.2) the integral in (3.12) is of order λ2ε2/3/δ and
varies on the short ζ-scale. This term becomes important in nonlinear saturation
when it is of the same size as the key advection term (3.7), which is of size ε1/3. To
bring in both simultaneously we should set λ2ε2/3/δ = ε1/3, that is

λ2 = δε−1/3. (3.13)

What are the consequences of fixing the field amplitude at this level? The first is that
the magnetic field term in (3.11) is of order one, and so the shear (3.11) in the layer is
modified at the same time as the advection term (3.12). These two nonlinear effects,
modification of advection and shear, both play a role in the nonlinear equilibration.

A second effect is that the global adjustment to the flow field is small and ultimately
unimportant; the integral terms in (3.10) are a factor ε1/3 smaller than the other terms
and so lead to O(ε1/3) adjustments to the Ci. The result is to detune slightly the
condition (3.6) which fixes the location of the layer and so, as the field grows, the
centre of the layer moves a distance O(ε1/3) in terms of r or O(1) in terms of ζ. Since
it is convenient to have the layer centred at ζ = 0, one option is to translate the origin
of ζ to follow the location of the layer as the amplitude of the field is increased.

However, a rather easier alternative is to adjust m and k, which define the layer
location, so as to keep the layer centred at our original choice ζ = 0. To do this
formally in the expansion would involve expanding each constant Ci in (3.9) as a
power series in ε1/3. This allows us to keep track of flow adjustment and if m, k and
$ are also expanded in this way then the constant terms in i$ + imω̃+ ikw̃ at orders
ε−1/3 and 1, together with the linear terms at orders 1 and ε1/3, can be eliminated.
When this procedure is implemented the results are equivalent to ignoring completely
the global adjustment to the flow and, for simplicity, we shall do this. In other words,
ω̃ and w̃ are now taken to be given by (3.9) with

C1 − C2/r
2
i = ωi, C3 + C4 log ri = wi (i = 1, 2) (3.14)
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fixed independent of field magnitude. Note that the small adjustment to the flow
and the handling of this are sensitive to the type of boundary conditions employed.
On the other hand, once the layer is recentred at ζ = 0, the equations obtained are
independent of the details of boundary conditions.

3.2. Rescaling and non-dimensionalization

Following these preparatory remarks we can now expand and obtain the nonlinear
equations that are the subject of this paper. We scale r, m and k as in (3.1) and $ as
in (3.3), and from (3.2), (3.13) scale the field as

a = δ1/2ε1/6(a0 + ε−1/3a1 + · · ·), (3.15a)

b = δ1/2ε−1/6(b0 + ε−1/3b1 + · · ·). (3.15b)

Substituting into (2.11a,b), (3.11), (3.12), at O(ε−1/3) and O(1) we obtain again

i$0 + im0ω̃(r0) + ik0w̃(r0) = 0, im0ω̃
′(r0) + ik0w̃

′(r0) = 0. (3.16a, b)

At O(ε1/3) we obtain the equations for the magnetic field which can be cast in the
form

L̂a0 = 2im0b0/r
2
0 , L̂b0 = (a0b

∗
0 + a∗0b0 − ρ)a0, (3.17a, b)

with a scalar advection–diffusion operator defined as

L̂ = ∂2
ζ −

m2
0(1 + σ2)

r2
0

− i

(
$2 +

m0ζ
2ρχ

2r2
0

+ i

∫ ζ

0

(a0∂ζa
∗
0 − a∗0∂ζa0) dζ

)
. (3.18)

Here the real part of the operator L̂ contains leading-order diffusion effects from

(2.11), with k0 eliminated in favour of m0 using (3.16b). The imaginary part of L̂ gives
the advection of the field in the flow local to r0. New constant quantities describing
this local flow structure have been introduced:

ρ = r0ω̃
′(r0), σ =

r0ω̃
′(r0)

w̃′(r0)
, χ = r0

(
ω̃′′

ω̃′
− w̃′′

w̃′

) ∣∣∣
r=r0

. (3.19a, b, c)

The number of parameters can be reduced by pinning down our original non-
dimensionalization more precisely. If we define L and U in terms of the dimensional
values of the radius at which the mode is located and the azimuthal shear at this
radius then

L = rdim
0 , U = (rdim)2(ω̃dim)′|rdim =rdim

0
, (3.20)

and, in terms of dimensionless variables, we have r0 = 1 and ρ = 1. Furthermore for
spiral Couette flow χ ≡ −2.

With these results, and on writing A = a0, B = b0, M = m0, Ω = $2, the system
governing the magnetic field may be written

LA = 2iMB, LB = (β − 1)A. (3.21a, b)

The operator L is given by

L = ∂2
ζ −M2(1 + σ2) + i(Mζ2 − α− Ω) (3.21c)

and the nonlinear feedback is through the real quantities

α(ζ) = i

∫ ζ

0

(A∂ζA
∗ − A∗∂ζA) dζ, β(ζ) = AB∗ + A∗B. (3.21d, e)
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This is the nonlinear system appropriate to saturation of dynamo instabilities, which
we will explore. On the left-hand sides of (3.21a,b) are scalar advection–diffusion
operators L, which in isolation would give decay of field. The terms on the right
of these equations, however, arise from the vector nature of the field. The term
(β − 1)A on the right of (3.21b) represents the omega effect: the stretching of radial
A-field to give B-field by differential rotation. This is the only energy source in the
problem.

The term on the right of (3.21a) is the alpha effect mentioned in the introduction
(note this has no relation with the quantity called ‘α’). It arises because in cylindri-
cal geometry diffusion of a vector quantity such as magnetic field couples r- and
θ-components. This term then regenerates A-field from B-field and, although it does
not provide energy, is an essential ingredient in the dynamo instability. Being purely
geometrical, it is not nonlinearly suppressed (unlike the omega effect). The combi-
nation of alpha effect and omega effect allows exponential growth of weak fields, as
discussed in §4.1 below.

The system can be thought of as a thin-layer approximation in cylindrical geometry
yielding a planar system; the only effect arising from curvature in the original system
is the alpha-effect term on the right-hand side of (3.21a). The parameter σ is the only
remnant of the flow geometry and records the local helical pitch of streamlines. In
what follows the scaled wavenumber M will be treated as a control parameter (for
reasons discussed in the introduction) and we remark that Ω is the scaled frequency
of rotation of the magnetic mode relative to the flow field at r = r0.

