The Optical Response of Rectangular Metallic Gratings and Metal/Dielectric Multilayers

Submitted by

Martyn Richard Gadsdon

To the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics, June 2009.

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

... (signature)
Abstract

The ability of periodic surface variations to influence and control the electromagnetic response of interfaces and structures has been recognised for many years. Concurrently with these investigations, it has been found that individual particles and wires support interesting electromagnetic resonances. It has also long been established that multi-layer structures of planar interfaces may also result in interesting electromagnetic responses. Multi-layer structures of alternating dielectrics have been shown to produce periodic transmission resonances, however, if one of the dielectrics is replaced with a thin metallic film, it has recently been demonstrated that wide band-pass regions are formed in the electromagnetic response of the structure.

The work presented in this thesis can be considered to be separated into two distinct, but related, areas. One of the areas involves the analysis of wire grid arrays. It is demonstrated that, like the case of deep surface relief perturbations, the waveguide modes in the slits can be considered as the evolution of surface modes on shallow surface relief perturbations. The perturbation effects of the slits on the surface modes and the effect of their excitation on optically thick and thin wires are also investigated. Finally, a new electromagnetic resonance is presented on both 1-dimensional and 2-dimensional wire grid arrays. It is shown that this is closely related to the localised surface modes that have been shown to occur on individual particles and wires. However, the resonance presented is shown to be subtly different from these modes, which typically result in a transmission and reflection extinction, because the planar geometry of the wires and the periodicity result in a reflection enhancement, even when the wires are optically thin.

The second area of this work may be separated into two distinct sub-sections.
The first section examines the electromagnetic response of dielectric/metal multilayer stacks. These are confirmed to exhibit a periodic series of broad band-pass regions, with the spectral location of these regions being dependent only on the unit cell, not the full extent of the structures. The location of each band-edge of these regions are then demonstrated to be a result of the matching of boundary conditions between standing waves in the cavities having either a \cos or a \sin standing wave function, and the evanescent fields inside the metal layers having either a \sinh or a \cosh field distribution.

The second section examines the electromagnetic response of continuous surface relief gratings, with a rectangular cross-section, whose ridges are very thin. It is shown that vertical standing waves form, similar to the cavity waveguide modes, except with the fields coupled through the wires not across the grooves. These are then shown to reach a finite limit frequency as the grating height tends to infinity. Thus, the resonances have evolved into a different mode beyond a certain grating amplitude. This mode is shown to be equivalent to the band-pass region described in multi-layer metal/dielectric stacks. However, scattering and periodicity considerations require that only the low frequency band-edge can be coupled to at normal incidence, while only the high frequency band-edge may be coupled to at grazing incidence.
Contents

Abstract 2

List of Figures 8

Acknowledgements 27

1 Introduction 31

2 Surface Plasmon Polaritons 37
 2.1 Introduction 37
 2.2 The Surface Plasmon Polariton 39
 2.3 The Surface Plasmon Polariton Dispersion Relation 40
 2.4 Surface Plasmon Polariton Penetration Depth 45
 2.5 Surface Plasmon Polariton Propagation Length .. 46
 2.6 Summary of the Surface Plasmon Polariton on a Planar Interface 47
 2.7 Prism Coupling to the Surface Plasmon Polariton 48
 2.8 Grating Coupling to the Surface Plasmon Polariton 50
 2.8.1 Introduction 50
 2.8.2 1-dimensional Grating Coupling 51
 2.8.3 2-dimensional Grating Coupling 58
 2.9 Surface Plasmon Polariton Dispersion Band-Gaps 61
 2.10 Efficiency of Grating Coupling 65
 2.11 Surface Plasmon Polaritons on Thin Metallic Films 74
 2.12 Localised Surface Plasmon Resonances 78
 2.13 Summary .. 83
3 Rigorous Theory

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Introduction</td>
<td>85</td>
</tr>
<tr>
<td>3.2 Review of Methods</td>
<td>86</td>
</tr>
<tr>
<td>3.2.1 The Perturbation Methods</td>
<td>86</td>
</tr>
<tr>
<td>3.2.2 The Integral Methods</td>
<td>87</td>
</tr>
<tr>
<td>3.2.3 The Differential Methods</td>
<td>88</td>
</tr>
<tr>
<td>3.2.4 Modal Methods</td>
<td>89</td>
</tr>
<tr>
<td>3.2.4.1 The Exact Modal Method</td>
<td>89</td>
</tr>
<tr>
<td>3.2.4.2 The Fourier Modal Method</td>
<td>90</td>
</tr>
<tr>
<td>3.3 The Fourier Modal Method in Detail</td>
<td>94</td>
</tr>
<tr>
<td>3.3.1 The Differential Form of Maxwell’s Equations</td>
<td>94</td>
</tr>
<tr>
<td>3.3.2 Transverse Magnetic Incidence in the Classical Mount</td>
<td>95</td>
</tr>
<tr>
<td>3.3.2.1 Representation of the Fields in Each Layer</td>
<td>95</td>
</tr>
<tr>
<td>3.3.2.2 Application of the Boundary Conditions</td>
<td>105</td>
</tr>
<tr>
<td>3.3.2.3 Calculating the Dispersion of the Resonances of the System</td>
<td>112</td>
</tr>
<tr>
<td>3.3.2.4 Field Calculation</td>
<td>113</td>
</tr>
<tr>
<td>3.3.3 Transverse Electric Incidence in the Classical Mount</td>
<td>113</td>
</tr>
<tr>
<td>3.3.4 Conical Incidence</td>
<td>115</td>
</tr>
<tr>
<td>3.3.5 2-dimensional Periodicity</td>
<td>119</td>
</tr>
<tr>
<td>3.3.6 Testing of the Codes</td>
<td>129</td>
</tr>
<tr>
<td>3.3.7 Convergence</td>
<td>133</td>
</tr>
<tr>
<td>3.4 Summary</td>
<td>135</td>
</tr>
</tbody>
</table>

