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Abstract

The objective of this research project was to develop a methodology to establish the potential 

of automated sorting for a minerals application. Such methodologies, have been developed 

for testwork in many established mineral processing disciplines. These techniques ensure that 

data is reproducible and that testing can be undertaken in a quick and efficient manner. Due 

to the relatively recent development of automated sorters as a mineral processing technique, 

such guidelines have yet to be established. 

The  methodology  developed  was  applied  to  two  practical  applications  including  the 

separation of a Ni/Cu sulphide ore. This experimentation also highlighted the advantages of 

multi-sensor sorting and illustrated a means by which sorters can be used as multi-output 

machines; generating a number of tailored concentrates for down-stream processing. This is 

in  contrast  to  the traditional  view of  sorters as  a  simple binary,  concentrate/waste  pre-

concentration technique.

A further  key  result  of  the  research was  the  emulation  of  expert-based training  using 

unsupervised clustering  techniques  and  neural  networks for  colour  quantisation.  These 

techniques add flexibility and value to sorters in the minerals industry as they do not require 

a trained expert and so allow machines to be optimised by mine operators as conditions vary. 

The techniques also have an advantage as they complete the task of colour quantisation in a 

fraction of the time taken for an expert and so lend themselves well to the quick and efficient 

determination of automated sorting for a minerals application.

Future research should focus on the advancement and application of neural networks to 

colour quantisation in conjunction with tradition training methods Further to this research 

should concentrate on practical applications utilising a multi-sensor, multi-output approach to 

automated sorting. 
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List of Abbreviations and Acronyms

ASCII American Standard Code for Information Interchange

AHC Agglomerative Hierarchical Clustering

AST Applied Sorting Technology pty ltd

BMP BitMaP

CCD Charged Couple Device

CEN Comitė Europėen de Normalisation (European Community for 
Standardisation)

CL Competitive Learning

CLINKComplete LINKage clustering

COG Centre Of Gravity

COLEL COLour ELement

DEXRT Dual Energy X-Ray Tomography

DIP Digital Image Processing

ECS Eddy Current Separator

EDX Energy Dispersive X-ray analyser

EM ElectroMagnetic radiation/spectrum

EMS ElectromMagnetic Separator

ESM Electronic Sorting Machine company

FIR Far-InfraRed radiation

GCME Genetic C-Means Algorithm

GmbH Gesellschaft mit beschränkter Haftung (a limited comany)

HCL Hybrid Competitive Learning

HDPE High Density PolyEthylyne

ICT Intervalence Charge Transfers

INCO International Nickel COmpany

IR InfraRed radiation
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KSOM Kohonen Self Organising Map

LIBS Laser Induced Breakdown Spectroscopy

LIF Laser Induced Fluorescence

LOI Loss On Ignition

MIR Mid-InfraRed radiation

MLA Mineral Liberation Analyser

MP Microprobe

MRF Metal Recovery Facility

MSS Magnetic Separation Systems

NIR Near-InfraRed radiation

NMR Nuclear Magnetic Resonance

OM Optical Microscope

PET PolyEthylene Terephthalate

PGE Platinum Group Element

PMCC Product Moment Correlation Co-efficient

PMMAPolyMethyl MethaCrylate

PPM Portable Pixel Map

PTFE PolyTetraFluroEthylene

PVC PolyVinyl Chloride

QEM*SEM Quantitative Evaluation of Minerals by Scanning Electron Microscope

RPCL Rival Penalised Competitive Learning

SEM Scanning Electron Microscope

SL# Supervision Level #

SLINK Single LINKage clustering

Tph Tonnes per hour

UDNN User Defined Nearest Neighbour approach

UK United Kingdom
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UPGMA Un-weighted Pair Group using arithmetic Averages

UV UltraViolet radiation

VBA Visual Basic for Applications

VP-SEM Variable Pressure – Scanning Electron Microscope

WTA Winner Takes All

XRD X-Ray Diffraction

XRF X-Ray Fluorescence
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List of Symbols
A atomic number

a length of longest axis

B constant over range between absorption edges

b length of shortest axis (pixels)

C constant for converting breadths to equivalent square sieve sizes

c velocity of light in a vacuum (ms-1)

E radiant Energy (J)

eij Euclidean distance

eV electron Volt 

h Planck’s constant

H0 null hypothesis

H1 alternative hypothesis

( ),jc x ih Neighbourhood function

l length

mi model vectors or cluster centres

mc best matching model vector or cluster centre

n total number of particles in sample

nSj number of input vectors within tessellation

NA Avogadro’s Number

P radiant power (W)

r number of particles retained on a sieve

ri position of model vector in the output layer of KSOM

Sj tessellation of model vector j 

7



SA Surface Area (pixels2 or m2)

SF Shape Factor

t iterative step

W weight fraction within sample (kg)

w width

wm width of a cluster

xj input vector

“ Inch

α(t) Learning rate at iterative step t

γi Conscience factor for RPCL algorithm

ε constant for converting breadth to mean thickness

θ angle of measurement

λ wavelength of radiation (nm) or maximum boundary of material in PACT

μ linear absorption co-efficient

μm mass absorption co-efficient

ν frequency of radiation (Hz)

ρ density (kgm-3) or objective error function

 zs pruning function for RPCL algorithm

σ(t) width of neighbourhood at iterative step t

τ minimum distance between clusters before pruning in RPCL algorithm

χ principle axis of particle in PACT

 minimum boundary of material in PACT

8


