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We find concrete evidence for a recently discovered form of intermittency, referred to as in—out
intermittency, in both partial differential equati¢RDE) and ordinary differential equatiofODE)

models of mean field dynamos. This type of intermittefiogroduced in P. Ashwin, E. Covas, and

R. Tavakol, Nonlinearityd, 563 (1999] occurs in systems with invariant submanifolds and, as
opposed to on—off intermittency which can also occur in skew product systems, it requires an
absence of skew product structure. By this we mean that the dynamics on the attractor intermittent
to the invariant manifold cannot be expressed simply as the dynamics on the invariant subspace
forcing the transverse dynamics; the transverse dynamics will alter that tangential to the invariant
subspace when one is far enough away from the invariant manifold. Since general systems with
invariant submanifolds are not likely to have skew product structure, this type of behavior may be
of physical relevance in a variety of dynamical settings. The models employed here to demonstrate
in—out intermittency are axisymmetric mean-field dynamo models which are often used to study the
observed large-scale magnetic variability in the Sun and solar-type stars. The occurrence of this type
of intermittency in such models may be of interest in understanding some aspects of such
variabilities. © 2001 American Institute of Physic§DOI: 10.1063/1.1374243

Dynamical systems that possess symmetri€gand hence cal behavior, in—out intermittency, is discussed and ana-
invariant submanifolds embedded in their state spaces lyzed in detail in Ref. 1 using a simple two-dimensional
are of interest in a variety of settings. In many simplified  mapping. An important feature of this type of intermit-
models such dynamical systems have skew product struc- tency is that, as opposed to oroff intermittency, it re-
ture. For an ODE model, if (x,y) parameterizes a phase quires the absence of a skew product structure. In this
space with an invariant manifold y=0, we say the system paper we find concrete evidence for the occurrence of
has skew product structure if x=f(x) and y=g(x,y), In—outintermittency in both PDE and ODE models both
namely if the dynamics ofx is independent ofy. A great I terms of phase-space and alg,o statistigally. The_models
deal of effort has gone into the study of such skew prod- Cconsidered are examples of axisymmetric mean-field dy-
uct systems with invariant manifolds, and these have namo models which are often used in order to study the
thrown up a number of new and interesting phenomena.  Observed large-scale magnetic variability in the Sun and
In general, however, one would expect dynamical systems SOlar-type stars. In addition to providing examples of in-
not to have skew product structure unless extra structure Ut intermittency in PDE models, the occurrence of this
is present (for example if the transverse dynamics is al- YPe Of intermittency in such models may be of interest in
ways forced by the tangential dynamics In the absence L_mderstandlng some aspects of solar and stellar variabili-
of such extra structure it is, therefore, interesting to see  UES:

what new types of dynamics can appear in systems with
invariant submanifolds. One such novel type of dynami-

I. INTRODUCTION
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dynamical systems with invariant submanifolds have beer
shown to be capable of producing a number of novel mode:
of behavior, including on—off intermittency, which occurs as
the result of an instability of an attractor in an invariant

submanifolc? It manifests itself as an attractor whose trajec-
tories get arbitrarily close to an attractor for the system in the
invariant submanifold while intermittently making large de-

viations away. It can be modeled by a biased random walk o
the logarithmic distance from the invariant submanifold.

Since the linearized behavior near an invariant submani-
fold has a natural skew product structire., the linearized
dynamics transverse to the invariant submanifold is forcec
by the dynamics within the submanifglchany such studies
have tended to concentrate on systems that as&ef/ prod-
uct type for simplicity, although it should be stated that on—
off intermittency can be found in systems that do not have
skew product structure.