4 Surface Plasmon Polaritons on Lamellar Gratings

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>136</td>
</tr>
<tr>
<td>4.2 The Enhanced Transmission Phenomenon</td>
<td>140</td>
</tr>
<tr>
<td>4.3 Cavity Resonances on Lamellar Gratings</td>
<td>146</td>
</tr>
<tr>
<td>4.4 Coupling between Cavity Resonances and Surface Modes</td>
<td>152</td>
</tr>
<tr>
<td>4.5 Localised Resonances on Metallic Wires</td>
<td>160</td>
</tr>
<tr>
<td>4.6 The Perturbation Effect of Lamellar Gratings</td>
<td>163</td>
</tr>
</tbody>
</table>
4.7 Summary .. 180

5 Optical Resonances on Sub-wavelength Silver Lamellar Gratings 183
5.1 Introduction ... 183
5.2 Theoretical Model 184
5.3 Initial Results 185
5.4 Resonance Dependence 186
 5.4.1 Dependence of Modes with Grating Height 186
 5.4.2 Dependence of Cavity Resonance on Slit Width and In-plane
 Momentum .. 192
 5.4.3 Dependence of Horizontal Plasmon Resonance on Wire Width,
 Slit Width and In-plane Momentum 195
5.5 The origin of the particle plasmon mode 200
5.6 Comparison with Experiment 211
5.7 Conclusions ... 214

6 Electromagnetic Resonances of Multi-layer Metal/Dielectric Stacks 217
6.1 Introduction ... 217
6.2 Initial Results 219
6.3 Theoretical Analysis 221
6.4 Further Results 224
6.5 Generalisation 232
6.6 Conclusions ... 233

7 Surface plasmon polaritons on deep narrow ridged rectangular grat-
 ings .. 236
7.1 Introduction ... 236
7.2 Results .. 237
7.3 Conclusions ... 251

8 Experimental Verification of the Particle-Plasmon Mode 253
8.1 Introduction ... 253
8.2 Sample Fabrication 253
8.2.1 The Photoresist Grating .. 255
 8.2.1.1 Substrate Cleaning and Photoresist Spinning 255
 8.2.1.2 Photo-interference Lithography 256
8.2.2 Angled Evaporation of Chrome 261
8.2.3 Reactive Ion Etching ... 263
8.2.4 Final Evaporation and Removal of Unwanted Materials 265
8.3 Measurement of the Optical Response of the Structures 266
8.4 Results and Discussions .. 268
 8.4.1 Alternative Fabrication Techniques 271
 8.4.2 Experimental Results .. 273
 8.4.3 Theoretical Modelling of Lamellar Gratings 275
 8.4.4 Analysis of Results .. 278
8.5 Summary .. 286

9 Conclusions .. 287
 9.1 Summary and Possible Applications 287
 9.2 Future Work ... 292

Publications .. 295

Bibliography .. 296
List of Figures

2.1 A schematic diagram of radiation, with wavevector k_d, incident from a dielectric medium, with permittivity ϵ_d, on a planar metal surface, with permittivity ϵ_m. ... 41

2.2 Schematic diagram of the SPP dispersion curve (solid line) for a planar metal/dielectric interface. Also shown are the plasma frequency limit ω_{sp} (dotted line) and the light line (dashed line), the region this bounds (the grey area) defines the range of in-plane momentum accessible to incident radiation. ... 44

2.3 Schematic representation of the polarisation surface charge density and associated electric field distribution for the SPP resonance. The electric field decays exponentially into both media, but faster into the metal than the dielectric. ... 47

2.4 Dispersion curve showing the region of reciprocal space where coupling between light incident at the silica prism-metal interface and the SPP mode propagating at the air-metal interface can occur (light grey region). ... 50

2.5 Schematic diagram of the two ATR configurations for the excitation of SPPs. (a) the Otto configuration and (b) the Kretschmann-Raether configuration. ... 51

2.6 Schematic representation of a 1-dimensional rectangular cross-section grating in the conical mount. The diagram displays the grating parameters, the angles that define the incidence of the plane wave and its linear polarisation, and the hypothetical discretisation of the structure into three different layers. ... 52
2.7 Schematic representation of the dispersion diagram for a shallow surface relief grating. The solid lines are the SPP dispersion curves while the dashed lines are the light lines and diffracted light lines. Scattering from the grating vector k_g folds the SPP dispersion curves back inside the radiative region (grey area) so that excitation can occur. 55

2.8 A plane in reciprocal space for a constant value of ω. The dotted lines represent the light lines (and diffracted light lines) for constant ω as a function of the wavevector components in the x and z directions. The solid lines represent the SPP modes. The shaded region is the area of reciprocal space accessible to radiation and is bounded by the zero order light line and the SPP. The mechanism for grating coupling of light into the SPP mode is shown, with δ giving the propagation direction of the excited SPP. 57

2.9 Dispersion curve of SPPs on a grating structure with the plane of incidence at an azimuthal angle $\varphi = 90^\circ$, $k_x = 0$. The SPP curve centred at the origin is always outside the light line, while a section of the $+k_g$ scattered SPP curve lies in the radiative region. 58

2.10 Schematic representation of a 2-dimensional rectangular cross-section grating in the conical mount. The diagram displays the grating parameters that define the period and ridge thicknesses in the two periodic directions. The incident angles are the same as those defined in figure 2.6 but are not shown for clarity. The complementary structure, an array of grooves may be constructed by reversing the permittivities in the grating region. 59

2.11 A plane in reciprocal space for a constant value of ω. The dotted lines represent the light lines (and diffracted light lines) for constant ω as a function of the wavevector components in the x and z directions. The solid lines represent the SPP modes. The shaded region is the area of reciprocal space accessible to radiation and is bounded by the zero order light line and the SPP. 60
2.12 Electric field and surface charge distributions for the two standing wave solutions of counter propagating SPPs. The field lines in the lower sketch are more distorted, therefore this is the higher energy solution. ... 63

2.13 Schematic diagram of the band gap associated with the lowest frequency crossing point at normal incidence, i.e. the band-gap associated with the standing wave that results from the counter propagation of the $\pm k_g$ SPPs. ... 64

2.14 Zero-order TM reflectivity, as a function of frequency, for a 1 μm pitch 30 nm amplitude rectangular cross-section continuous silver grating for normal incidence in the classical mount ($\varphi = 0^\circ$). 66

2.15 The dependence of the zeroth-order TM reflectivity of the grating in figure 2.14 as a function of grating amplitude, h. 70

2.16 The dependence of the zeroth-order TM reflectivity of the grating in figure 2.14 as a function of mark-to-space ratio, f_x, (a) fundamental SPP, (b) first Harmonic SPP. ... 71