4. Linear and weakly nonlinear theory
4.1. Linear theory

Linear theory at small field amplitudes is recovered by setting the nonlinear terms α
and β in (3.21) to zero, to give

LlinA = 2iMB, LlinB = −A, (4.1a, b)

with

Llin ≡ ∂2
ζ + iMζ2 − iΩ̂, iΩ̂ ≡ iΩlin +M2(1 + σ2). (4.1c, d)

The frequency, Ω ≡ Ωlin(M) is complex for a growing mode. The linear theory for
this system is given in Ruzmaikin et al. (1988) and Gilbert (1988a); we summarize it
here briefly. If B is eliminated from (4.1a,b), we are left with L2

linA = −2iMA, which
can be factorized to give

L+
linL−linA = 0, L±lin ≡ Llin ± (−2iM)1/2. (4.2)

The two operators L±lin differ by a constant and so commute; therefore the general

solution is A = φ+ + φ−, where φ± are arbitrary solutions of L±linφ± = 0. The
operators can be written in the canonical form by setting s = ζ(−4iM)1/4:

L±lin = (−4iM)1/2
[
∂2
s − s2/4− (iΩ̂ ∓ (−2iM)1/2)/(−4iM)1/2

]
. (4.3)

Solutions of L±linφ± = 0 can be expressed in terms of parabolic cylinder functions
and, in order that the mode is effectively confined to the thin layer surrounding
r = r0, we need solutions which decay as s → ±∞. Such solutions exist provided
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iΩ̂ ∓ (−2iM)1/2 = −(n + 1/2)(−4iM)1/2 for n = 0, 1, . . . and the corresponding linear
growth rates are then given by

iΩlin(M) = (−2iM)1/2
[
±1−

√
2 (n+ 1

2
)
]
−M2(1 + σ2) (4.4)

(from 4.1d ). The real and imaginary parts of the growth rate are, respectively,

Re iΩlin(M) = M1/2
[
±1−

√
2 (n+ 1

2
)
]
−M2(1 + σ2), (4.5a)

Im iΩlin(M) = M1/2
[
∓1 +

√
2 (n+ 1

2
)
]
. (4.5b)

If we translate into dimensional units we find that, to this order, equations (3.3), (3.20)
give a real growth rate of

Re i$ ' (ηmω′(r0)/r0)
1/2
[
±1−

√
2 (n+ 1

2
)
]
− η(m2/r2

0 + k2), (4.6)

for n = 0, 1, . . .. These agree with growth rates obtained for more general axisymmetric
flows by Ruzmaikin et al. (1988) and Gilbert (1988a).

Of these two infinite families of solutions, only the upper sign in (4.5) and the
choice n = 0 imply a positive growth rate for spiral Couette flow. Therefore we need
only work with this case, for which the corresponding eigenfunctions are

Alin = exp
[
−ζ2(1− i)(M/8)1/2

]
, Blin = 1

2
M−1/2(1 + i)Alin. (4.7)

Our scaling of the original wavenumber m = ε−1/3M for small ε captures both the
most unstable mode and the critical mode M = Mc with

M3/2
c ≡ (1− 1/

√
2)(1 + σ2)−1. (4.8)

Modes with 1 6 m = o(ε−1/3) are also unstable, and have growth rates given by (4.6),
but now the last term may be neglected. The growth rate is shown schematically as a
function of m in figure 1(a).

4.2. Weakly nonlinear theory

The evolution of a mode close to the bifurcation at M = Mc can be determined by
weakly nonlinear theory, which we now sketch (see also Gilbert 1988b). We write A
and B at leading order as the linear eigenfunctions (4.7) at the bifurcation, multiplied
by a small real amplitude ∆. We use a subscript ‘c’ to denote linear eigenfunctions
and other quantities at the critical point. Because the feedback from the tension force
is quadratic in the field, we expand

(A,B) = ∆(Ac, Bc) + ∆3(A′, B′) + O(∆5), (4.9a, b)

M = Mc + ∆2M ′ + O(∆4), (α, β) = ∆2(α′, β′) + O(∆4). (4.9c, d)

We take the frequency Ω in the governing system (3.21) to be purely real and seek
steadily rotating states with

Ω = Ωc + ∆2Ω′ + O(∆4). (4.10)

We substitute these expansions in the nonlinear equations (3.21). At leading order in
∆ we obtain exactly the linear equations (4.1) at Mc, which are automatically satisfied
because of the choice of leading terms in the expansions (4.9), (4.10). The correction
terms (A′, B′) to the magnetic field are determined by the system

LcA
′ +L′Ac = 2iMcB

′ + 2iM ′Bc, LcB
′ +L′Bc = β′Ac − A′, (4.11a, b)
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L′ ≡ −2McM
′(1 + σ2) + i(M ′ζ2 − α′ − Ω′). (4.12)

Here Lc is the linear operator (4.1c) at the critical point; α′ and β′ are obtained by
substituting Ac and Bc in equations (3.21d,e).

We define an inner product by 〈(A,B), (C,D)〉 =
∫

(A∗C + B∗D) dζ and let (A†, B†)
be the eigenfunction of the adjoint system to (4.1) at the critical point, given by

L†cA† + B† = 0, L†cB† + 2iMcA
† = 0, L†c ≡ ∂2

ζ − iMcζ
2 + iΩ̂∗c . (4.13)

It may be easily checked that the adjoint eigenfunction is given in terms of the
direct eigenfunction (4.7) by (A†, B†) = (B∗c , A

∗
c). Following standard methods, we take

the inner product of the system (4.11a,b) with the adjoint eigenfunction to give a
solvability condition which determines M ′ and Ω′ as

M ′ ' −0.45846M1/2
c , Ω′ ' 0.30834, (4.14)

where Mc is as given by (4.8).

5. Strongly nonlinear states
Having dealt with equilibration near the bifurcation M = Mc using weakly nonlin-

ear theory, we pursue this branch into more strongly nonlinear regimes with M < Mc

first by means of numerical computations, then by asymptotic analysis.

5.1. Numerical results

We work with the system (3.21). It was solved numerically using a standard nonlinear
eigenvalue solver from the NAG suite of routines. It was found to be best to rewrite
the system as eleven real first-order equations with two of the variables taken to be
the scaled wavenumber M and the frequency Ω. Based on the linear results described
in §4.1 it is apparent that the most dangerous mode is an even function about
ζ = 0 and hence computations were restricted to the semi-infinite domain ζ > 0 with
appropriate symmetry constraints imposed on ζ = 0.

Rather than solve (3.21) for prescribed M, it was found more convenient to specify
the value of the A-component of field on the centreline ζ = 0 by setting A(0) = ∆,
with ∆ taken to be real since the phase of the field can be fixed arbitrarily. In view
of the symmetry properties we solved (3.21) subject to

A′(0) = B′(0) = 0, A(0) = ∆, A(ζ), B(ζ)→ 0 as ζ →∞. (5.1)

The numerical code then found M and Ω as functions of amplitude ∆, together
with the structure of the nonlinear eigenfunctions. As a starting point we used small
values of ∆ and checked our code by comparing its results to the weakly nonlinear
predictions of §4.2: excellent agreement with the results (4.9), (4.14) was achieved for
sufficiently small ∆.

