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We find concrete evidence for a recently discovered form of intermittency, referred to as in–out
intermittency, in both partial differential equation~PDE! and ordinary differential equation~ODE!
models of mean field dynamos. This type of intermittency@introduced in P. Ashwin, E. Covas, and
R. Tavakol, Nonlinearity9, 563 ~1999!# occurs in systems with invariant submanifolds and, as
opposed to on–off intermittency which can also occur in skew product systems, it requires an
absence of skew product structure. By this we mean that the dynamics on the attractor intermittent
to the invariant manifold cannot be expressed simply as the dynamics on the invariant subspace
forcing the transverse dynamics; the transverse dynamics will alter that tangential to the invariant
subspace when one is far enough away from the invariant manifold. Since general systems with
invariant submanifolds are not likely to have skew product structure, this type of behavior may be
of physical relevance in a variety of dynamical settings. The models employed here to demonstrate
in–out intermittency are axisymmetric mean-field dynamo models which are often used to study the
observed large-scale magnetic variability in the Sun and solar-type stars. The occurrence of this type
of intermittency in such models may be of interest in understanding some aspects of such
variabilities. © 2001 American Institute of Physics.@DOI: 10.1063/1.1374243#
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Dynamical systems that possess symmetries„and hence
invariant submanifolds embedded in their state spaces…
are of interest in a variety of settings. In many simplified
models such dynamical systems have skew product struc
ture. For an ODE model, if „x,y… parameterizes a phase
space with an invariant manifold yÄ0, we say the system
has skew product structure if ẋÄf „x… and ẏÄg„x,y…,
namely if the dynamics ofx is independent ofy. A great
deal of effort has gone into the study of such skew prod-
uct systems with invariant manifolds, and these have
thrown up a number of new and interesting phenomena.
In general, however, one would expect dynamical system
not to have skew product structure unless extra structure
is present „for example if the transverse dynamics is al-
ways forced by the tangential dynamics…. In the absence
of such extra structure it is, therefore, interesting to see
what new types of dynamics can appear in systems with
invariant submanifolds. One such novel type of dynami-
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cal behavior, in–out intermittency, is discussed and ana-
lyzed in detail in Ref. 1 using a simple two-dimensional
mapping. An important feature of this type of intermit-
tency is that, as opposed to on–off intermittency, it re-
quires the absence of a skew product structure. In this
paper we find concrete evidence for the occurrence o
in–out intermittency in both PDE and ODE models both
in terms of phase-space and also statistically. The model
considered are examples of axisymmetric mean-field dy
namo models which are often used in order to study the
observed large-scale magnetic variability in the Sun and
solar-type stars. In addition to providing examples of in–
out intermittency in PDE models, the occurrence of this
type of intermittency in such models may be of interest in
understanding some aspects of solar and stellar variabili-
ties.

I. INTRODUCTION

Many systems of physical interest possess symmet
which in turn induce invariant submanifolds in their sta
spaces. A great deal of effort has gone into the study of
dynamics and intermittent behavior of such systems n
their invariant submanifolds~see, e.g., Ref. 1!. A class of
© 2001 American Institute of Physics
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dynamical systems with invariant submanifolds have b
shown to be capable of producing a number of novel mo
of behavior, including on–off intermittency, which occurs
the result of an instability of an attractor in an invaria
submanifold.2 It manifests itself as an attractor whose traje
tories get arbitrarily close to an attractor for the system in
invariant submanifold while intermittently making large d
viations away. It can be modeled by a biased random wal
the logarithmic distance from the invariant submanifold.2

Since the linearized behavior near an invariant subm
fold has a natural skew product structure~i.e., the linearized
dynamics transverse to the invariant submanifold is for
by the dynamics within the submanifold! many such studies
have tended to concentrate on systems that are ofskew prod-
uct type for simplicity, although it should be stated that on
off intermittency can be found in systems that do not ha
skew product structure.