2.17 Spectral location of the fundamental (a) and first harmonic (b) TM reflection minima of the grating in figure 2.14 as a function of mark-to-space ratio, f_x. ... 72

2.18 Schematic diagram of the dispersion curves of the high and low frequency coupled SPPs on an optically thin planar metal film. 76

2.19 Schematic representation of the profile of the tangential H_z fields for the low ((a): asymmetric - SRSPP) and high frequency ((b): symmetric - LRSPP) coupled SPPs on an optically thin planar metal film. Also shown are the corresponding surface charge distributions. 77

2.20 Schematic diagram of the dipolar surface charge distribution generated on a nano-particle due to an incident electromagnetic wave. Also shown is the re-radiation of light over a range of angles rather than in only the specular direction. .. 80
3.1 Schematic representation of the definition of one unit cell of a periodic layer. The shaded area defines the width of the wires/ridges \((f_x d_x)\), which are centred about \(x = 0\), while the dashed lines denote the slits/grooves of width \(d_x(1-f_x)\) (half either side of the wire/ridge as a result of the symmetry).

3.2 Abstract layered grating structure, where the horizontal lines represent the interfaces between the regions defined in figure 2.6 in chapter 2.

3.3 Schematic representation of the definition of one unit cell of a periodic layer for 2-dimensional periodicity. The shaded area defines the width of the wires/ridges \((f_x d_x, f_z d_z)\), which are centred about \(x = 0\), while the dashed lines denote the slits/grooves of width \((1-f_x)d_x, (1-f_z)d_z\).

An array of grooves/holes rather than ridges/particles can be created by reversing the permittivities \(\epsilon_{a,l}\) and \(\epsilon_{b,l}\).

3.4 Abstract representation of the simplified calculation of the Fourier coefficients of a 2-dimensional grating.

3.5 The convergence of the zeroth (a) and negative first diffracted (b) orders for increasing truncation order of a gold grating, with \(h = 1 \mu m\), \(d_x = 1 \mu m\), \(f_x = 0.5\), illuminated by TM radiation of wavelength \(\lambda = 1 \mu m\) at \(\theta = 30^\circ\) in the classical mount \((\varphi = 0^\circ)\). The solid line denotes the correct Fourier factorisation, the dashed lines the old incorrect factorisation and the dotted line is the exact value.

3.6 The convergence of the zeroth (a) and negative first diffracted (b) orders for increasing truncation order of a gold grating, with \(h = 1 \mu m\), \(d_x = 1 \mu m\), \(f_x = 0.5\), illuminated by radiation with its electric vector at an angle \(\psi = 45^\circ\) to the plane of incidence, with wavelength \(\lambda = 1 \mu m\), polar angle \(\theta = 30^\circ\), and an azimuthal angle of \((\varphi = 30^\circ)\). The solid line denotes the correct Fourier factorisation, the dashed lines the old incorrect factorisation and the dotted line is the exact value.
3.7 The convergence of the zeroth order absorption for increasing truncation order of a 2-dimensional metallic grating, with $h = 0.2\lambda$, $d_x = d_y = 0.5\lambda$, $f_x = f_y = 0.6$, illuminated by TE radiation, with wavelength $\lambda = 1$, polar angle $\theta = 0^\circ$, and an azimuthal angle of ($\varphi = 0^\circ$). The solid line denotes the correct Fourier factorisation, the dashed lines the old incorrect factorisation and the dotted line is the exact value. ... 132

3.8 A comparison between the FMM and alternative models for two different resonances. (a) the reflection enhancing resonance discussed in chapter 5 is modelled with the following parameters: $f_x d_x = 64.8 \text{ nm}$, $d_x = 144 \text{ nm}$ and $\lambda = 550 \text{ nm}$ by the FMM and FEM models, (b) a weak cavity resonance, as discussed in chapters 4 and 5, is modelled by the FMM and FDTD models. In both plots, the lines represent the FMM, with the solid lines denoting reflection and the dashed lines transmission, while the points represent the alternative model, with circles denoting reflection and squares transmission. All calculations were for normal incidence. ... 133

4.1 Schematic representation of the transmission enhancing mechanisms: (a) no SPP excitation, (b) SPP is excited on one interface, (c) SPP excited on both interfaces. ... 141

4.2 Schematic representation of the electric field distribution for the fundamental (a) and first harmonic (b) cavity resonances for a slit and a groove. Notice the different boundary condition at the base of the groove require it to be half the height of the slit for the fundamental mode and three quarters the height for the first harmonic. 145

4.3 Dispersion curves for 200 nm pitch, 50 nm wide, Gaussian-grooved silver gratings in the classical mount illuminated by TM radiation, with (a) $h = 10 \text{ nm}$, (b) $h = 25 \text{ nm}$, (c) $h = 50 \text{ nm}$, and (d) $h = 75 \text{ nm}$. ... 149
4.4 Dispersion curves for 200 nm pitch, 50 nm wide, Gaussian-grooved silver gratings in the classical mount illuminated by TM radiation, with (a) $h = 100$ nm, (b) $h = 150$ nm, and (c) $h = 300$ nm. 150

4.5 Cavity mode frequency as a function of grating depth for 200 nm pitch, 50 nm wide, Gaussian-grooved gratings for $2k_x/k_g = 0.1$. Dotted lines are light lines. 152

4.6 Top: The magnetic field profile for a TM polarized, 0.84 eV normal incidence plane wave. The geometry of the sub-grooves create cavity modes that concentrates the energy of the incident beam within the sub-grooves. Bottom: The Poynting vector shows that energy is being channeled from the subgroove CMs to and through the main groove. . . 153

4.7 Photonic band structure (black dots) of the SPP bands responsible for coupled SPP-cavity mode transmission resonances for two different grating heights, (a) $h = 0.6 \mu m$ and (b) $h = 3 \mu m$. In (b) the coupling occurs when the cavity resonance (flat banded mode) occurs in the band gap region of an SPP anti-crossing, as at $k_x = 0$ and $E = 0.17$ eV. The blue dots represent the frequency of the SPP bands for the limit of infinitesimal amplitude (and no SPP coupling). 155