Moreover, bifurcation problems in such settings have
tended to concentrate arormal parameters, i.e., parameters
that vary the global dynamics without changing the dynam-
ics within an invariant submanifold. In general, dynamical
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systems are not skew products over the dynamics within an¥IG. 1. Typical trajectory of an in—out intermittent solution close to the

invariant subspace, and moreover theyndbpossess normal
parameters.

yyyyy

the “out” phase. In the invariant submanifol, we may have two or more

The authors? have recently shown that dropping these invariant sets, one of which is transversely stable and chaotic but nonattract-

assumptions can lead to the presence of a number of nov
types of dynamical behavior, including a new type of inter-
mittency, referred to ag—out intermittency The presence

'@p in M, and another which is transversely unstable and is a periodic
aftractor inM, . The injection mechanism, in phase, is quite irregular and
can be modeled by a random walk towaMs, while the expelling mecha-
nism, out phase, can be modeled by a growing exponential spiral away from

of this type of intermittency has also been found in differentM; . Note that the invariant sets i, are represented as points only for

distinct nonlinear dynamical systerh3.Furthermore, there
have been interesting developments concerning the study of
other phenomena-e.griddling—in these more general
settings

To characterize in—out intermittency, it is best to con-
trast it with on—off intermittency, as they both can occur in
systems with invariant submanifolds. To begin with, it is
useful to bear in mind that even though on—off intermittency
can occur in nonskew product settings, all its necessary in-

gredients can be satisfied in skew product settings. In—ou8)

intermittency, on the other hand, requires thlesenceof
skew product structure for its existence.

Briefly, we say that an attract@ exhibitsin—out inter-
mittencyto the invariant submanifold/, , if the following
are truet

(1) The intersectioly=ANM, is not necessarily a mini-
mal attractor, i.e., there can be proper subsetaothat

are attractorgfor on—off intermittencyA, is assumed to

be minima). This means that there can be different in-
variant sets inA, associated with attraction and repul-
sion transverse t#,, hence the name in—out. These
growing and decaying phases come about through differ-
ent mechanisms withi, . If the system has a skew-
product structure, in—out intermittency reduces to on—
off intermittency! Figure 1 shows a schematic
representation of a typical trajectory for an in—out pro-
cess neaM,;

the minimal attractors in the invariant submanifold are
not necessarily chaoti¢as for on—off intermittency

2

(4)

clarity.

they are very frequently periodic or equilibria. Further-
more, the trajectory remains close to one of these attrac-
tors during the moving away or “out” phases, with the
important consequence that during these out phases the
trajectory can shadow a periodic orbit, for example,
while drifting away fromM, at an exponential ratésee

also Ref. 7,

the asymptotic scaling of the probability distribution of
the duration of laminar phases in the in—out case can
have two contributions

in—out

-~

P,~an (=P 4 yel=0m=1 +],,
| N S—
on—off

(1)

wherea>0, §> >0, andy>0 are positive real con-
stants depending on the bias of the random walk model-
ing the “in” phase and the probability of leaking into
the deterministic out phagsee Ref. 1 for details The
term I, corresponds to biased on-off intermittency,
while the extra ternh, can cause an identifiable shoulder
to develop at large laminar sizeswhich can help to
statistically distinguish in—out from on-off intermit-
tency.

