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Abstract

Petroleum hydrocarbons  are  the  most  widespread  contaminants  in  the  environment.  Interest  in  the 
biodegradation of polycyclic aromatic hydrocarbons and compounds (PAHs/PACs) is motivated by their 
ubiquitous  distribution,  their  low  bioavailability,  high  persistence  in  soils  and  their  potentially 
deleterious  effects  to  human  health.  Identifying  the  diversity  of  microorganisms  that  degrade 
PAHs/PACs  can  be  utilised  in  the  development  of  bioremediation  techniques.  Understanding  the 
mechanisms of bacterial populations to adapt to the presence of pollutants and the extent that lateral 
transfer of key functional genes occurs, will allow the exploitation of microbial PAC/PAH-degradative 
capabilities and therefore enhance the successful application of bioremediation strategies.

A key aim of this study was to isolate and identify PAC-degrading bacteria  for potential use in future 
bioremediation  programmes.  A  series  of  PAC  enrichments  were  established  under  the  same 
experimental  conditions  from a single  sediment  sample  taken from a highly polluted  estuarine  site. 
Distinct  microbial  community  shifts  were  directly  attributable  to  enrichment  with  different  PAC 
substrates.  The  findings  of  this  study  demonstrate  that  five  divisions  of  the  Proteobacteria  and 
Actinobacteria  can degrade PACs. By determining the precise identity of the PAC-degrading bacteria 
isolated, and by comparing these with previously published research, this study showed how bacteria 
with  similar  PAC degrading  capabilities  and  16S  rRNA signatures  are  found  in  similarly  polluted 
environments  in  geographically  very  distant  locations  e.g.  China,  Italy,  Japan  and  Hawaii.  Such  a 
finding suggests that geographical barriers do not limit the distribution of key PAC-degrading bacteria. 
This  is  significant  when  considering  the  diversity  and  global  distribution  of  microbes  with  PAC-
degradative  capabilities  and  the  potential  for  utilising  these  microbial  populations  in  future 
bioremediation strategies.

In the laboratory, enrichment of bacteria able to utilise PAHs has commonly been performed in liquid 
media, with the PAH dissolved in a carrier solvent. This study found the presence of a carrier solvent 
significantly affects the resultant microbial population. Although the same sediment sample was used as 
the bacterial  source in all  enrichments,  different bacterial  strains were obtained depending upon the 
presence  of  the  carrier  solvent  and  the  PAH.  This  is  important  when  considering  appropriate 
methodology  for  the  isolation  of  PAH-degrading  bacteria  for  future  bioremediation  programmes. 
Additionally, the species comprising the resultant population of the enrichment when a carrier solvent 
was present were similar to previously reported PAH-degrading species. Such a finding necessitates 
review of previously reported PAH-degrading bacterial species that have been isolated and identified 
from enrichments using a carrier solvent.

Understanding  how  bacteria  acclimatise  to  environmental  pollutants  is  vital  for  exploiting  these 
mechanisms within clear up strategies of contaminated sites.  Two major lineages of the  α subunit of 
PAH dioxygenases were identified:  Actinobacteria and  Proteobacteria.  Comparison of the  α subunit 
phylogeny with  the  16S rRNA phylogeny implies  that  the  PAH-dioxygenases  evolved prior  to  the 
separation of these phyla or that lateral transfer occurred in the very distant past. No evidence for lateral 
transfer of the α subunit between the Actinobacteria and Proteobacteria was found in the phylogenetic 
analyses  of  this  research.  Multiple  lateral  transfer  events  were  inferred  between the  species  of  the 
Actinobacteria  and between the classes of the  Proteobacteria. The clustering of the taxa within the  α 
subunit phylogeny indicates that lateral transfer of the α subunit gene occurred after the separation of 
the classes of Proteobacteria and also after the speciation of the γ-Proteobacteria. These findings reveal 
how bacteria have acclimatised to PAH pollutants through multiple lateral transfer events of a key PAH-
degradative  gene.  This  knowledge of  the transfer  of  genetic  material  will  broaden our prospects  of 
exploiting microbial populations.
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