4.8 The E-field over two periods of transmission metal gratings ($d_x = 3.5 \mu m$, $f_xd_x = 0.5 \mu m$) of thickness, $h = 0.6 \mu m$, in vacuum. The wavelength of the normal incident TM radiation is $\lambda = 3.6 \mu m$. . . . 157

4.9 Schematic diagram of the two models that allow the excitation of cavity modes but prevent the existence of horizontal SPPs. 159

4.10 Normalised propagation constant as a function of grating height (thickness) showing two main branches corresponding to the long (upper) and short (lower) range modes. The mode labelled ss_0^b switches between the two main branches as the thickness reduces. 162
4.11 Reflection efficiency response of a continuous rectangular cross-section grating as a function of both the incident frequency and grating height showing the anti-crossing of cavity modes as a result of their evolution from normal SPP modes. The fixed grating parameters are $d_x = 450 \text{ nm}$, $f_x = 0.5$. The wavelength range is $545 \text{ nm} \leq \lambda \leq 850 \text{ nm}$, which equates to a frequency range of $2.22 \times 10^{15} \text{ rad.s}^{-1} \leq \omega \leq 3.45 \times 10^{15} \text{ rad.s}^{-1}$. The grating height is in the range $625 \text{ nm} \leq h \leq 1010 \text{ nm}$.

4.12 Poles of the S matrix of a continuous silver rectangular grating as a function of both the incident frequency and in-plane momentum for decreasing slit width $((1 - f_x)d_x)$. The fixed grating parameters are $d_x = 500 \text{ nm}$ and $h = 500 \text{ nm}$. The frequency is in the range $0 < \omega \leq 6.28 \times 10^{15} \text{ rad.s}^{-1}$, giving a wavelength range of $300 \text{ nm} \leq \lambda < \infty$, and the in-plane momentum is in the range $0 \leq 2k_x/k_g \leq 1$. The dotted line indicates the light and diffracted lines.

4.13 Reflection efficiency response of a continuous rectangular cross-section grating as a function of both the incident frequency and in-plane momentum for $(1 - f_x)d_x = 4 \text{ nm}$. The fixed grating parameters are $d_x = 500 \text{ nm}$, $f_x = 0.992$, and $h = 500 \text{ nm}$. The frequency, wavelength, and in-plane momentum ranges are the same as in figure 4.12.

4.14 Poles of the S matrix of a silver lamellar grating as a function of both the incident frequency and in-plane momentum for $(1 - f_x)d_x = 1 \text{ nm}$. The fixed grating parameters are $d_x = 500 \text{ nm}$ and $h = 500 \text{ nm}$, and the substrate is vacuum. The frequency, wavelength, and in-plane momentum ranges are the same as in figure 4.12.

4.15 Schematic diagram of the more complicated structure used to model the transition of a continuous grating, when t is optically thick, to a lamellar grating, when $t = 0$.
4.16 Poles of the S matrix of a silver rectangular grating as a function of both the incident frequency and in-plane momentum for decreasing \(t \). The fixed grating parameters are \(d_x = 500 \, \text{nm}, f_x d_x = 480 \, \text{nm}, h = 10 \, \text{nm} \) and the substrate is vacuum. The frequency, wavelength, and in-plane momentum ranges are the same as in figure 4.12.

4.17 Poles of the S matrix of a silver lamellar grating as a function of both the incident frequency and in-plane momentum for increasing slit widths \((1 - f_x)d_x = 1 \, \text{nm}\). The fixed grating parameters are \(d_x = 500 \, \text{nm}, h = 10 \, \text{nm} \) and the substrate is vacuum. The frequency and in-plane momentum ranges are the same as in Figure 4.12.

5.1 Reflection efficiency as a function of grating height, \(h \), for the parameters \(d_x = 144 \, \text{nm}, f_x = 0.45, \lambda = 550 \, \text{nm} \). The inset gives an enlarged view of the region \(0 \, \text{nm} \leq h \leq 5 \, \text{nm} \). The solid line gives the response to radiation with E-field parallel to the grating vector (TM), while the dashed line gives the response to radiation with E-field perpendicular to the grating vector (TE).

5.2 Reflection efficiency response of the grating as a function of both the incident frequency and grating height. The fixed grating parameters are \(d_x = 144 \, \text{nm}, f_x = 0.45 \). The frequency range is \(2.22 \times 10^{15} \, \text{rad.s}^{-1} \leq \omega \leq 5.1 \times 10^{15} \, \text{rad.s}^{-1} \), which equates to a wavelength range of \(400 \, \text{nm} \leq \lambda \leq 850 \, \text{nm} \). The grating height is in the range \(5 \, \text{nm} \leq h \leq 40 \, \text{nm} \).

5.3 Reflection efficiency response of the grating as a function of both the incident frequency and grating height. The fixed grating parameters are \(d_x = 144 \, \text{nm}, f_x = 0.45 \). The frequency range is \(2.22 \times 10^{15} \, \text{rad.s}^{-1} \leq \omega \leq 4.7 \times 10^{15} \, \text{rad.s}^{-1} \), which equates to a wavelength range of \(400 \, \text{nm} \leq \lambda \leq 850 \, \text{nm} \). The grating height is in the range \(5 \, \text{nm} \leq h \leq 40 \, \text{nm} \).

5.4 The \(|H_z|\) fields for the two reflection peaks at low grating thickness in figure 5.1, with \(d_x = 144 \, \text{nm}, f_x = 0.45, \lambda = 550 \, \text{nm} \).
5.5 Reflection efficiency as a function of grating height for two high f_x values. The grating parameters are $d_x = 144\ nm$, $f_x = 0.9$ and $f_x = 0.98$, $\lambda = 550\ nm$. 190

5.6 The $|H_z|$ fields for the two reflection minima of figure 5.5, with $d_x = 144\ nm$, $f_x = 0.9$, $\lambda = 550\ nm$. 191

5.7 Reflection efficiency response of the cavity mode resonance as a function of both the incident frequency and slit width, for a constant wire width of 64.8 nm. The grating height is $h = 91\ nm$. The frequency is in the same range as in Figure 5.3 and the slit width is in the range $10\ nm \leq (1 - f_x)d_x \leq 100\ nm$. 193

5.8 Reflection efficiency response of the cavity mode resonance as a function of both the incident frequency and in-plane momentum. The grating parameters are $h = 91\ nm$, $d_x = 144\ nm$ and $f_x = 0.9$. The frequency is in the same range as in Figure 5.3 and the in-plane momentum is in the range $0 \leq 2k_x/k_g \leq 1$. 193