Results for steady states of the strongly nonlinear system are listed in table 1 for
various values of ∆ up to 5 and the helical pitch parameter σ set at unity. From
table 1 we conclude that as ∆ rises so M falls, as is suggested in figure 1(b). The
corresponding eigenfunctions are shown in figure 2 for the representative choices
∆ = 0.5, 1, 2 and 4. In figure 2(a), with ∆ = 0.5, the field structure is not dissimilar
to the linear eigenfunctions given by (4.7). As ∆ grows so the field approaches a form
which is characterized by a well-defined ‘core’ region in which the field strength is
appreciable, supplemented by some type of thin ‘diffusive layer’ which reduces the
disturbance to practically zero in an outer region. It is evident from figure 2(c,d ) that
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∆ M Ω ReB(0) ImB(0) α(∞) ζ0

0.5 0.21721 −0.0858 0.41631 0.43974 0.24426 3.25
1.0 0.08292 −0.0034 0.47752 0.73015 0.83114 5.00
1.5 0.03346 1.3× 10−5 0.33296 0.87687 1.35984 8.10
2.0 0.01832 7.9× 10−7 0.24996 0.95680 1.81531 11.65
2.5 0.01161 8.1× 10−8 0.19999 1.01259 2.23541 15.55
3.0 0.00803 1.3× 10−8 0.16666 1.05647 2.63289 19.80
3.5 0.00589 2.7× 10−9 0.14286 1.09319 3.01384 24.35
4.0 0.00451 7.2× 10−10 0.12500 1.12507 3.38182 29.14
4.5 0.00356 2.2× 10−10 0.11111 1.15341 3.73918 34.18
5.0 0.00288 8.0× 10−11 0.10000 1.17904 4.08758 39.45

Table 1. Results of simulations of (3.21), (5.1); ζ0 is the leading zero of ReA(ζ).
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Figure 2. Fields in equilibrated nonlinear states with σ = 1. Shown are the fields ReA (solid), ImA
(dotted), ReB (wide dotted) and ImB (dashed), solutions of (3.21), plotted as functions of ζ. In
(a–d ) ∆ = 0.5, 1, 2 and 4 respectively.

in the core ReA takes a parabolic shape, ImB is virtually constant and ImA and
ReB are quite small. One distinctive feature is that for some reason |ReB| actually
appears to be larger within the diffusive layer than outside and it decays both into
the core and the outer zones.

The behaviour of the nonlinear terms α and β (see (3.21d,e)) is plotted in figure 3.
This shows α(ζ)/∆ (solid) and 1−β(ζ) (dotted) for the parameter values corresponding
to those in figure 2. We see that, at large ∆, β ' 1 in the core so that here the omega
effect is highly suppressed, and the fluid is approximately in solid-body motion. In the
core α(ζ) has a parabolic profile, and in fact α(ζ) ' Mζ2 to a good approximation.
Thus the advection term Mζ2 − α − Ω in (3.21) is also strongly suppressed, another
symptom of approximate solid-body rotation. As we move through the diffusive
layers, α and β adjust rapidly to the field-free outer solution where α = const., β = 0.

It is not easy to gain an intuitive grasp of the field structure from the real and
imaginary parts of A and B, and so in figure 4 we reconstitute the field, showing
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Figure 3. Nonlinear terms in equilibrated nonlinear states with σ = 1. Shown are α(ζ)/∆ (solid)
and 1− β(ζ) (dotted), as functions of ζ. In (a–d ) ∆ = 0.5, 1, 2 and 4 respectively.
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Figure 4. Contour plot of the radial and azimuthal fields at z = 0. In (a, b) ∆ = 0.5, while in (c, d )
∆ = 4. The radial field A(ζ) exp(iφ)+c.c. is shown in (a, c) and the azimuthal field B(ζ) exp(iφ)+c.c.
in (b, d ). Solid contours denote positive values and dashed contours negative ones: zero values are
shown by dots. In (a, b) the maximum radial field is unity and contour spacing is 0.1; in (c, d ) the
maximum radial field is 8 and spacing is 0.8 in (c), 0.4 in (d ).

contour plots of the radial and azimuthal fields covering two periods in angle. In
figure 4(a,b) for ∆ = 0.5 the field resembles the linear eigenfunction with exponential
decay as ζ → ∞. In figure 4(c,d ), for ∆ = 4, the breaking up of the domain into a
core region and thin diffusive layers is apparent; in (c) the radial component of field
decays in a parabolic fashion out to roughly ζ = 30 and thereafter is practically zero,
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Figure 5. Schematic picture of the magnetic field structure and processes in the core region and
thin diffusive bounding layers appropriate to the solution of (3.21), (5.1) when ∆ � 1.

while in (d ) the azimuthal field is constant as a function of r in the core, but then
is swept out in the diffusive layer and this rapid change of phase corresponds to the
peak of |ReB| in this layer.

Recall that we are ultimately interested in the limit of small M, and so large ∆,
because we are seeking to reduce the true azimuthal wavenumber m ≡ ε−1/3M from
O(ε−1/3) to smaller values and so follow the solution branch depicted in figure 1(b).
In this limit the field appears to adopt an asymptotic structure, which we will
obtain analytically. Although the numerical solution gives some information about
the magnetic field in this limit, many significant questions can only be answered by
analytical knowledge of the structure and scaling properties of the field. For example,
we still do not know the physical mechanisms maintaining the field when the core–
layer structure emerges for large ∆, and we do not know whether this solution persists
along the whole branch 1 6 m 6 O(ε−1/3) or whether there is a transition to different
asymptotic scalings at some point. Finally we need information about the solution to
enable us ultimately to justify the validity of the mean-flow system for large Re (see
§§2.3, 6.2). With this background, in the following subsection we seek an analytical
solution of (3.21) with ∆ � 1.

The results summarized in table 1 and figure 2 suggest the following behaviour
for large ∆. As ∆ grows so M = O(∆−2) to a high degree of accuracy whilst ReB(0)
appears to be very close to (2∆)−1. It is noteworthy that the frequency Ω reduces
exceedingly rapidly; exactly how quickly is not easy to discern as the smaller Ω values
may be dominated by numerical errors. It is also evident that the extent of the main
activity zone increases with ∆. An unambiguous definition for the limit of the core
zone is not immediately apparent and, in its absence, we have chosen as a measure
of the core width ζ0, defined to be the location at which the first zero of ReA occurs.
Table 1 suggests that ζ0 rises slightly more quickly than ∆. Finally, we are reminded
by figure 3 that a very good approximation is α 'Mζ2 and β ' 1 in the core.

5.2. Analysis for ∆ � 1

The full problem is to solve (3.21) subject to boundary conditions (5.1) in the ∆ � 1
limit and the motivation for our analysis is prompted largely by the numerical
evidence described in §5.1 above. For ease of discussion we divide our account into
the core and diffusive layers; the general structure of the asymptotic solution and the
mechanisms maintaining the field are shown schematically in figure 5. Some of the



394 A. P. Bassom and A. D. Gilbert

detail in this figure will become apparent later in this section. For the present note
that the alpha effect, or conversion of azimuthal to radial field, occurs in the core
region; here differential rotation and the omega effect are completely suppressed. The
omega effect, the stretching of field by differential rotation, is ‘expelled’ from this
core and occurs in the thin diffusive layers outside which the field decreases to zero.
The omega effect represents the only energy source for the magnetic field to combat
Ohmic dissipation, and so energy flows into the core from the diffusive layers.