Moreover, bifurcation problems in such settings ha
tended to concentrate onnormal parameters, i.e., paramete
that vary the global dynamics without changing the dyna
ics within an invariant submanifold. In general, dynamic
systems are not skew products over the dynamics within
invariant subspace, and moreover they donot possess norma
parameters.3

The authors1,4 have recently shown that dropping the
assumptions can lead to the presence of a number of n
types of dynamical behavior, including a new type of inte
mittency, referred to asin–out intermittency. The presence
of this type of intermittency has also been found in differe
distinct nonlinear dynamical systems.1,5 Furthermore, there
have been interesting developments concerning the stud
other phenomena–e.g.,riddling–in these more genera
settings.6

To characterize in–out intermittency, it is best to co
trast it with on–off intermittency, as they both can occur
systems with invariant submanifolds. To begin with, it
useful to bear in mind that even though on–off intermitten
can occur in nonskew product settings, all its necessary
gredients can be satisfied in skew product settings. In–
intermittency, on the other hand, requires theabsenceof
skew product structure for its existence.

Briefly, we say that an attractorA exhibits in–out inter-
mittencyto the invariant submanifoldMI , if the following
are true:1

~1! The intersectionA05AùMI is not necessarily a mini
mal attractor, i.e., there can be proper subsets ofA0 that
are attractors~for on–off intermittencyA0 is assumed to
be minimal!. This means that there can be different i
variant sets inA0 associated with attraction and repu
sion transverse toA0 , hence the name in–out. Thes
growing and decaying phases come about through dif
ent mechanisms withinMI . If the system has a skew
product structure, in–out intermittency reduces to o
off intermittency.1 Figure 1 shows a schemat
representation of a typical trajectory for an in–out pr
cess nearMI ;

~2! the minimal attractors in the invariant submanifold a
not necessarily chaotic~as for on–off intermittency!;
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they are very frequently periodic or equilibria. Furthe
more, the trajectory remains close to one of these att
tors during the moving away or ‘‘out’’ phases, with th
important consequence that during these out phases
trajectory can shadow a periodic orbit, for examp
while drifting away fromMI at an exponential rate1 ~see
also Ref. 7!;

~3! the asymptotic scaling of the probability distribution
the duration of laminar phases in the in–out case
have two contributions

wherea.0, d.b.0, andg.0 are positive real con-
stants depending on the bias of the random walk mod
ing the ‘‘in’’ phase and the probability of leaking into
the deterministic out phase~see Ref. 1 for details!. The
term I 1 corresponds to biased on–off intermittenc
while the extra termI 2 can cause an identifiable should
to develop at large laminar sizesn which can help to
statistically distinguish in–out from on–off intermit
tency.

~4! The authors in Ref. 1 were motivated by a numeric
exploration of a two-dimensional map and explored t
statistics by means of a Markov chain model. Our ai

FIG. 1. Typical trajectory of an in–out intermittent solution close to t
invariant submanifoldMI , with the two components, the ‘‘in’’ phase an
the ‘‘out’’ phase. In the invariant submanifoldMI we may have two or more
invariant sets, one of which is transversely stable and chaotic but nonatt
ing in MI and another which is transversely unstable and is a perio
attractor inMI . The injection mechanism, in phase, is quite irregular a
can be modeled by a random walk towardsMI , while the expelling mecha-
nism, out phase, can be modeled by a growing exponential spiral away
MI . Note that the invariant sets inMI are represented as points only fo
clarity.
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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in this paper are twofold. Firstly, we demonstrate t
occurrence of in–out intermittency in dynamical syste
generated by ordinary differential equations~ODE! as
well as by partial differential equations~PDE!. The latter
are especially of interest, since they are in principle
finite dimensional and also because few examples of
termittent behavior and their scalings have been sho
concretely to occur in such models~see, e.g., Ref. 8!.
Secondly, by choosing as our models the mean-field
namo models,9 the occurrence of this type of intermi
tency could be of interest in understanding certain f
tures of solar and stellar variability, and in particular w
expect that due to its generic features, it may well app
in more detailed and accurate models of solar and ste
variability.

II. IN–OUT INTERMITTENCY IN MEAN-FIELD
DYNAMO MODELS

Mean-field dynamo models have been employed ex
sively in order to study various aspects of the dynamics
solar, stellar and galactic dynamos~e.g., Refs. 10 and 11!.
Their rather idealized nature has been criticized by a num
of authors~see, e.g., Ref. 12!. However, such models ar
thought to capture some of the essential physics of the
bulent processes and reproduce many important dynam
and statistical features of the full three-dimensional magn
hydrodynamical models~see, e.g., Refs. 13 and also 14!.