5.9 Reflection efficiency response of the coupled horizontal particle plasmon resonance as a function of both the incident frequency and slit width, for a constant wire width of 64.8 nm. The grating height is $h = 9\ nm$. The frequency is in the same range as in figure 5.3. The slit width is in the range $0.2\ nm \leq (1 - f_x)d_x \leq 100.2\ nm$. 195

5.10 Reflection efficiency response of the coupled horizontal particle plasmon resonance as a function of both the incident frequency and wire width, for a constant slit width of 79.2 nm. The grating height is $h = 9\ nm$. The frequency is in the same range as in figure 5.3. The wire width is in the range $40\ nm \leq f_xd_x \leq 184\ nm$. 196
5.11 Reflection efficiency response of the coupled horizontal particle plasmon resonance as a function of both the incident frequency and mark-to-space ratio, for a constant grating period of 144nm. The grating height is $h = 9\ nm$. The frequency is in the same range as in figure 5.3. The mark-to-space ratio is in the range $0.2 \leq f_x \leq 0.8$, giving a slit width that is always $\geq 28.8\ nm$.

5.12 Reflection efficiency response of the coupled horizontal particle plasmon resonance as a function of both the incident frequency and in-plane momentum. The grating parameters are $d_x = 144\ nm$, $f_x = 0.45$ and $h = 9\ nm$. The frequency is in the same range as in figure 5.3 and the in-plane momentum is in the range $0 \leq 2k_x/k_g \leq 1$.

5.13 The $|H_z|$ fields for the fundamental reflection peak ($h = 9\ nm$) for varying angles of incidence, (a) $\theta = 45^\circ$, (b) $\theta = 70^\circ$ and (c) $\theta = 88^\circ$, with $d_x = 144\ nm$, $f_x = 0.45$, $\lambda = 550\ nm$.

5.14 Reflection efficiency response of a silver lamellar grating as a function of both the incident frequency and in-plane momentum for the same increasing slit widths as figure 4.17 in chapter 4. The fixed grating parameters are $d_x = 500\ nm$, $h = 10\ nm$ and the substrate is vacuum. The frequency is in the range $0 < \omega \leq 6.28 \times 10^{15}\ rad.s^{-1}$, giving a wavelength range of $300\ nm \leq \lambda < \infty$, and the in-plane momentum is in the range $0 \leq 2k_x/k_g \leq 1$. The dotted line indicates the light and diffracted lines and P denotes the location of the horizontal particle plasmon.

5.15 Poles of the S matrix and reflection efficiency response of a silver lamellar grating as a function of both the incident frequency and in-plane momentum. The fixed grating parameters are $d_x = 140\ nm$, $f_x = 0.5$, $h = 10\ nm$ and the substrate is vacuum. The frequency and in-plane momentum ranges are the same as in Figure 5.14.
5.16 Poles of the S matrix of a silver lamellar grating as a function of the incident frequency. The fixed grating parameters are $d_x = 140 \text{ nm}$, $f_x = 0.5$, $h = 10 \text{ nm}$ and the substrate is vacuum. The frequency range is the same as in figure 5.14 and the in-plane momentum is $k_x = 0$. 203

5.17 Poles of the S matrix of a silver rectangular grating as a function of both the incident frequency and in-plane momentum for decreasing t. The fixed grating parameters are $d_x = 140 \text{ nm}$, $f_x = 0.5$, $h = 10 \text{ nm}$ and the substrate is vacuum. The frequency and in-plane momentum ranges are the same as in Figure 5.14. 204

5.18 Reflection and transmission efficiency responses of a silver rectangular grating as a function of both the incident frequency and in-plane momentum. The fixed grating parameters are $d_x = 140 \text{ nm}$, $f_x = 0.5$, $h = 10 \text{ nm}$ and the substrate is vacuum. The frequency and in-plane momentum ranges are the same as in figure 5.14, and $t = 2 \text{ nm}$. 206

5.19 Repeat of the reflection efficiency investigation of figure 5.15(b), except illuminated in an Otto configuration using a silica prism spaced 200 nm from the grating to allow observation of the resonance in the non-radiative region. The dotted line is the air light line while the dashed line is the light line in silica. 207

5.20 Frequency dependent TM reflection efficiency of a 2-dimensional array of squares defined by $d_x = d_y = 144 \text{ nm}$, $f_x d_x = f_y d_y = 64.8 \text{ nm}$, $h = 9 \text{ nm}$ on a glass ($n = 1.52$) substrate. TE radiation is incident at three angles of incidence, $\varphi = 0^\circ, 45^\circ, 90^\circ$, but the resulting optical responses are degenerate. 208

5.21 Spectral location of the reflection peak of the reflection enhancing mode on the 2-dimensional grating modelled in figure 5.20 as a function of grating height. 210
5.22 Experimental data published in figure 8(c) of Schider et. al. (points), with theoretical calculations using the present model (line). Experimental parameters are given as \(d_x = 350 \text{ nm}, h = 25 \text{ nm}, f_x = 0.43 \); theoretical parameters are \(d_x = 356 \text{ nm}, h = 27 \text{ nm}, f_x = 0.43 \).

5.23 Reflection efficiency as a function of grating height, for the parameters \(d_x = 356 \text{ nm}, f_x = 0.43, \lambda = 601 \text{ nm} \). The height is in the range \(0 \text{ nm} \leq h \leq 5 \text{ nm} \), while the inset gives an enlarged view of the region \(0 \text{ nm} \leq h \leq 400 \text{ nm} \).

5.24 The \(|H_z| \) fields for the fundamental reflection peak \((h = 27 \text{ nm})\) observed in figure 5.23, with \(d_x = 356 \text{ nm}, f_x = 0.43, \lambda = 601 \text{ nm} \).

6.1 Reflection efficiency response of the multi-layer structure comprising of five 6.5 nm silver layers separated by four 166 nm air layers. The incident and transmission materials are also air and the structure is illuminated at normal incidence. The permittivity of the silver layers are approximated by the Drude Model with the parameters as defined in the main text. The frequency range is \(0 \times 10^{15} \text{ rad.s}^{-1} < \omega \leq 37.7 \times 10^{15} \text{ rad.s}^{-1} \). The inset is a schematic representation of one unit cell of such a multi-layer stack.