The exact scalings that we use in terms of ∆ are, in the main, far from clear at
the outset but they can be established by forcing certain key balances to hold which
necessitate that the core layer solutions should be brought smoothly to zero by the
diffusive layer. However, rather than attempt to explain these balances now, we will
first present the asymptotic analysis and then return to the question of the derivation
of the salient scalings.

5.2.1. The core region

In the core it is convenient to decompose the fields and the operator L into real
and imaginary parts according to

A = Ar + iAi, B = Br + iBi, L =Lr + iLi, (5.2)

with

Lr = ∂2
ζ −M2(1 + σ2), Li = Mζ2 − α− Ω. (5.3a, b)

The governing equations become

LrAr −LiAi = −2MBi, LrAi +LiAr = 2MBr, (5.4a, b)

LrBr −LiBi = (β − 1)Ar, LrBi +LiBr = (β − 1)Ai, (5.4c, d)

with real quantities given by

α = 2

∫ ζ

0

(Ar∂ζAi − Ai∂ζAr) dζ, β = 2ArBr + 2AiBi. (5.4e, f)

For ∆ � 1 it turns out that the core extends over an O(∆7/5) range and so we define
the core coordinate X by

ζ = ∆7/5X. (5.5a)

All other quantities are expanded as series in powers of ∆−6/5. From the discussion
in §5.1, we expand the scaled wavenumber with a leading O(∆−2) behaviour,

M = ∆−2(M0 + ∆−6/5M1 + · · ·). (5.5b)

The fields are expanded as

Ar = ∆(Ar0 + ∆−6/5Ar1 + · · ·), Ai = ∆−1/5(Ai0 + ∆−6/5Ai1 + · · ·), (5.6a, b)

Br = ∆−1(Br0 + ∆−6/5Br1 + · · ·), Bi = ∆1/5(Bi0 + ∆−6/5Bi1 + · · ·), (5.6c, d)

and the fact that the real and imaginary parts of A and B are treated differently is a
consequence of our fixing the (arbitrary) phase of the field so that A(0) = ∆ is real.
These expansions then imply the forms for α, Ω and β

α = ∆4/5(α0 +∆−6/5α1 + · · ·), Ω = ∆4/5(Ω0 +∆−6/5Ω1 + · · ·), β = β0 +∆−6/5β1 + · · · ,
(5.7a, b, c)
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and, finally, we then have

Lr = ∆−14/5∂2
X − ∆−4(M2

0 + ∆−6/52M0M1 + · · ·)(1 + σ2), (5.8a)

Li = ∆4/5(M0X
2 − α0 − Ω0) + ∆−2/5(M1X

2 − α1 − Ω1) + · · · . (5.8b)

The expansions (5.5)–(5.8) are substituted into the governing equations (5.1), (5.4) and
powers of ∆ are equated; we do not write this out here. We take the core region to
be defined as the zone in which Ar0 6= 0, in accordance with the numerical results.

We begin with equation (5.4b) which at leading order ∆9/5 yields

(M0X
2 − α0 − Ω0)Ar0 = 0.

In the core Ar0 6= 0 and so the contents of the bracket vanish. Since α0 = 0 at X = 0
we deduce that

α0 = M0X
2, Ω0 = 0. (5.9)

Arguing similarly for (5.4b) at the following three orders yields

α1 = M1X
2, α2 = M2X

2, α3 = M3X
2, Ω1 = Ω2 = Ω3 = 0. (5.10)

The differential advection term Mζ2 − α − Ω is zero in the core up to the orders
considered, because in the expansion there is nothing to balance it. Only at the next
order, O(∆−3), does the picture change, as we obtain new terms,

∂2
XAi0 + (M4X

2 − α4 − Ω4)Ar0 = 2M0Br0. (5.11)

We now look at equation (5.4c); given the vanishing of the advective terms (5.9),
(5.10), there is nothing in the equation to balance the right-hand side at leading order,
and the following three orders. Since Ar0 6= 0 in the core we obtain

β0 = 1, β1 = β2 = β3 = 0; (5.12a, b)

the stretching term 1 − β is largely switched off in the core. At the following order,
O(∆−19/5), we obtain

∂2
XBr0 − (M4X

2 − α4 − Ω4)Bi0 = β4Ar0. (5.13)

Given the vanishing of advective and stretching terms (5.9), (5.10), (5.12), equation
(5.4d ) now yields at the first two non-trivial orders

∂2
XBi0 = 0, (5.14a)

∂2
XBi1 −M2

0 (1 + σ2)Bi0 = 0. (5.14b)

The solution of (5.14a) subject to the symmetry conditions of (5.1) is just

Bi0 = C0 = const. (5.15)

Using (5.9), (5.10) again, equation (5.4a) yields

∂2
XAr0 = −2M0Bi0, (5.16a)

∂2
XAr1 −M2

0 (1 + σ2)Ar0 = −2M0Bi1 − 2M1Bi0. (5.16b)

These equations are important physically as they represent the conversion of A-field
from B-field via the alpha effect (see figure 5). Once again, the symmetry constraints
on Ar0 lead to

Ar0 = 1−M0C0X
2. (5.17)
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We have so far obtained Ar0 and Bi0 explicitly; the remaining field components in
the core are determined by our knowledge of α and β. The vanishing of differential
rotation and stretching in the core determines these field components, as indicated in
figure 5. From (5.4e), (5.9) we have

α0 ≡ 2

∫ X

0

(Ar0∂XAi0 − Ai0∂XAr0) dX = M0X
2. (5.18)

Differentiating this equation and substituting Ar0 from (5.17) gives an ODE for Ai0.
The solution, applying (5.1), is simply

Ai0 = M0X
2/2. (5.19)

Finally, (5.4f ), (5.12a),

β0 ≡ 2Ar0Br0 + 2Ai0Bi0 = 1, (5.20)

fix Br0 in terms of the other field components, with

Br0 = 1/2. (5.21)

This completes our determination of the leading-order field in the core; we note that
the forms of the core solutions, (5.15), (5.17), (5.19), (5.21), are entirely consistent
with our earlier commentary on the numerical results in §5.1. To summarize, the
leading-order field structure in the core is

A = ∆(1−M0C0X
2) + ∆−1/5

(
Ar1 + 1

2
iM0X

2
)

+ · · · , (5.22a)

B = ∆1/5iC0 + ∆−1
(

1
2

+ iBi1
)

+ · · · . (5.22b)

Before moving on to the diffusive layer we make a few comments about pursuing the
expansion to higher orders: this is straightforward provided the governing equations
(5.4) are taken in the correct order, as done above. Here we merely note that the
solutions of (5.14b) and (5.16b) are

Ar1 =
[

1
2
M2

0 (1 + σ2)−M1C0 −M0C1

]
X2 − 1

6
M3

0C0(1 + σ2)X4, (5.23a)

Bi1 = C1 + 1
2
C0M

2
0 (1 + σ2)X2, (5.23b)

where C1 is some real constant which enters our discussion of the dynamics of the
diffusion layer below.