The standard mean-field dynamo equation is given b

]B

]t
5¹3~u3B1aB2h t¹3B!, ~2!

whereB andu are the mean magnetic field and mean vel
ity, respectively, and the turbulent magnetic diffusivityh t

and the coefficienta arise from the correlation of small sca
turbulent velocities and magnetic fields.9

In axisymmetric geometry, Eq.~2! is solved by splitting
the magnetic field into poloidal and toroidal componentsB
5Bp1Bf , and expressing these components in terms of s
lar field functions

Bp5¹3A~r ,u,t !f̂, Bf5B~r ,u,t !f̂,

in spherical polar coordinates (r ,u,f). Equation~2! can then
be expressed in terms of equations for the scalarsA andB

]A

]t
5aB1h tS ¹22

1

r 2sin2 u
D A,

]B

]t
5r sin u~¹3Af̂ !•¹v2

1

rsinu
¹a•¹~Ar sin u!

2aS ¹22
1

r 2sin2 u
D A1h tS ¹22

1

r 2sin2 u
D B, ~3!

where¹•A50 and we consider a purely rotational veloci
u5v0r 2 sinuf̂. Nondimensionalization of these equations
terms of a lengthR and a timeR2/h t produces the convectiv
Downloaded 08 Jun 2001 to 130.225.213.239. Redistribution subject to A
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and rotational magnetic Reynolds numbersCa5a0R/h t and
Cv5v0R2/h t , wherea0 andv0 are typical values ofa and
uvu.

Solutions to these equations are often considered in
av limit where the terms ina can be ignored in the equatio
for B, giving a single dynamo parameterD5CaCv on res-
caling. This reflects the fact that, in stellar convective zon
rotational shear produces toroidal flux much more effectiv
than the processes represented by thea terms, while in the
full equations~the so-calleda2v limit ! we retain bothCa

andCv as two control parameters.
Equation~2! gives a kinematic dynamo, since the velo

ity field u is prescribed. As this equation stands there is
mechanism to limit the growth of the magnetic field a no
linear saturation mechanism is usually supplied by makinga
depend onB. This can be done by supplying a closed fun
tional form representing a fixed approximation of the nonl
ear effect~cf. Refs. 15 and 16!, or more dynamically, by
supplying an auxiliary equation fora ~cf., Ref. 17 and ref-
erences therein!.

In the following we consider two cases arising from tw
separate studies:4,16 the above PDE model in thea2v limit
with two different algebraic forms fora(B) ~cf., Refs. 15
and 16 and Figs. 5 and 6 captions! as well as a finite order
truncation of it in theav limit but with a time dependen
form of the a effect in one spatial dimension@this can be
obtained by averaging~2! over r ] and using a spectra
expansion.4 This ODE model possesses a second~alongside
D) control parameter, the magnetic Prandtl numbern
5n t /h t , where n t is the turbulent kinematic viscosity
which arises from the time dependent equation fora. This
model is given by

dAi

dt
52 i 2Ai1

D

2
~Bi 211Bi 11!1(

j 51

N

(
k51

N

Fi jkBjCk ,

dBi

dt
52 i 2Bi1(

j 51

N

Gi j Aj , ~4!

dCi

dt
52n i 2Ci2(

j 51

N

(
k51

N

Hi jkAjBk ,

whereAi , Bi , andCi are spatially independent coefficien
of the spectral expansions of the scalar fieldsA, B, anda,
respectively,F, H, and G are coefficients expressible i
terms ofi , j , andk, N is the truncation order andD andn are
the parameters defined above. The detailed derivation
these equations together with a phenomenological stud
their dynamics is given in Ref. 4.

We note that the main ingredients necessary for the
currence of in–out intermittency are present in both th
models. Both are axisymmetric and possess invariant s
manifolds. More precisely, the truncated model~4! with N
54 is a 12-dimensional system of ODEs with two si
dimensional symmetric and antisymmetric invariant su
manifolds given by

MS5$0,B1,0,A2,0,C2,0,B3,0,A4,0,C4%, ~5!

MA5$A1,0,0,0,B2 ,C2 ,A3,0,0,0,B4 ,C4%, ~6!
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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respectively. Similarly the PDE model~3! possesses two in
variant submanifolds, the antisymmetric and symmetric
variant submanifolds which are given by

MA :A~u!5A~2u!, B~u!52B~2u!, ~7!