6.2 Reflection efficiency response of the multi-layer structure comprising of ten 6.5 nm silver layers separated by nine 166 nm air layers (solid line) and twenty 6.5 nm silver layers separated by nineteen 166 nm air layers (dashed line). The incident and transmission materials are also air and the structure is illuminated at normal incidence. The permittivity of the silver layers are approximated by the Drude Model with the parameters as defined in the main text. The frequency range is \(0 \times 10^{15} \text{ rad.s}^{-1} < \omega \leq 6.28 \times 10^{15} \text{ rad.s}^{-1} \).
6.3 Reflection efficiency response of the multi-layer structure comprising of ten 6.5 nm silver layers separated by nine 166 nm air layers. The incident and transmission materials are also air and the structure is illuminated at normal incidence. The permittivity of the silver layers are approximated by the Drude Model with the parameters as defined in the main text (solid line) and by the Drude model with the imaginary part of the permittivity removed (dashed line). The frequency range is $0 \times 10^{15} \text{rad.s}^{-1} < \omega \leq 6.28 \times 10^{15} \text{rad.s}^{-1}$. 221

6.4 E-fields for a multi-layer structure, comprising of ten 20 nm silver layers separated by nine 150 nm air layers. The incident and transmission materials are also air and the structure is illuminated at normal incidence and the permittivity of the silver layers are approximated by the Drude Model with parameters as defined in the main text (including the imaginary part). The fields are plotted at two frequencies corresponding to the highest and lowest frequency reflection minima of the first band pass region. The dashed lines indicate the location of the metal layers. 225

6.5 E-fields for an infinite multi-layer structure, comprising of 20 nm silver layers separated by 150 nm air layers. The incident and transmission materials are also air and the structure is illuminated at normal incidence. The permittivity of the silver layers are approximated by the Drude Model, using the parameters defined in the main text, with the imaginary part removed. The fields are plotted using 6.1 and 6.3 and the solution to 6.12 (a), and using 6.1 and 6.3 and the solution to 6.11 (b), which correspond to the band edges of figure 6.4. The solid lines are the \cos standing waves in the dielectric, the dashed lines are the \sinh (a) and \cosh (b) waves in the metal, and the dotted lines show where the dielectric standing waves would continue if no metal was present. The bold and narrow lines are π out of phase and the vertical dot-dash lines indicate the effective cavity length. 226
6.6 Reflection efficiency response of the multi-layer structure, comprising of ten 6.5 nm silver layers separated by nine 166 nm air layers, as a function of the real part of the dielectric permittivity. The black squares are the limit solutions to 6.11 and 6.12 for the same permittivities. The incident and transmission materials are also air and the structure is illuminated at normal incidence. The frequency range is $0 \times 10^{15} rad.s^{-1} < \omega \leq 6.28 \times 10^{15} rad.s^{-1}$ ($\infty > \lambda \geq 300 nm$), and the permittivity is defined as $-101 \leq \epsilon_r \leq -1$.

6.7 E-fields for the high frequency band edge of an infinite multi-layer structure, comprising of 20 nm silver layers separated by 150 nm air layers. The incident and transmission materials are also air and the structure is illuminated at normal incidence and the permittivity of the silver layers are fixed at either $\epsilon_r = -40$ (a) or $\epsilon_r = -11.5$ (b). The fields are plotted using 6.1 and 6.3 and the solutions to 6.12. The solid lines are the \cos standing waves in the dielectric, the dashed lines are the \sinh waves in the metal, and the dotted lines show where the dielectric standing waves would continue if no metal was present. The bold and narrow lines are π out of phase and the vertical dot-dash lines indicate the effective cavity length.

6.8 E-fields for the low frequency band edge of an infinite multi-layer structure, comprising of 20 nm silver layers separated by 150 nm air layers. The incident and transmission materials are also air and the structure is illuminated at normal incidence and the permittivity of the silver layers are fixed at either $\epsilon_r = -40$ (a) or $\epsilon_r = -11.5$ (b). The fields are plotted using 6.1 and 6.3 and the solutions to 6.11. The solid lines are the \cos standing waves in the dielectric, the dashed lines are the $cosh$ waves in the metal, and the dotted lines show where the dielectric standing waves would continue if no metal was present. The bold and narrow lines are π out of phase and the vertical dot-dash lines indicate the effective cavity length.
6.9 Reflection efficiency response of the multi-layer structure, comprising of ten 6.5 nm silver layers separated by nine 166 nm air layers, as a function of the real part of the dielectric permittivity. The black squares are the limit solutions to 6.11, 6.12, 6.13, and 6.14 (and their harmonic solutions) for the same permittivities. The incident and transmission materials are also air and the structure is illuminated at normal incidence. The frequency range is $0 \times 10^{15} \text{ rad.s}^{-1} < \omega \leq 18.84 \times 10^{15} \text{ rad.s}^{-1}$ ($\infty > \lambda \geq 100 \text{ nm}$), and the permittivity is defined as $-101 \leq \epsilon_r \leq -1$. ... 232

6.10 Reflection efficiency response of the multi-layer structure, comprising of ten silver layers of thickness $1 \text{ nm} \leq b \leq 50 \text{ nm}$ separated by nine 166 nm air layers, as a function of the thickness of the silver layers. The black squares are the limit solutions to 6.15, 6.16, 6.17, and 6.18 (and their harmonic solutions). The incident and transmission materials are also air and the structure is illuminated at normal incidence. The frequency range is $0 \times 10^{15} \text{ rad.s}^{-1} < \omega \leq 18.84 \times 10^{15} \text{ rad.s}^{-1}$ ($\infty > \lambda \geq 100 \text{ nm}$), and the permittivity is defined by the Drude model with parameters as defined in the main text. .. 234

7.1 Reflection efficiency response of the grating as a function of both the incident frequency and f_x. The fixed grating parameters are $d_x = 200 \text{ nm}$, $h = 350 \text{ nm}$ and $\theta = 4.89^\circ$. The wavelength range is $370 \text{ nm} \leq \lambda \leq 850 \text{ nm}$, which equates to a frequency range of $2.22 \times 10^{15} \text{ rad.s}^{-1} \leq \omega \leq 5.1 \times 10^{15} \text{ rad.s}^{-1}$. f is in the range $0.05 \leq f_x \leq 0.95$. ... 238

7.2 The $|H_z|$ fields for the two lowest frequency reflection minima in figure 7.1 for $f_x = 0.93$. The black line indicates the location of the surface of the grating. ... 239
7.3 Reflection efficiency response of the grating as a function of both the incident frequency and wire width, $f_x d_x$. The fixed grating parameters are $(1 - f_x)d_x = 166 \text{ nm}, h = 350 \text{ nm}$ and $\theta = 4.89^\circ$. The frequency range is the same as in figure 7.1. The wire width is in the range $1 \text{ nm} \leq f_x d_x \leq 50 \text{ nm}$.