Intriguingly, when the leading-order fields are substituted in (5.11) and then (5.13),
we obtain

α4 = M4X
2, Ω4 = 0, β4 = 0. (5.24)

Thus the extinction of differential rotation MX2 − α, stretching β − 1 and frequency
Ω holds over at least five levels of the expansion. We have not tried to determine at
what order these balances are finally broken.

5.2.2. The diffusive layer

The thin diffusive layer matches the core solution onto the outer region of zero field.
Its location is given where our previous analysis breaks down, at the zero crossing of
Ar0. In terms of core variables, from (5.22), this is at X0 with

M0C0X
2
0 = 1. (5.25)

In this layer, A has size of order ∆−1/5 while B is of size ∆1/5. To analyse this layer it
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is convenient to write A as the core solution obtained above plus a modification Φ so
that

A = ∆Ar0 + ∆−1/5(Ar1 + Ai0) + · · ·+ ∆−1/5Φ0 + ∆−7/5Φ1 + · · · . (5.26a)

We demand that Φ→ 0 to the left of the diffusive layer (i.e. into the core), while the
total radial field A→ 0 to the right, entering the field-free outer region. We also write

B = ∆1/5Ψ0 + ∆−1Ψ1 + · · · (5.26b)

and require that Ψ0 match onto iC0 in the core (see (5.22)) and vanish into the outer
zone.

Recall that for the core solution the key advective term Mζ2−αcore−Ω is extremely
small, in fact of O(∆−26/5), whereas Mζ2 and αcore individually are of size O(∆4/5). With
the forms (5.26) above, it follows that in the diffusive layer Mζ2−α−Ω = α̃+O(∆−26/5),
where α̃ is the modification to αcore that arises because of the new Φ terms in A above.
Now α̃ is of size O(∆−2/5), and can be calculated by substituting (5.26a) in (3.21d )
and deleting terms not involving the Φi. To have α̃ and ∂2

ζ appear at leading order

the layer must be of thickness O(∆1/5) in terms of ζ. Thus we scale the layer on a
variable Y with

ζ = ∆7/5X0 + ∆1/5Y , X = X0 + ∆−6/5Y . (5.27)

Within the diffusive layer, near the zero-crossing of Ar0, the series (5.26a) can be
written symbolically as

A = ∆−1/5Ã0 + ∆−7/5Ã1 + · · · (5.28a)

(see (5.31a) below) and we can also write

Mζ2−α−Ω = ∆−2/5α̃0 +∆−8/5α̃1 + · · ·+O(∆−26/5), β = β̃0 +∆−6/5β̃1 + · · · . (5.28b, c)

The leading-order equations for A and B become

(∂2
Y − iα̃0)Ã0 = 0, (∂2

Y − iα̃0)Ψ0 = (β̃0 − 1)Ã0, (5.29a, b)

from (3.21), and include diffusion, the omega effect (see figure 5) and differential
rotation; the alpha effect has dropped out here. The next-order equations for A and
B are

(∂2
Y − iα̃0)Ã1− iα̃1Ã0 = 2iM0Ψ0, (∂2

Y − iα̃0)Ψ1− iα̃1Ψ0 = (β̃0−1)Ã1 +β1Ã0. (5.30a, b)

In order to derive equations for the Φi and Ψi we expand our core solutions (5.22),
(5.23), for Ar0, Ar1 and Ai0 in terms of the diffusion layer variable Y , to give field
expansions within the diffusive layer which have the structure (cf. (5.26), (5.28))

A = ∆−1/5 [−λ00Y + λ01 + iλ02 + Φ0] + O(∆−7/5), (5.31a)

B = ∆1/5Ψ0 + O(∆−1). (5.31b)

The real constants λij are defined by

λ00 = 2M0C0X0, λ01 =
[

1
3
M2

0 (1 + σ2)−M1C0 −M0C1

]
X2

0 , λ02 = 1
2
M0X

2
0 . (5.32)

Written in this way, the requirement that these solutions match with the core neces-
sitates that Φ0 → 0 as Y → −∞ whilst as Y → ∞ we require Φ0 ∼ λ00Y − λ01 − iλ02

so that the total field vanishes.
The diffusive layer equations now follow from substitution into (5.29). The only

term which requires some care is the integral which defines α(ζ); we have already
argued that the inclusion of the term Φ0 in (5.31a) means that within the diffusive zone
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Figure 6. The real (solid line) and imaginary (dotted) parts of the total eigenfunction

−Ŷ + iλ̂02 + Φ̂0 in the diffusive layer.

α is perturbed by an O(∆−2/5) amount. The equation which results from (5.29a) for
the leading-order adjustment Φ0 to the local expansion of the core A-field component
is found to be invariant under a simple translation of the origin of the Y -coordinate.
This is merely a reflection of the fact that the location of the diffusive layer cannot
be uniquely determined on the Y = O(1) lengthscale. It is also advantageous to scale
the constants λij in (5.32) and unknowns in (5.31) according to

Φ̂0 =
Φ0

λ
1/2
00

, Ŷ = λ
1/2
00

(
Y − λ01

λ00

)
, λ̂02 =

λ02

λ
1/2
00

, (5.33)

for then the determining equation for Φ̂0 reduces to

d2Φ̂0

dŶ 2
− iα̂0(−Ŷ + iλ̂02 + Φ̂0) = 0, (5.34a)

with

− iα̂0 = Ŷ (Φ̂0 − Φ̂∗0) + iλ̂02(Φ̂0 + Φ̂∗0) +

∫ Ŷ

−∞

{
2(Φ̂∗0 − Φ̂0) + Φ̂0

dΦ̂∗0

dŶ
− Φ̂∗0

dΦ̂0

dŶ

}
dŶ ,

(5.34b)
and is to be solved subject to

Φ̂0 → 0 as Ŷ → −∞, (5.34c)

Φ̂0 ∼ Ŷ − iλ̂02 as Ŷ →∞, (5.34d)

where λ̂02 ≡M0X
5/2
0 /
√

8.
This nonlinear integro–differential equation was solved using a code based on the

same eigenvalue solver described briefly in connection with the strongly nonlinear
system (3.21). Equation (5.34a) was cast as a system of first-order real equations and

treated as an eigenproblem for λ̂02. It was found that the imposition of boundary
conditions required a little care, especially that for Ŷ → −∞, otherwise the unwanted

‘trivial solution’ Φ̂0 = Ŷ − iλ̂02 was identified. (Of course in practice the computation
must be carried out on a finite Ŷ -interval and, if the näıve boundary condition
Φ̂0 = 0 is applied at the left-hand end of the interval, the routine inevitably settled
on a solution of (5.34a) linear in Ŷ .) Eventually, in order to resolve this difficulty,
we developed the asymptotic solution of (5.34a) as Ŷ → −∞ in order to determine a
relationship between Φ̂0 and dΦ̂0/dŶ in that limit. This, used as a boundary condition,
was then enough to preclude the unwanted solution and enabled us to determine the
required eigenfunction. In figure 6 we illustrate the real and imaginary parts of the
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Figure 7. The real (wide dotted line) and imaginary (dashed) parts of the eigenfunction Ψ̂ 0 in the
diffusive layer.

total eigenfunction −Ŷ + iλ̂02 + Φ̂0 which shows how the A-component of the field is
brought smoothly to zero from the core via the transition into the outer zone.