The authors in Ref. 1 were motivated by a numerical
exploration of a two-dimensional map and explored the
statistics by means of a Markov chain model. Our aims
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in this paper are twofold. Firstly, we demonstrate theand rotational magnetic Reynolds numb€s= «(R/ 7, and
occurrence of in—out intermittency in dynamical systemsC,= woR?/ 7;, Wherea, andw, are typical values ofr and
generated by ordinary differential equatio(@DE) as |w|.
well as by partial differential equatioBPDE). The latter Solutions to these equations are often considered in the
are especially of interest, since they are in principle in-aw limit where the terms irx can be ignored in the equation
finite dimensional and also because few examples of infor B, giving a single dynamo parameter=C_,C, on res-
termittent behavior and their scalings have been showwaling. This reflects the fact that, in stellar convective zones,
concretely to occur in such mode(see, e.g., Ref.)8 rotational shear produces toroidal flux much more effectively
Secondly, by choosing as our models the mean-field dythan the processes represented by dherms, while in the
namo models, the occurrence of this type of intermit- full equations(the so-calleda®w limit) we retain bothC,
tency could be of interest in understanding certain feaandC, as two control parameters.
tures of solar and stellar variability, and in particular we Equation(2) gives a kinematic dynamo, since the veloc-
expect that due to its generic features, it may well appeaity field u is prescribed. As this equation stands there is no
in more detailed and accurate models of solar and stellamechanism to limit the growth of the magnetic field a non-
variability. linear saturation mechanism is usually supplied by making
depend orB. This can be done by supplying a closed func-
tional form representing a fixed approximation of the nonlin-
II. IN~OUT INTERMITTENCY IN MEAN-FIELD ear effect(cf. Refs. 15 and 16 or more dynamically, by
DYNAMO MODELS supplying an auxiliary equation far (cf., Ref. 17 and ref-
erences therejn
Mean-field dynamo models have been employed exten- In the following we consider two cases arising from two
sively in order to study various aspects of the dynamics ofeparate studi€s® the above PDE model in thew limit
solar, stellar and galactic dynamés.g., Refs. 10 and 21  with two different algebraic forms for(B) (cf., Refs. 15
Their rather idealized nature has been criticized by a numbeand 16 and Figs. 5 and 6 captiores well as a finite order
of authors(see, e.g., Ref. 12 However, such models are truncation of it in theaw limit but with a time dependent
thought to capture some of the essential physics of the tuform of the « effect in one spatial dimensiofthis can be
bulent processes and reproduce many important dynamicabtained by averaging2) over r] and using a spectral
and statistical features of the full three-dimensional magnetoexpansiorf. This ODE model possesses a secgalongside
hydrodynamical modelésee, e.g., Refs. 13 and also)14 D) control parameter, the magnetic Prandtl number
The standard mean-field dynamo equation is given by =v;/7;, where v, is the turbulent kinematic viscosity,
which arises from the time dependent equation dorThis

= o
—=VX(uxB+aB— 7 VXB), (2)  Modelis given by

at N
%=—i2A»+E(B- +Bi )+ > > FiBiC
whereB andu are the mean magnetic field and mean veloc-  dt e = =T L

ity, respectively, and the turbulent magnetic diffusivity

and the coefficient arise from the correlation of small scale dB; 5 N

turbulent velocities and magnetic fields. at ! Bi+j21 GijA; 4)
In axisymmetric geometry, Eq2) is solved by splitting

the magnetic field into poloidal and toroidal componei&s, [o? > NN

=B,+B,, and expressing these components in terms of sca- g = ~ V! Ci _;1 k§=:1 HijkA;B,

lar field functions
whereA;, B;, andC; are spatially independent coefficients

Bp=VXA(r,0,1)¢, B,=B(r,0,1)¢, of the spectral expansions of the scalar fieldsB, and «,
in spherical polar coordinates,, ¢). Equation(2) can then ~ respectively,F, H, and G are coefficients expressible in
be expressed in terms of equations for the scalaasd B terms ofi, j, andk, Nis the truncation order arid and» are
the parameters defined above. The detailed derivation of
dA 5 1 these equations together with a phenomenological study of
EZQB‘*‘ | V- (25i2 0 their dynamics is given in Ref. 4.

We note that the main ingredients necessary for the oc-
currence of in—out intermittency are present in both these
Va-V(Ar sin 6) models. Both are axisymmetric and possess invariant sub-

JB i -
—=r sin (VXA¢)-Vo—

at rsing ) ; !
manifolds. More precisely, the truncated mod@él with N
1 =4 is a 12-dimensional system of ODEs with two six-
—a| V2— —— Aty V2= —— B, (3  dimensional symmetric and antisymmetric invariant sub-
r?sir? 9 r?sir? 9

manifolds given by
whereV-A=0 and we consider a purely rotational velocity

U= wer?sin 6¢. Nondimensionalization of these equations in
terms of a lengtiR and a timeR?/ », produces the convective M,={A,0,0,0B,,C,,A3,0,0,0B,,C,}, (6)

