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Abstract

T
HE ABILITY OF periodic surface variations to influence and control the

electromagnetic response of interfaces and structures has been recognised

for many years. Concurrently with these investigations, it has been found

that individual particles and wires support interesting electromagnetic resonances.

It has also long been established that multi-layer structures of planar interfaces

may also result in interesting electromagnetic responses. Multi-layer structures of

alternating dielectrics have been shown to produce periodic transmission resonances,

however, if one of the dielectrics is replaced with a thin metallic film, it has recently

been demonstrated that wide band-pass regions are formed in the electromagnetic

response of the structure.

The work presented in this thesis can be considered to be separated into two

distinct, but related, areas. One of the areas involves the analysis of wire grid

arrays. It is demonstrated that, like the case of deep surface relief perturbations,

the waveguide modes in the slits can be considered as the evolution of surface modes

on shallow surface relief perturbations. The perturbation effects of the slits on the

surface modes and the effect of their excitation on optically thick and thin wires

are also investigated. Finally, a new electromagnetic resonance is presented on both

1-dimensional and 2-dimensional wire grid arrays. It is shown that this is closely

related to the localised surface modes that have been shown to occur on individual

particles and wires. However, the resonance presented is shown to be subtly different

from these modes, which typically result in a transmission and reflection extinction,

because the planar geometry of the wires and the periodicity result in a reflection

enhancement, even when the wires are optically thin.

The second area of this work may be separated into two distinct sub-sections.
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Abstract

The first section examines the electromagnetic response of dielectric/metal multi-

layer stacks. These are confirmed to exhibit a periodic series of broad band-pass

regions, with the spectral location of these regions being dependent only on the unit

cell, not the full extent of the structures. The location of each band-edge of these

regions are then demonstrated to be a result of the matching of boundary conditions

between standing waves in the cavities having either a cos or a sin standing wave

function, and the evanescent fields inside the metal layers having either a sinh or a

cosh field distribution.

The second section examines the electromagnetic response of continuous surface

relief gratings, with a rectangular cross-section, whose ridges are very thin. It is

shown that vertical standing waves form, similar to the cavity waveguide modes,

except with the fields coupled through the wires not across the grooves. These

are then shown to reach a finite limit frequency as the grating height tends to

infinity. Thus, the resonances have evolved into a different mode beyond a certain

grating amplitude. This mode is shown to to be equivalent to the band-pass region

described in multi-layer metal/dielectric stacks. However, scattering and periodicity

considerations require that only the low frequency band-edge can be coupled to at

normal incidence, while only the high frequency band-edge may be coupled to at

grazing incidence.
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stage to reveal embarrassing nicknames and to generally dish the dirt on your fellow

colleagues. However, I am going to disappoint everyone and break that trend, mainly

because I am not witty enough to carry it off particularly well. So, I won’t mention

Mr Justice, nor will I talk about how shockingly behaved Al, Euan and Sharon were

on the conference, while Matt, Rob and myself behaved impeccably, and I most

definitely wont mention any of the numerous scrapes and incidents a certain Mr J.

Asbo has got himself involved in.

I would like to finish my Exeter acknowledgements with a general warning to new

PhD students in our group, or maybe it is more a clarification. Don’t worry about

the various offensive words that you are bound to have directed at you from Matt,

it appears to be a strange sign of affection, perhaps some sort of rite of passage.

The only time you need to worry is when he isn’t calling you all the names under

the sun. Put it this way, I certainly know I didn’t feel like I’d truly made it until I

was subjected to a torrent of abuse while standing atop a mountain in Austria as a

result of a less than salubrious comment on my part!

Thank you all again and good luck to everyone, I will miss both working and

socialising with you.

I must now take a brief moment to make a special mention of an old teacher

from secondary school (old as in years ago, not as in he is old!), who I really ought
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to have gone and thanked in person before now. Nigel Bispham, who taught me

science from my first day in secondary school, through to my final days as an A-

level physics student. I suppose I must have had some natural inclination towards

science, and physics in particular, but there is no doubt in my mind that, without

him spotting this and then using his extraordinary enthusiasm for teaching science

(not to mention his patience in dealing with me!), my love of physics would not have

been nurtured as carefully and attentively as it was. I know I’ll never forget him

explaining exponential growth/decay using the area of his bald spot as a function

of the length of time he had been teaching me! When I started university, realising

how much effort he had put in to me was one of the significant reasons why I finally

pulled my finger out and started trying at, not just enjoying, physics, which was

something I had not always done before! It is a cliche, but teachers like him really

are worth their weight in gold, I certainly would not have reached the level that

brings me to write these acknowledgements without him.

The last section of my acknowledgements must, of course, be devoted to thanking

my family. I cannot ever fully explain how appreciative I am for eveything they

have done for me, both practically and more intangibly, but I hope a few words here

will go some way towards redressing the balance. They have always been hugely

encouraging and supportive of my education, even when I chopped and changed

what I was doing, making sure I understand the importance of bettering yourself,

but importantly, without ever being too pressurising. I have always been free to

make my own decisions without feeling I have to do what is expected – without that

encouragement yet freedom I would not be here now.

Right, that should be everyone I think. If in the unlikely event that an unmen-

tioned person who deserves thanks is reading this then I apologise sincerely that I

have not mentioned you. I hope you realise that the fact I have omitted you does

not mean I do not appreciate your help, it just means I have a terrible memory and

I hope you take consolation in that fact!

Thank you all again.
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