A MUSE OF FIRE
British Trench Warfare Munitions, their Invention, Manufacture and Tactical Employment on the Western Front, 1914–18

This thesis is available for library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other university.

Anthony Saunders
The emergence of static warfare on the Western Front in late 1914 encouraged the reinvention of devices associated with siege warfare and the invention of hitherto unknown munitions. These munitions included hand and rifle grenades and trench mortars and their ammunition. At the outbreak of war, the British effectively possessed none of these devices and lacked an infrastructure by which they could be quickly designed, manufactured and supplied to the British Expeditionary Force (BEF). The British met this challenge with considerable success. The subsequent proliferation of trench warfare munitions had profound consequences for the evolution of British tactics on the Western Front.

This thesis examines the processes by which these devices were invented, developed into manufacturable devices and supplied to the BEF. It considers their novelty in respect to similar devices from the American Civil War and the Russo-Japanese War. It looks at how their technical evolution affected tactical developments. The thesis discusses the relationship between the technical characteristics of these devices and the evolution of their tactical employment. It also considers how the characteristics of certain munitions, such as the Stokes mortar and the Mills grenade, directly affected tactics. It argues that the tactical employment of these munitions was dependent upon their functionality, utility and reliability.

The present thesis provides a different model of trench warfare conducted by the British on the Western Front and, thereby, demonstrates the significance of the novel munitions under discussion and the role they played in changing infantry warfare. This thesis also provides a different view of the Ministry of Munitions from that usually offered. It argues that certain aspects of the Ministry’s role in providing the BEF with munitions has been overstated in the standard interpretation of the Ministry’s work; the Ministry deliberately underplayed the work of the War Office, while overlooking that conducted by the Royal Engineers in France.
O! for a Muse of fire, that would ascend
The brightest heaven of invention;
A kingdom for a stage, princes to act
And monarchs to behold the swelling scene.
Then should the war-like Harry, like himself,
Assume the port of Mars; and at his heels,
Leash’d in like hounds, should famine, sword, and fire
Crouch for employment.

William Shakespeare, *The Life of Henry the Fifth*, Prologue, lines 1–8
Contents

Abstract 2
List of figures 6
List of tables 8
Acknowledgements 9

1 Object and Scope 11
 Technicalities, invention and novelty 15
 The politics of invention 19
 A question of anticipation 21
 Prior publications 22
 Sources, breadth and limitations 27
 Summary of objects 29

2 Trench Warfare Munitions before 1914 35
 Hand grenades c. 1500–1860 36
 Innovation in the American Civil War, 1861–5 38
 The Russo-Japanese War, 1904–05 41
 Innovation in Manchuria 44
 Consequences of the Russo-Japanese War 46
 Commercial drive, 1905–14 49
 Looking forwards 55

3 The Bureaucracy of Invention 63
 The problem of novel munitions 64
 Inventing a new process – handling novelty 66
 Invention and design 70
 Evolutions and convolutions of organisation 74
 Royal Engineers 78
 Towards a common goal 83

4 A Question of Engineering 93
 Demand versus supply 93
 Evaluating novel munitions 94
 Manufacture and inspection 100
 A multi-functional approach 104
 Output 108
 Engineering solutions 112

5 Inventing Grenades 124
 Addressing the technical–tactical relationship 125
 Grenade types 127
 Utility of purpose 129
 Lethality 135
 Functionality and reliability 138
 The impracticalities of percussion-fuzed grenades 145
 Technical evolutions 149
List of Figures

Fig. 1 British improvised hand grenade from the siege of Mafeking, 1899 37
Fig. 2 Parlour's hand grenade of c. 1834 38
Fig. 3 Ketchum hand grenades 39
Fig. 4 No. 19 hand grenade of 1917 39
Fig. 5 Drawings from Adams's US patent, US45806 41
Fig. 6 Three hand grenades improvised by the Russians at Port Arthur 42
Fig. 7 Japanese soldier in Manchuria with a percussion-fuzed hand grenade 43
Fig. 8 Japanese light mortar used at Port Arthur 45
Fig. 9 No. 1 hand grenade 48
Fig. 10 Detailed drawings of the No. 1 48
Fig. 11 Military and naval attachés pose with Marten Hale at the Faversham works 49
Fig. 12 Leaflet advertising Marten Hale's patented rifle grenade 51
Fig. 13 Marten Hale rifle grenade fitted with its rod 51
Fig. 14 Arming vane which was the cause of premature 51
Fig. 15 Drawings from GB124837 98
Fig. 16 Engineering drawings of Newton Pippin hand grenade 105
Fig. 17 Captain Todhunter's sketch of three novel devices invented by Newton 105
Fig. 18 3.7-inch Newton mortar, cast from SAA cartridge cases 113
Fig. 19 Output v. demand and cost over time for the Nos 3, 20 & 24 rifle grenades 115
Fig. 20 Output v. demand and cost over time for No. 5 and No. 23 Mills grenades 115
Fig. 21 Percussion-fuzed grenades with short handles 128
Fig. 22 Large fragments from a US hand grenade 136
Fig. 23 X-ray of a grenade wound of the shoulder 136
Fig. 24 Cast-iron body of the Pitcher 136
Fig. 25 Roland hand grenade 139
Fig. 26 Drawings from Roland's Belgian patent of 1912 139
Fig. 27 Mills hand grenade as described in GB2468/15 140
Fig. 28 Differences between the No. 5 and No. 36 grenades 143
Fig. 29 Disassembled No. 5 and No. 36 grenades 143
Fig. 30 Cutaway of a No. 36 and its centrepiece 143
Fig. 31 Humphries, DG and Bellamy grenades 146
Fig. 32 Engineering drawings of experimental Bellamy egg grenade 148
Fig. 33 Evolution of the Hale type of rifle grenade 150
Fig. 34 Newton Pippin rifle grenade 150
Fig. 35 McClintock rifle grenade 151
Fig. 36 Engineering drawing of a stand for firing rifle grenades, 1915 151
List of Tables