7.4 The $|H_z|$ fields for the two lowset frequency reflection minima in figure 7.1 for $f_x = 0.17$. Both fields are plotted at a phase of $\varphi = \pi/2$ relative to the incident radiation at a phase $\varphi = 0$. The black line indicates the location of the surface of the grating.

7.5 Reflection efficiency response of the grating as a function of both the incident frequency and grating height, h. The fixed grating parameters are $(1 - f_x)d_x = 225 \text{ nm}, f_x d_x = 10 \text{ nm}$ and $\theta = 4.89^\circ$. The frequency range is the same as in figure 7.1. The height is in the range $10 \text{ nm} \leq h \leq 1000 \text{ nm}$.

7.6 Poles of the scattering matrix of a silver rectangular grating as a function of both the incident frequency and in-plane momentum for increasing h. The fixed grating parameters are $d_x = 172.5 \text{ nm}, f_x d_x = 6.5 \text{ nm}$. The frequency is in the range $0 < \omega \leq 6.28 \times 10^{15} \text{ rad.s}^{-1}$, giving a wavelength range $\infty > \lambda \geq 300 \text{ nm}$, and the in-plane momentum is in the range $0 \leq 2k_x/k_g \leq 1$. The dotted lines indicate the light line and the first order diffracted line.

7.7 Reflection efficiency response of the multi-layer structure, comprising of ten silver layers of thickness $1 \text{ nm} \leq b \leq 50 \text{ nm}$ separated by nine 166 nm air layers. The black squares are the limit solutions to equations 7.1 and 7.2. The incident and transmission materials are also air and the structure is illuminated at normal incidence. The frequency range is the same as in figure 7.6.
7.8 Poles of the scattering matrix of a silver rectangular grating as a function of both the incident frequency and wire width for the two extreme values of $2k_x/k_g$. The fixed grating parameters are $(1 - f_x)d_x = 166 \text{ nm}$ and $h = 320 \text{ nm}$. The frequency and wire width ranges are the same as in figure 7.7. The black squares are the limit solutions to equations 7.1 and 7.2.

7.9 E-fields for an infinite multi-layer structure, comprising of 20 nm silver layers separated by 150 nm air layers. The incident and transmission materials are also air and the structure is illuminated at normal incidence. The permittivity of the silver layers are approximated by the Drude Model, using the parameters defined in the main text, with the imaginary part removed. The fields are plotted using the solutions to 6.2 (a) and to 6.1 (b), corresponding to the band-edges of the band-pass region. The solid lines are the \cos standing waves in the dielectric, the dashed lines are the \sinh (a) \cosh (b) waves in the metal, and the dotted lines show where the dielectric standing waves would continue if no metal was present. The bold and narrow lines are π out of phase and the vertical dot-dash lines indicate the effective cavity length.

8.1 Schematic representation of the fabrication method applied in the manufacture of the lamellar gratings studied experimentally.

8.2 Schematic diagram of the interferometer system utilised in the photolithography of photoresist gratings.

8.3 Schematic diagram of the vacuum deposition equipment used to deposit the chrome, and later the aluminium, onto the sample. The angle of evaporation is denoted by θ_{evap}, and the thickness of metal deposited is denoted h_{evap}, given by the quartz crystal thickness monitor.

8.4 Schematic diagram of the Reactive Ion Etching system.
8.5 Schematic diagram of the system used to measure the wavelength dependent reflection and transmission of the samples. The polariser allows selection of the incident polarisation. 267
8.6 SEM image of a lamellar aluminium grating fabricated by the manufacturing process described in the present chapter. 268
8.7 Schematic representation of the alternative fabrication method attempted in the manufacture of lamellar gratings. 272
8.8 Wavelength dependent reflection and transmission efficiencies of the lamellar grating shown in figure 8.6 in the classical mount and with an incidence angle of \(\theta = 5^\circ \), for (a) TE polarisation and (b) TM polarisation. 275
8.9 SEM image of a thick silver lamellar grating fabricated using a focused ion beam system. .. 276
8.10 Wavelength dependent TM reflection efficiency of the lamellar grating shown in figure 8.9 in the classical mount and with an incidence angle of \(\theta = 5^\circ \). .. 278
8.11 The modification of the SEM image of the lamellar grating (figure 8.6 such that the white regions denote areas of metal and the black regions the slits. .. 279
8.12 Normalised histograms of the wire (a) and slit (b) widths of the sample shown in figure 8.6 utilising the intermediary image shown in figure 8.11. .. 281
8.13 Wavelength dependent TM reflection and transmission efficiencies of the lamellar grating shown in figure 8.6 in the classical mount and with an incidence angle of \(\theta = 5^\circ \). The black lines are experimental data while the blue lines are modelled. 281
8.14 Wavelength dependent TM reflection and transmission efficiencies of the lamellar grating shown in figure 8.6 in the classical mount and with an incidence angle of $\theta = 5^\circ$. The black lines are experimental data while the blue lines are the modelled data including the statistical analysis of the variations in wire width. .
I HAVE BEEN very fortunate to have undertaken my PhD in such a friendly, personable and high quality research group. Everyone has consistently been welcoming and always willing to help, from sitting down with me to discuss problems I may have had, and graciously offering the benefit of their knowledge and experience, to being prepared to work through experiments/fabrication techniques/theoretical work to ensure I was doing such things correctly.