Ms={0B;,0A,,0C,,0B3,0A,,0C,}, 6)
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FIG. 2. First and second Lyapunov exponents for the attractor of the ODE

model (4) restricted toM, with N=4 and v=0.47. It clearly shows the 5 3 |n_out intermittency in the ODE modeé#) with N=4 and param-

Eresence ofwindowtsdof E)ertir(])dicitytNotefthat t?ereSbis_, alwa%/s one null eter valuedD =177.700 196 and’=0.47. The energy and parity are given
yapunov exponent due to the system of equatigheing autonomous. by E=EA+ES andP = (ES—E*)/E, respectively, wher&” andES are the

antisymmetric and symmetric parts of the magnetic-field energy with respect
to the equator(“antisymmetric” (P=—1) and “symmetric” (P=+1)).
. L . The top panel shows the evolution of an initial condition\ry and the
respectively. Similarly the PDE modé3) possesses tWo in-  other panels a nearby initial condition noth, . In these panels, we have
variant submanifolds, the antisymmetric and symmetric intaken a Poincareection atA,=0 for clarity and comparison.

variant submanifolds which are given by

Ma:A(8)=A(—6), B(6)=-B(-0), (7)

] nents andn control parameters, witm=k, there is a dense

Ms:A(0)=A(=0), B(0)=B(-0), ®) set of nearby parameter values at which the attractors are
respectively, wherd is the latitude. periodic. This implies that for our systefd), for each pa-

If one separates the poloidal and toroidal scalar fieldrameter value at which there is a chaotic attractoiMp
components into symmetric and antisymmetric parts then théhere are parameter windows arbitrarily close for which the
dynamic evolution for the symmetri@ntisymmetri¢ com-  attractor is periodic.
ponents has contributions from antisymmetfsymmetrig Figure 3 shows an example of in—out intermittency in
counterparts. This means that these equations are of nonskékis system at parameter valugs=177.700 196 andv
product type. For the ODE systefd) this can be readily =0.47. We note that even though the interval reported here
seen by noting that the evolution equation for each compoever which in—out occurs is small, nevertheless there are
nent inMg (M,) contains components froid o (Mg). For  likely to be other intervalg§according to the conjecture of
the PDE models, we first note thatin Eq. (2) is not dy- Barreto et al, possibly an infinite number of thenover
namical: It is prescribed and, therefore, can be viewed as which this happens.
part of the initial conditions. The nonskew product nature of  The top panel shows the periodic orbit in the antisym-
the PDE models follows in a similar way to the ODE mod- metric invariant submanifoldV 5, which the projection of
els, bearing in mind the form of Eq2) and those of the the trajectory of the full system shadows cleatsecond
invariant submanifold$7) and(8). pane). This shadowing or intermittent periodic locking of

Finally the control parametei3 and v appearing in the the tangential variables occurs within the laminar phases
ODE model(4) are generically non-normal as they enter the(third pane] where there is a simultaneous exponential
equations foA; andC; for all i. Similarly this is also true for growth (hence the name out phas# the amplitudes of the
the control parameter§, andC,, in the case of the nondi- transverse variables through several orders of magnitude

mensionalized version of the PDE equatid8s (bottom panel This last panel also shows the in phases,
In this way, both models possess all the necessary ingrevhich can be modeled as a biased random walk taking the
dients for the occurrence of in—out intermittency. trajectory into the invariant submanifold.