Table 1. British patents relating to hand grenades, 1905–13 54
Table 2. British patents relating to rifle grenades, 1905–14 54
Acknowledgements

This thesis has its origins in a chance discovery I made in 1978 when working as a Patent Officer in the Principal Directorate of Patents, MoD. While investigating a case concerning Crown use of intellectual property owned by a third-party, I searched the patent abridgements for Class 119, small arms, covering 1915–16. I was surprised to discover patents for grenades and other devices for trench warfare, including the first patents granted to William Mills for the grenade which came to be known as the Mills bomb. In 1997, I set about researching the field of novel munitions invented for trench warfare and, in 1999, *Weapons of the Trench War* was published by Sutton Publishing, followed by its companion, *Dominating the Enemy*, in 2000. My work made it apparent to me that this was an under-researched field and that I had only scratched the surface of the subject. The invention and widespread use of such devices led me to speculate on the nature of their effect on the conduct of trench warfare in the First World War. This ultimately led me to undertake the research which is the subject of this thesis.

Any project of this scale inevitably requires the assistance of others. I would like to thank everyone who has helped me with this project over the years.

Jonathan Falconer, my commissioning editor at Sutton Publishing in the late 1990s, acted as a referee when I applied to Exeter to undertake a PhD. My second referee was Mike Hibberd, formerly of the Firearms and Exhibits Department, Imperial War Museum, who had assisted me with my research for *Weapons of the Trench War* which subsequently formed a foundation for this thesis.

Norman Bonney has been tirelessly helpful. At the time of writing, Norman had recently retired as a lieutenant-colonel in the Royal Army Ordnance Corps, Territorial Army, in which capacity he is an acknowledged authority in the field of First World War munitions, especially grenades. His expertise has led to him assisting the Belgian Army, for example, in identifying unexploded British ordnance from 1914–18. He has an unrivalled collection of grenades and fuzes from the First World War and an impressive document archive, all of which he has acquired over three decades. I am grateful to him for providing me with copies of the papers concerning the court case brought against William Mills in 1917. He also read the drafts of this thesis and suggested amendments.

H A B Newton, the son of the late Henry Newton, was happy to talk to me about his father and his inventions. I was put in touch with him via his sister, a friend of whom told her about a letter I had written to the *Derby Gazette* about Henry Newton and his family. The Newton family came from Derbyshire and had an engineering business in the town at the time of the First World War. The Newton family gave me access to some of Henry’s papers. Alas, many more of them had been lost in a house fire in the late 1970s. In connection with the Newton family, I would also like to thank Mrs Jan Baggaley for providing me with a letter
written by her father, Ralph Goodwin, in June 1976. Mr Goodwin had been an employee of Newton Brothers at the time of the First World War.

Professor Ian Beckett, Professor of History at the University of Northampton, very kindly read drafts of my thesis and offered me invaluable advice which I have endeavoured to heed.

Professor Jeremy Black, my supervisor in the Department of History in the School of Humanities and Social Sciences at the University of Exeter, has been a friend as well as my guide for which I am truly grateful. His enthusiasm, insight, knowledge of all things historical, as well as his unwavering faith in me as a researcher, have been expressed with a friendly forthrightness, an approach which is both refreshing and empowering.

I would like to thank the Belgian Patent Office for emailing me a pdf of Roland’s original patent and I would like to thank the staff at Leeds City Library for emailing me pdf copies of several British patents. I obtained most of my copies of British patents in the late 1990s when undertaking research for Weapons of the Trench War and Dominating the Enemy; at that time, a complete set of patents and abridgements were held in the Science Reference Library in Southampton Buildings, Chancery Lane, London. Although somewhat belatedly, perhaps, I would like to thank the staff of that library who were always very helpful in giving me access to the vaults in which the patents were, then, stored. I would also like to thank Phillip Powell, Stock Control Manager in the Department of Printed Books of the Imperial War Museum, London, for photocopying a large number of Stationary Service documents for me. Lisa Anderson of the library of the University of Birmingham very kindly photocopied ‘Mr Stokes and Educated Drainpipe’ and posted it to me when I was unable to find a copy elsewhere. Finally, I would like to thank the interlibrary loan staff in the library at the University of Exeter for helping me track down copies of The Sphere.