Of course I must give the first specific mention to my Supervisor, Professor J. Roy Sambles, who generously gave me the opportunity to undertake this doctorate in the first place. Sadly I have heard many horror stories about Supervisors who spend unreasonably small amounts of time with their students, who offer very little in the way of academic insight/understanding, who regularly insist on their students undertaking futile investigations, and who take an extremely long time to return pieces of work that they are to review before publication/presentation causing excessive productivity bottlenecks. As such, I consider myself incredibly lucky to have had Prof. Sambles as my supervisor, his apparently boundless enthusiasm and excitement for science has never ceased to amaze me, I am sure you don’t need me to tell you how fortunate science, and physics in particular, has been to have him. Personally, he has always made an effort to ensure I have had more than adequate supervision, by ensuring that he constantly knew the current state of my work, and always made sure I was being productive and heading in a sensible direction, particularly during periods when my motivation could have waned when things were not going as straightforwardly as I wished. I must also thank him for always being prepared to sit down with me to ensure I always fully understood the scientific implications of my results, particularly the more surprising ones. Finally
I must say thank you for the extraordinary speed with which he returned pieces of
my work he was reviewing, because this always meant that the only bottleneck in
my productivity came from my side. Without him I would certainly not be sat here
writing these acknowledgments.

I must also say a huge thank you to Dr Ian Hooper, my surrogate supervisor, who
helped me with far too many aspects of my PhD to note down in these acknowledge-
ments; of which these include demonstrating the vast majority of the experimental
and fabrication techniques I used, and constantly and patiently explaining all of my
questions about every scientific, technical and practical aspect of my PhD (especially
the stupid ones). I would also not be writing these acknowledgments if it was not
for him. I hope he is enjoying his well deserved break travelling round the world,
but I also hope he is given the opportunity to return to academia because I think it
would be a shame to lose someone of his quality.

Thanks also to all at Sharp Laboratories of Europe for their financial support
and showing me that their is a bigger picture than just academia, especially my
industrial supervisor Jonathan Mather.

One of my basement colleagues, Stephen Cornford, must also get a special men-
tion for giving me the benefit of his wisdom on numerous occasions, usually, but
not exclusively, of a mathematical and computational nature. If he were to flick
through Chapter 3 he’ll see a figure that represents a significant simplification of
the mathematics I used, and simply wouldn’t be there without his advice. Further,
I cannot thank him enough for introducing me to the wonderful Ubuntu, Latex, R,
and all things open source.

I would also like to thank two members of our technical support staff, Dave
Jarvis and Pete Cann. Dave for carrying out many of the evaporations for which I
did not have access to appropriate equipment, and for always doing them far quicker
than I expected. Pete for helping me out with several technical issues, in particular
making many of my substrates, and a clever little angled evaporation mount.

I must also thank my mentor Dr Feodor Ogrin for several useful discussions and
comments from an outside perspective.
In no particular order the following members of our group have also helped me in one way or another, be it directly, or simply by imbuing the group with such a friendly and productive atmosphere: Dr Tim Atherton, Dr Tim Taphouse, Dr John Birkett, Dr Sharon Jewell, Dr Alastair Hibbins, Dr Andy Murray, Baptiste Auguié, James Parsons (some may say my partner in crime, but we did talk sensibly about physics on many occasions, just never when we had an audience!), James Edmunds, Dr Matt Lockyear, Ciarán Stewart, Ed Stone, Dr Rob Kelly, Dr Euan Hendry, Dr Pete Vukusic, Prof. Bill Barnes, Prof. Fuzi Yang, Dr Lizhen Ruan, Dr George Zorinyants, Chris Burrows, Tom Isaac, Rich Hartman, Mel Taylor, Joe Noyes, Tomasz Trzeciak, and of course Dr Death and Mr Doom.

From reading several other acknowledgments it appears to be customary at this stage to reveal embarrassing nicknames and to generally dish the dirt on your fellow colleagues. However, I am going to disappoint everyone and break that trend, mainly because I am not witty enough to carry it off particularly well. So, I won’t mention Mr Justice, nor will I talk about how shockingly behaved Al, Euan and Sharon were on the conference, while Matt, Rob and myself behaved impeccably, and I most definitely wont mention any of the numerous scrapes and incidents a certain Mr J. Asbo has got himself involved in.

I would like to finish my Exeter acknowledgements with a general warning to new PhD students in our group, or maybe it is more a clarification. Don’t worry about the various offensive words that you are bound to have directed at you from Matt, it appears to be a strange sign of affection, perhaps some sort of rite of passage. The only time you need to worry is when he isn’t calling you all the names under the sun. Put it this way, I certainly know I didn’t feel like I’d truly made it until I was subjected to a torrent of abuse while standing atop a mountain in Austria as a result of a less than salubrious comment on my part!

Thank you all again and good luck to everyone, I will miss both working and socialising with you.

I must now take a brief moment to make a special mention of an old teacher from secondary school (old as in years ago, not as in he is old!), who I really ought
to have gone and thanked in person before now. Nigel Bispham, who taught me science from my first day in secondary school, through to my final days as an A-level physics student. I suppose I must have had some natural inclination towards science, and physics in particular, but there is no doubt in my mind that, without him spotting this and then using his extraordinary enthusiasm for teaching science (not to mention his patience in dealing with me!), my love of physics would not have been nurtured as carefully and attentively as it was. I know I’ll never forget him explaining exponential growth/decay using the area of his bald spot as a function of the length of time he had been teaching me! When I started university, realising how much effort he had put in to me was one of the significant reasons why I finally pulled my finger out and started trying at, not just enjoying, physics, which was something I had not always done before! It is a cliche, but teachers like him really are worth their weight in gold, I certainly would not have reached the level that brings me to write these acknowledgements without him.

The last section of my acknowledgements must, of course, be devoted to thanking my family. I cannot ever fully explain how appreciative I am for eveything they have done for me, both practically and more intangibly, but I hope a few words here will go some way towards redressing the balance. They have always been hugely encouraging and supportive of my education, even when I chopped and changed what I was doing, making sure I understand the importance of bettering yourself, but importantly, without ever being too pressurising. I have always been free to make my own decisions without feeling I have to do what is expected – without that encouragement yet freedom I would not be here now.

Right, that should be everyone I think. If in the unlikely event that an unmen tioned person who deserves thanks is reading this then I apologise sincerely that I have not mentioned you. I hope you realise that the fact I have omitted you does not mean I do not appreciate your help, it just means I have a terrible memory and I hope you take consolation in that fact!

Thank you all again.