The leading-order B-component of the induced field in the diffusion layer is found
by substituting (5.31) in (5.29b). If we introduce the scaling

Ψ̂ 0 = λ
1/2
00 Ψ0, (5.35)

and demand that this field component matches properly with the core solution (5.22b)
as Ŷ → −∞ we are left with

d2Ψ̂ 0

dŶ 2
− iα̂0Ψ̂ 0 = (β̂0 − 1)(−Ŷ + iλ̂02 + Φ̂0), (5.36a)

with α̂0 given by (5.34b) and

β̂0 = (−Ŷ + iλ̂02 + Φ̂0)Ψ̂
∗
0 + (−Ŷ − iλ̂02 + Φ̂∗0)Ψ̂ 0. (5.36b)

This must be solved subject to

Ψ̂0 → i/2λ̂02 as Ŷ → −∞, (5.36c)

Ψ̂0 → 0 as Ŷ →∞. (5.36d)

Given the numerical solution of (5.34) this linear problem for Ψ̂0 can be readily
solved and the eigenfunction is reproduced in figure 7. We notice in particular the
manner in which Re Ψ̂0 → 0 as |Ŷ | → ∞ with a distinctive negative dip which is
reassuringly reminiscent of the behaviour of ReB remarked upon in connection with
the full numerical solutions of the strongly nonlinear system (3.21) and shown in
figure 2.

At this juncture we have determined the leading-order field components within the
diffusive layer and have shown how they match with both the core solution outlined
in §5.2.1 and the zero-field outer zone. Unfortunately, we still have three important
constants which we have been unable to isolate: C0, which is the strength of the
leading B-component on the symmetry line ζ = 0 (see (5.15)), the scaled wavenumber
M0, and the value X0 which fixes the point at which the core solution gives way to
the diffusive layer. These constants satisfy (5.25) and the numerical solution of the
leading-order eigenproblem (5.34) determines

λ̂02 ≡M0X
5/2
0 /
√

8 ' 0.827. (5.37)

The fact that the eigenproblems (5.34) and (5.36) for the leading-order eigenfunctions
are invariant under a simple translation in Ŷ and also under a scaling in λ00 means
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that these solutions are insufficient to pin down M0, C0 and X0 uniquely. In order
to do this, it is strictly necessary to solve the eigenproblems (5.30) for the correction
terms Ã1 and Ψ1 in the diffusive layer field expansions. It was found that in practice
these boundary value problems are sufficiently complicated that accurate numerical
solutions are difficult to achieve.

In preference to a full numerical attack on these higher-order equations, we note
that for amplitude parameter ∆ as small as 2, the solutions of the full system (3.21)
as summarized in table 1 are very well approximated by the leading-order asymptotic
forms postulated in this section. Indeed, M ' 0.072∆−2 + O

(
∆−16/5

)
so that (5.25)

and (5.37) lead to

M0 ' 0.072, C0 ' 0.857, X0 ' 4.02. (5.38)

These values yield asymptotic eigenfunctions which are entirely in agreement with the
solutions of the full system (3.21) (compare the diffusive layer eigenfunctions shown
in figures 6 and 7 with the forms of the eigensolutions of (3.21) near ζ0 when ∆ = 4
as illustrated in figure 2d.) Therefore, although accurate solution of the second-order
eigenproblems would be desirable for completeness, it appears that the effort needed
to accomplish this would give us very little extra information beyond that already
known. Moreover, we can be confident at this point that we have identified the
appropriate large-∆ solution to within acceptable tolerance.

5.3. Justification of the scalings

Now that the coupled core–diffusive layer structure has been explained and used to
deduce the large-∆ solution we can give a brief a posteriori argument for our choice of
scalings. By definition of ∆, we have ReA = O(∆) in the core zone and the numerical
evidence of table 1 is strongly indicative that M = O(∆−2). Let us take ImA = O(∆a)
and ζ = ∆bX in the core, where a and b are numbers to be determined. From the
core balance β ' 1 it is natural to scale ReB = O(∆−1) and ImB = O(∆−a). Finally,
the balance between generation of A-field from B-field in equation (5.16a) leads to
the relation 3 + a = 2b between exponents.

We now move to consider the diffusive layer. Here we anticipate that both linear
terms from ReA and constant terms from ImA in the core must play a role in the
eigenproblem or else the relevant system is overspecified. This fixes the width of the
diffusive layer at X = O(∆a−1), or ζ = O(∆a+b−1). In this zone A = O(∆a) and, in order
that the total field is brought to zero by the diffusive layer, the modification to the
simple Taylor expansion of the A-field solution in the core must also be O(∆a). This
induces a correction of O(∆2a) in the nonlinear integral α (defined by (3.21d )) and
to have a diffusion-driven layer this correction must balance the second-order radial
derivative in the definition of operator L (see (3.21c)). This necessitates 2a + b = 1
which, in conjunction with the core restriction 3 + a = 2b, suggests that a = − 1

5
and

b = 7
5
. Given these sizes for quantities in the core and diffusive layers, the remaining

details of the structure follow according to §5.2.

6. Regimes of validity
The purpose of this section is to tidy up a number of loose ends. First in §6.1 we

verify that we can reduce m to values of order unity, so that the strongly nonlinear
analysis above does apply all the way down the branch indicated in figure 1(b). In
§6.2 we pick up the discussion of §2.3, and verify that the mean-flow system is valid
for Re→∞ for fixed Rm � 1, throughout the whole of this nonlinear branch. Finally
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in §6.3, we pin down precisely how big Re must be compared to Rm for the nonlinear
solutions in this paper to be valid. In all three sections we restrict consideration to
the leading-order solution in both the core and in the diffusive layer.

6.1. Extrapolation to m = O(1)

Recall that we started in §4.2 at the bifurcation with azimuthal wavenumber m =
ε−1/3M, where M = O(1) and ε � 1 is held fixed. We then moved into strongly
nonlinear regimes, by introducing a new parameter ∆ and setting M ' ∆−2M0

with M0 = O(1). This corresponds to reducing the true azimuthal wavenumber to
m ' ε−1/3∆−2M0. Now if it is legitimate to increase ∆ up to values as large as
∆ = ε−1/6(M0/m)1/2 with m = O(1), then we have achieved our goal, to find nonlinear
equilibrated states for the full range 1 6 m 6 O(ε−1/3) at high Rm, as indicated in
figure 1(b).

It turns out that this can be done. For ∆ in the range 1 � ∆ 6 O(ε−1/6), with core
scalings it may be checked that the full system of equations (2.11), (2.15) for a single
magnetic mode and mean flow continues to be approximated at leading order by
the system (5.9), (5.12a), (5.14a), (5.16a) giving the leading-order core solution (5.22).
Similarly with diffusive layer scalings, the full system continues to be approximated
at leading order by (5.29), giving the structure obtained numerically. Furthermore
the constants M0, X0 and C0 continue to satisfy the relations (5.25), (5.37). (The
manipulations required in order to establish all these results follow along the lines
already explained and, in the interests of brevity, we do not give further details.)