MS :A~u!5A~2u!, B~u!5B~2u!, ~8!

respectively, whereu is the latitude.
If one separates the poloidal and toroidal scalar fi

components into symmetric and antisymmetric parts then
dynamic evolution for the symmetric~antisymmetric! com-
ponents has contributions from antisymmetric~symmetric!
counterparts. This means that these equations are of non
product type. For the ODE system~4! this can be readily
seen by noting that the evolution equation for each com
nent inMS (MA) contains components fromMA (MS). For
the PDE models, we first note thatu in Eq. ~2! is not dy-
namical: It is prescribed and, therefore, can be viewed a
part of the initial conditions. The nonskew product nature
the PDE models follows in a similar way to the ODE mo
els, bearing in mind the form of Eq.~2! and those of the
invariant submanifolds~7! and ~8!.

Finally the control parametersD andn appearing in the
ODE model~4! are generically non-normal as they enter t
equations forAi andCi for all i. Similarly this is also true for
the control parametersCa andCv in the case of the nondi
mensionalized version of the PDE equations~3!.

In this way, both models possess all the necessary in
dients for the occurrence of in–out intermittency.

Given that the ODE models are more transparent,
first demonstrate the presence of in–out intermittency in
truncated system~4! with N54. For this model, in–out in-
termittency occurs for parameter values for which the sys
of Eq. ~4! restricted toMA is within a window of periodicity
~cf. Ref. 18!. Figure 2 depicts the presence of such windo
for the ODE model~4!. The presence of such windows
supported by a conjecture of Barretoet al.,18 according to
which for chaotic systems withk positive Lyapunov expo-

FIG. 2. First and second Lyapunov exponents for the attractor of the O
model ~4! restricted toMA with N54 and n50.47. It clearly shows the
presence ofwindows of periodicity. Note that there is always one nu
Lyapunov exponent due to the system of equations~4! being autonomous.
Downloaded 08 Jun 2001 to 130.225.213.239. Redistribution subject to A
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nents andm control parameters, withm>k, there is a dense
set of nearby parameter values at which the attractors
periodic. This implies that for our system~4!, for each pa-
rameter value at which there is a chaotic attractor inMA

there are parameter windows arbitrarily close for which
attractor is periodic.

Figure 3 shows an example of in–out intermittency
this system at parameter valuesD5177.700 196 andn
50.47. We note that even though the interval reported h
over which in–out occurs is small, nevertheless there
likely to be other intervals~according to the conjecture o
Barreto et al., possibly an infinite number of them! over
which this happens.

The top panel shows the periodic orbit in the antisy
metric invariant submanifold,MA , which the projection of
the trajectory of the full system shadows clearly~second
panel!. This shadowing or intermittent periodic locking o
the tangential variables occurs within the laminar pha
~third panel! where there is a simultaneous exponent
growth ~hence the name out phase! of the amplitudes of the
transverse variables through several orders of magnit
~bottom panel!. This last panel also shows the in phas
which can be modeled as a biased random walk taking
trajectory into the invariant submanifold.

To substantiate this further, we also calculated the s
ing of the probability distribution of the duration of lamina
phases and this is shown in Fig. 4. This is compatible w
the predicted scaling~1!, possessing both an23/2 section, at
small laminar phase sizes, as well as a noticeable should
higher laminar phase sizes, the latter being a distinctive
nature of the in–out intermittency.

These signatures, namely the periodicity of the attrac
of the system restricted to the invariant submanifold, the

E

FIG. 3. In–out intermittency in the ODE model~4! with N54 and param-
eter valuesD5177.700 196 andn50.47. The energy and parity are give
by E5EA1ES andP5(ES2EA)/E, respectively, whereEA andES are the
antisymmetric and symmetric parts of the magnetic-field energy with res
to the equator~‘‘antisymmetric’’ (P521) and ‘‘symmetric’’ (P511)!.
The top panel shows the evolution of an initial condition inMA and the
other panels a nearby initial condition not inMA . In these panels, we have
taken a Poincare´ section atA150 for clarity and comparison.
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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riodic locking and the exponential growth of the out phas
together with the compatibility with the scaling~1! clearly
show the occurrence of in–out intermittency in the trunca
ODE dynamo systems.

To demonstrate the occurrence of in–out intermitten
in the PDE case~which as shown above also possesses a
the required ingredients!, we integrated Eq.~3!, in parameter
regions suggested by Ref. 16, using the code describe
Ref. 10 and implemented by Ref. 19. Figures 5 and 6 g
examples of in–out intermittency in these PDE models.20 As
can be seen, this behavior can occur with the invariant s
manifold being either antisymmetric~Fig. 5! or symmetric21

~Fig. 6!. Again, in addition to the presence of periodic b

FIG. 4. Scaling of the probability distribution of the duration of lamin
phases for the twelve-dimensional ODE truncated model~4! for the case
considered in Fig. 3, using a time stept51022n. The shoulder at large
laminar phases~which identifies the influence ofI 2 and is a characteristic o
in–out intermittency! is easily discerned.