Given that the ODE models are more transparent, we To substantiate this further, we also calculated the scal-
first demonstrate the presence of in—out intermittency in théng of the probability distribution of the duration of laminar
truncated systend) with N=4. For this model, in—out in- phases and this is shown in Fig. 4. This is compatible with
termittency occurs for parameter values for which the systenthe predicted scalingl), possessing both a7 section, at
of Eq. (4) restricted toM , is within awindow of periodicity = small laminar phase sizes, as well as a noticeable shoulder at
(cf. Ref. 18. Figure 2 depicts the presence of such windowshigher laminar phase sizes, the latter being a distinctive sig-
for the ODE model(4). The presence of such windows is nature of the in—out intermittency.
supported by a conjecture of Barre¢v al,*® according to These signatures, namely the periodicity of the attractor
which for chaotic systems witk positive Lyapunov expo- of the system restricted to the invariant submanifold, the pe-
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FIG. 4. Scaling of the probability distribution of the duration of laminar FIG. 6. In—out intermittency in the axisymmetric PDE mean-field dynamo
phases for the twelve-dimensional ODE truncated mddeffor the case  model (3). The parameters used werg=0.4, C,=1.5, C,=—10°, f
considered in Fig. 3, using a time step=10 2n. The shoulder at large  =0.7, together with an algebraic form of due to Kitchatinov(Ref. 15.
laminar phaseéwhich identifies the influence df and is a characteristic of  The two upper panels are shown as in Fig. 5.

in—out intermittency is easily discerned.

havior in the system restricted to the invariant submanifold
riodic locking and the exponential growth of the out phasestop panely these figures clearly show the presence of lock-
together with the compatibility with the scalir@) clearly ing during the out phase(second pane]sjvith an exponen-
show the occurrence of in—out intermittency in the truncatedjal growth of the energy of the transverse modes through
ODE dynamo systems. several orders of magnitudéottom panels This behavior

To demonstrate the occurrence of in—out intermittencymirrors very closely the truncated ODE model shown in Fig.

in the PDE caséwhich as shown above also possesses all 0§ a5 well as that expected to occur from the théofo
the required ingredientswe integrated Eq(3), in parameter  sybstantiate this further, we again looked at the compatibility
regions suggested by Ref. 16, using the code described if the scaling for the distribution of the laminar phases with
Ref. 10 and implemented by Ref. 19. Figures 5 and 6 givehe theoretical scaling given byl). Despite the greatly en-
examples of in—out intermittency in these PDE mod@s  hanced numerical cost of integrating the PDE equations long
can be seen, this behavior can occur with the invariant sulenough to obtain convergence to the scaling law, we have
manifold being either antisymmetri€ig. 5) or symmetrié’  peen able to establish agreement in this case as can be seen
(Fig. 6. Again, in addition to the presence of periodic be-in Fig. 7. Together, these signatures clearly demonstrate the

occurrence of in—out intermittency in these PDE dynamo

models.
) lgg ity S RS Dynamics
N — . " " DISCUsSION
4 o bepace By establishing the main ingredients necessary for the
occurrence of in—out intermittency as well as checking the
predicted corresponding phase space signatures and pre-
dicted scalings, we have concretely demonstrated the occur-
— rence of th_is type of_intermittency in b_oth ODE anql PDE
o 05 i the full models. This type of intermittency requires for its existence
T o0 Laminar —1>  phase the nonskew product feature, the generality of which makes
a 0 i pace the occurrence of this type of intermittency of potential in-
R 50 100 150 terest.
i‘; ' ' .The models chosen he(e are mean-field dynamo models,
T, “ & / = which despite their approximate nature are thought to cap-
1o phase \\/ outphase ture many features of magnetic activity in solar-type stars.
0 e e An important observed feature of variabilities in solar-type

stars is the presence of dynamical behavior with different

FIG. 5. In—out intermittency in the axisymmetric PDE mean-fieldosdynamoStatistics over d|fferent tlme |nterva|s due to the occurrence

model (3). The parameters used werg=0.4, C,=1.942,C,=—10, f . - - -

=0.0, with the usual algebraic form af=a,/(1+B?) (see Ref. 16 for of the so Cal_led gr_a_nd r_mmma dum.]g .W.hICh the amplitude of
the magnetic activity is greatly diminished. A number of

details of the parametersTo visually enhance the periodic locking we have ! ) .
time sampled the series in the two upper panels. scenarios have been suggested in order to explain these phe-
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