In summary the structure obtained in §5 appears to hold over the whole range
1 6 m = o(ε−1/3). When m = O(1) and ∆ = O(ε−1/6) the appropriate scalings for the
fields in the core, now of thickness O(ε1/10), are

a = O(δ1/2), b = O(δ1/2ε−1/5). (6.1)

The diffusive layer has thickness O(ε3/10) and inside the fields have magnitude

a = O(δ1/2ε1/5), b = O(δ1/2ε−1/5). (6.2)

Thus the magnetic energy of the system is dominated by the b-field in the core and
is of size

EM = O(δε−3/10) = O(Re−1Rm3/10). (6.3)

Note that for fixed PrM this scales as Re−7/10 which at first sight appears unlikely, as
it decreases with increasing Re, contrary to what one might expect in an experiment
in which the velocity is increased from zero. However recall from (2.6) that we
non-dimensionalized the magnetic field with respect to a velocity U. In dimensional
variables, for a fixed experimental geometry and fluid (L, η and ν fixed), the magnetic
energy in fact increases with U, as one might expect, as Edim

M = O(U13/10).†
Note that the layer containing the field always remains thin and so the outer spiral

Couette flow is unchanged. This should be contrasted with the situation for Görtler
vortices, which are spanwise periodic modes that may grow in suitably concave
boundary layer flows. Linear and weakly nonlinear theory for short-wavelength
Görtler vortices takes a mean-flow form very similar to that described in the present
work (Hall 1982a,b) and, in particular, the modes occupy a thin region within the
boundary layer. However, in a fully nonlinear state the amplitude of the vortex is
sufficiently large that within the ‘core’ region of activity, which spreads itself over an
O(1) fraction of the boundary layer, the interaction of the fundamental component

† We are grateful to Dr A. Tilgner for pointing out this paradox and its resolution.
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of the vortex with itself drives a mean flow which is of comparable size to the
undisturbed boundary layer. Then the presence of the vortex dramatically alters
the detailed structure of the entire boundary layer (not just the active region but also
the outer zones where the mode is exponentially small). The nonlinear structure can
only be determined by numerical solution of a free boundary problem and details of
this may be found in Hall & Lakin (1988) or Hall (1990).

6.2. Validity of the mean-flow system

Now that we have a complete asymptotic picture of the saturated magnetic mode, we
can check that at high Re = 1/δ (with Rm fixed) the fluctuating flow is O(δ) times
the mean flow, as asserted in §2.3, and so the mean-flow system is valid. Recall that
the equation for the fluctuating flow u′, linearized about the mean flow and neglecting
viscosity, is (2.16). The equation is driven by the fluctuating tension force, of order
δ, and we require that it have a (non-singular) solution, u′ = O(δ), both in the core
and in the layer. In this equation we take the boundary conditions to be such that
ω = O(1) in the region where the field is localized.

At the bifurcation the terms $ + mω + kw are of size O(ε1/3). Subsequently, as the
nonlinear solution branch is followed, these terms remain of O(ε1/3) in the diffusive
layer and are even further suppressed (see (5.9), (5.10)) in the core as it emerges
for large ∆. Thus these terms may be neglected compared with the Coriolis terms
involving ω in (2.16) throughout the solution branch.

For ∆ � 1, in the core the terms r∂rω and ∂rw in (2.16) may also be neglected,
since these are nonlinearly suppressed (see (5.12)). Thus when the core has formed,
(2.16) reduces to (2.17), and as discussed in §2.3, this is soluble for u′. In fact taking
the curl, the solution can be written as

− 4ikωu′ = ∇× F ′ (6.4)

and so u′ = O(δ) (given ω = O(1) as assumed).
In the diffusive layer, we cannot neglect r∂rω and ∂rw since these terms are O(1) in

the layer where the gradients increase from zero in the core to match the outer flow.
Equations (2.16) then reduce to

−2ωv′ = −∂rP ′ + F ′r, (6.5a)

2ωu′ + ru′∂rω = −2imP ′/r + F ′θ, (6.5b)

u′∂rw = −2ikP ′ + F ′z, (6.5c)

∂ru
′ + u′/r + 2imv′/r + 2ikw′ = 0. (6.5d)

These scalings hold both for the diffusive layer and also at the bifurcation itself,
before the coupled but distinct core–diffusive layer structure emerges. By taking the
curl, we obtain the analogue of (6.4) as

− 4ikωu′ + [(2imr−1∂rw − 2ikr∂rω)u′, −∂r(u′∂rw), r−1∂r(r
2u′∂rω)] = ∇× F ′, (6.6)

which can be used to determine u′ from the radial component, and then v′ and w′.
The only slight risk is that the quantity −4ikω+ 2imr−1∂rw−2ikr∂rω might vanish at
some point in the layer as the shears change from zero in the core to the free-stream
values. In the absence of an analytical solution in the diffusive layer it is not obvious
whether or not this can happen. However if a zero in this quantity did occur, it
could easily be eliminated by modifying the boundary conditions (2.3) so as to add
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a constant to ω(r) (while keeping ω(r0) non-zero and order one).† Thus our results
certainly hold for a wide range of boundary conditions, although we cannot specify
them precisely a priori.

6.3. Relative size of Re and Rm

In our analysis we have taken the limit Re→∞ at fixed Rm, to obtain the mean-flow
system, and then taken Rm → ∞; we have checked above that this is legitimate.
Clearly our results will hold for Re much larger than some power of Rm: we now
determine this power, by assessing the size of the fluctuating flow and its effect on the
field. The conclusion is that the power is one, and so our results are correct provided
Re � Rm, for any amplitude ∆ and so for any azimuthal wavenumber m. Thus our
analysis is valid for PrM � 1 and Rm, Re � 1. The derivation is sketched below and
we restrict attention to checking the validity only of the leading-order equations in §5.

We first estimate the fluctuating tension force F ′E2, where we write E = exp(imθ+
ikz + i$t) for brevity. Now from (1.2), (2.12),

(F ′r, F
′
θ, F

′
z) = (−a2 − b2, a∂rb− b∂ra, a∂rc− c∂ra− ac/r) (6.7)

and so from the scalings (3.1), (3.15), (5.5), (5.6) we have in the core,

(F ′r, F
′
θ, F

′
z) ∼ δε−1/3(1 + i∆−6/5)(∆2/5, i∆−1/5, i∆−1/5). (6.8)

(Note that c scales like b.) Here we are using ∼ to denote order of magnitude, and we
are keeping track of the size of real and imaginary parts individually with obvious
notation; this is necessary to obtain the best estimate. From equations (2.17) for the
fluctuating flow u′E2 we find

(u′, v′, w′) ∼ δε−1/3(1 + i∆−6/5)(i∆−1/5, ∆2/5, ∆2/5). (6.9)

We require this fluctuating flow to have a negligible effect in the induction equation.
It couples En modes in b to nearby modes En±2 and, in particular, it couples the E
and E−1 modes.