FIG. 5. In–out intermittency in the axisymmetric PDE mean-field dyna
model ~3!. The parameters used werer 050.4, Ca51.942, Cv52105, f
50.0, with the usual algebraic form ofa5a0 /(11B2) ~see Ref. 16 for
details of the parameters!. To visually enhance the periodic locking we hav
time sampled the series in the two upper panels.
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havior in the system restricted to the invariant submanif
~top panels!, these figures clearly show the presence of lo
ing during the out phases~second panels! with an exponen-
tial growth of the energy of the transverse modes throu
several orders of magnitude~bottom panels!. This behavior
mirrors very closely the truncated ODE model shown in F
3 as well as that expected to occur from the theory.1 To
substantiate this further, we again looked at the compatib
of the scaling for the distribution of the laminar phases w
the theoretical scaling given by~1!. Despite the greatly en
hanced numerical cost of integrating the PDE equations l
enough to obtain convergence to the scaling law, we h
been able to establish agreement in this case as can be
in Fig. 7. Together, these signatures clearly demonstrate
occurrence of in–out intermittency in these PDE dyna
models.

III. DISCUSSION

By establishing the main ingredients necessary for
occurrence of in–out intermittency as well as checking
predicted corresponding phase space signatures and
dicted scalings, we have concretely demonstrated the oc
rence of this type of intermittency in both ODE and PD
models. This type of intermittency requires for its existen
the nonskew product feature, the generality of which ma
the occurrence of this type of intermittency of potential i
terest.

The models chosen here are mean-field dynamo mod
which despite their approximate nature are thought to c
ture many features of magnetic activity in solar-type sta
An important observed feature of variabilities in solar-ty
stars is the presence of dynamical behavior with differ
statistics over different time intervals due to the occurren
of the so called grand minima during which the amplitude
the magnetic activity is greatly diminished. A number
scenarios have been suggested in order to explain these

FIG. 6. In–out intermittency in the axisymmetric PDE mean-field dyna
model ~3!. The parameters used werer 050.4, Ca51.5, Cv52105, f
50.7, together with an algebraic form ofa due to Kitchatinov~Ref. 15!.
The two upper panels are shown as in Fig. 5.
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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nomena~see, e.g., Ref. 22!. Within the deterministic frame-
work, intermittency23 ~and multiple intermittency24! has been
put forward as a possible mechanism. A number of stud
have found intermittent types of behavior in such mod
~e.g., Ref. 25, and references therein!. The concrete demon
stration of in–out as well as other forms of intermittency a
of potential importance in this regard as they demonstrate
possible types of dynamical variability that can occur in su
settings.

ACKNOWLEDGMENTS

We thank Axel Brandenburg and David Moss for help
conversations. E.C. is supported by a PPARC postdoct
fellowship, P.A. was partially supported by EPSRC Gra
No. GR/K77365, and R.T. benefited from PPARC UK Gra
No. L39094.

1P. Ashwin, E. Covas, and R. Tavakol, Nonlinearity9, 563 ~1999!.
2A. S. Pikovsky, Z. Phys. B: Condens. Matter55, 149 ~1984!; N. Platt, E.
Spiegel, and C. Tresser, Phys. Rev. Lett.70, 279 ~1993!; P. Ashwin, J.
Buescu, and I. Stewart, Nonlinearity9, 703 ~1996!.

3In fact only model systems possess invariant submanifolds. This is us
either due to the absence of exact symmetries or to the presence of n
The study of such systems in the presence of noise is under conside
and will be published elsewhere: P. Ashwin, E. Covas, and R. Tava
‘‘Influence of noise on in–out intermittency’’~in preparation!.

4E. Covas, P. Ashwin, and R. Tavakol, Phys. Rev. E56, 6451~1997!.
5Y. Zhang and Y. Yao, Phys. Rev. E61, 7219~2000!.
6Y.-C. Lai and C. Grebogi, Phys. Rev. Lett.83, 2926 ~1999!; V. Dronov
and E. Ott, Chaos10, 291 ~2000!.

7J. M. Brooke, Europhys. Lett.37, 3 ~1997!.
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