To see its effect we restrict to a magnetic field of the form b = (a, b, c)E + c.c. and
the flow u = (0, rω, w) + [(u′, v′, w′)E2 + c.c.]; the induction equation (2.8a) for the
E-mode becomes, using ∇ · b = ∇ · u = 0 to simplify some terms,

(i$ + imω + ikw)a = u′∂ra
∗ + a∗∂ru

′/2 + 3a∗u′/2r + ε(∇2a− a/r2 − 2imb/r2), (6.10a)

(i$ + imω + ikw)b+ u′r∂r(b
∗/r) + (∂ru

′ + u′/r)b∗/2

= ar∂rω + a∗r∂r(v
′/r) + (∂ra

∗ + a∗/r)2v′ + ε(∇2b− b/r2 + 2ima/r2). (6.10b)

Now in the leading-order core analysis, equation (6.10a) is used at order δ1/2ε1/2

(∆−9/5 + i∆9/5) while equation (6.10b) is used at order δ1/2ε1/6(∆+ i∆−13/5). Using the
orders of magnitude (6.9) and core scalings in §5.2.1 it is straightforward to check
that all the fluctuating terms in (6.10a,b) are negligible provided δ � ε (independently
of ∆, given that 1 6 ∆ 6 O(ε−1/6)). While we rather restricted the magnetic and flow
modes in writing down (6.10), it is clear that including more modes cannot change
this result.

The calculation for the diffusive layer is similar but easier, since we need not treat
real and imaginary parts separately. Instead of (6.8), (6.9) we have

(F ′r, F
′
θ, F

′
z) ∼ δε−1/3(∆2/5, ∆−1/5, ∆−1/5), (6.11)

† In terms of the discussion in §2.3, this would correspond to increasing the local Ekman number
so that the Coriolis terms dominate over those involving the shears ∂rω and ∂rw.
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(u′, v′, w′) ∼ δε−1/3(∆−1/5, ∆8/5, ∆8/5) (6.12)

(both real and imaginary parts). In the leading-order layer analysis (6.10a) is used at
order δ1/2ε1/2∆−3/5 and (6.10b) at order δ1/2ε1/6∆−1/5. Using (6.12) and the diffusive
layer scalings in §5.2.2 it may then be verified that the fluctuating terms are again
negligible when δ � ε.

7. Discussion
We have analysed the structure and behaviour of equilibrated steadily rotating

magnetic fields in a smooth Ponomarenko dynamo for Re � Rm � 1 and all azimuthal
wavenumbers m in the range 1 6 m 6 O(Rm1/3). We find that the equilibration
mechanism is a strong suppression of the differential rotation or omega effect in
the region where the field is localized. The alpha effect remains unchanged during
saturation because it arises from the fixed, helical geometry.

The equilibrated field is concentrated in a cylindrical ‘core’ region which is in
solid-body motion. The field essentially freezes the fluid flow here and does not move
relative to the flow: magnetic reconnection processes largely cease, except for the
alpha effect arising from the helical geometry. Bounding the core region are thin
diffusive layers in which the omega effect, which is the energy source and a necessary
ingredient of the dynamo, takes place. Magnetic energy is generated in these layers,
and diffuses into the core region to maintain the frozen field against weak diffusion.

Smooth Ponomarenko dynamos are classified as kinematic ‘slow’ dynamos (e.g.
Childress & Gilbert 1995) because the linear growth rate tends to zero with increasing
magnetic Reynolds number. There is no generally accepted definition of ‘fast’ and
‘slow’ for nonlinearly saturated dynamos. However, under any sensible definition the
nonlinear states found here would be described as ‘slow’, since magnetic reconnection
essentially ceases in the nonlinear regimes and the field is frozen, with weak diffusion
and weak generation in balance (see Childress & Gilbert 1995, chapter 12).

We have not studied the stability of the equilibrated states. It is possible that
they could be unstable, and so not realizable in experiment or numerical simulation.
Nevertheless the scalings and structure obtained in this paper would be relevant
as describing unstable fixed points, with a significance for the dynamics in a more
complicated system. For example, in view of results concerning ‘inverse cascades’
(Pouquet, Frisch & Léorat 1976; Krause & Meinel 1988; Gilbert & Sulem 1990),
one possibility is that in the full dynamics the states with m > 1 could be unstable
to pairing instabilities. At high Rm a seed field could approach an equilibrated state
with a large value of m, which would then become unstable to the m − 1 state, and
then the m− 2 state and so on down to m = 1. While each state may be unstable, the
field would spend a long period in its neighbourhood (see for example the studies of
Krause & Meinel 1988; Gilbert & Sulem 1990). Numerical studies would be needed
to decide what happens in the present system.

The key to our analysis is that at high Re the main feedback from the tension
force is on the mean flow and so the field equilibrates at weak levels determined by
viscosity. In particular the magnetic energy for one mode equilibrates at a level which
is O(Rm3/10/Re). This is of course well below equipartition levels as the fluid energy
is O(1) and Re � Rm. Because the magnetic field is viscously limited, our model is
not very suitable for astrophysical or geophysical dynamos, where viscosity certainly
is not a limiting factor for magnetic field amplitude. We have to recognize that the
geometry of the Ponomarenko dynamo is too simple for the branch of solutions we
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follow (see figure 1b) to ‘take off’ and equilibrate at levels not limited by viscosity,
the ‘Malkus–Proctor scenario’ (Malkus & Proctor 1975), as is seen for example in
geodynamo simulations. Of course there could be other branches of solutions in the
Ponomarenko geometry with rather stronger fields, but we have not accessed these.
It would be interesting to generalize the Ponomarenko geometry to allow the system
to equilibrate at higher levels and to approach Taylor states. Two possibilities are
to distort the streamsurfaces from cylinders, or to bend the flow into a torus; the
framework for kinematic dynamo action in these cases may be found in Soward
(1990).

Finally note that our analysis requires that the angular velocity at the radius
of the cylindrical core does not vanish, ω(r0) 6= 0 (together with other conditions
discussed in §6.2), otherwise the mean-flow system is not valid since large fluctuating
flows are excited. This condition is easily satisfied by appropriate choice of boundary
conditions. However it does suggest that in an application, for example a dynamo
experiment, the magnetic field would show most activity at radii where the angular
velocity vanishes, if such exist; here the higher modes in the flow field would be
excited and the picture would be very different, with probably the field equilibrating
at a higher level.

We are grateful to Professor H. K. Moffatt, who originally suggested introducing a
mean-flow feedback in the Ponomarenko dynamo (see Gilbert 1988b). We appreciate
useful comments from Professor F. H. Busse, Professor C. A. Jones, Dr M. R. E.
Proctor, Dr A. M. Rucklidge, Professor A. M. Soward, Dr A. Tilgner and the referees.
A.D.G. gratefully acknowledges support from the Nuffield Foundation.
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