Signal Processing Issues Related to Deterministic Sea Wave Prediction

Submitted by
Lamia Fathi Abusedra
to the University of Exeter as a thesis for the degree of
Doctor of Philosophy in Engineering, February 2009

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from this thesis may be published without proper acknowledgment.

I certify that all the material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University

..
Abstract

The bulk of the research work in wave related areas considers sea waves as stochastic objects leading to wave forecasting techniques based on statistical approaches. Due to the complex dynamics of the sea waves’ behaviour, statistical techniques are probably the only viable approach when forecasting over substantial spatial and temporal intervals. However this view changes when limiting the forecasting time to a few seconds or when the goal is to estimate the quiescent periods that occur due to the beating interaction of the wave components, especially in narrow band seas.

This work considers the multi disciplinary research field of deterministic sea wave prediction (DSWP), exploring different aspects of DSWP associated with shallow angle LIDAR systems. The main goal of this project is to study and develop techniques to reduce the prediction error. The first part deals with issues related to shallow angle LIDAR systems data problems, while the remaining part of this work concentrates on the prediction system and propagation models regardless of the source of the data.

The two main LIDAR data problems addressed in this work are the non-uniform distribution and the shadow region problems. An empirical approach is used to identify the characteristics of shadow regions associated with different wave conditions and different laser position. A new reconstruction method is developed to address the non-uniformed sampling problem, it is shown that including more information about the geometry and the dynamics of the problem improves the reconstruction error considerably.

The frequency domain approach to the wave propagation model is examined. The effect of energy leakage on the prediction error is illustrated. Two approaches are explored to reduce this error. First a modification of the simple dispersive phase shifting filter is tested and shown to improve the prediction. The second approach is to reduce the energy leakage with an iterative Window-Expansion method. Significant improvement of the prediction error is achieved using this method in comparison to the End-Matching method typically used in DSWP systems. The final part in examining the frequency domain approach is to define the prediction region boundaries associated with a given prediction accuracy.
The second propagation model approach is the Time/Space domain approach. In this method the convolution of the measured data and the propagation filter impulse response is used in the prediction system. In this part of the research work properties of these impulse responses are identified. These are found to be quite complicated representations. The relation between the impulse response (duration and shift) with prediction time and distance are studied. Quantification of these impulse responses properties are obtained by polynomial approximation and non-symmetric filter analysis. A new method is shown to associate the impulse response properties to the prediction region of both the Fixed Time and Fixed Point mode.
Acknowledgments

Firstly, I would like to thank my supervisor, Mike Belmont. Your advice, encouragement, and enthusiasm for this research have been invaluable, and indeed I am sure that without your support I wouldn’t have had the progress that I had. I would also like to thank Richard Thurley and Mike Horwood for your thoughtfulness, and understanding.

I would also like to express my gratitude to the people in Engineering and Computer Science, and to my Friends in Exeter I would like to say thank you for being like a little family in my home away from home.

Mai: I am grateful for the chance I got to be your friend, thanks for all your support.

I would like to thank Samina and Janetka for giving me a place in their heart and in their home.

Finally I would like to thank my Family, I never would have started this work if it was not for your support and guidance. To mom I say: I know it wasn’t easy for you having me away for that long, I thank you for you patient and support. To my dad I would like to say you’re my rock, thanks for being there for me. To my sister Rehab I say: I am gratefully for having you in my life.

A special thanks to my sister Hanan, for your major help in the printing of this thesis. I am grateful for your support and for giving up your holiday to be by my side.
Contents

Abstract ... 2
Acknowledgments... 4

Chapter 1
Introduction ... 8
1.1 What is DSWP? .. 8
1.2 Motivation of DSWP ... 10
1.3 Basic concepts in oceanography .. 12
 1.3.1 Wave theories .. 14
 1.3.2 Wave propagation .. 16
 1.3.3 Wave spectrum .. 18
1.4 This Thesis: Aims and structure .. 20

Chapter 2
The Basis for DSWP ... 22
2.1 Introduction ... 22
2.2 Wave measurement (Shallow angle LIDAR system) .. 25
2.3 Pre-Processing of Raw Wave Data .. 28
2.4 Prediction Model Parameter Estimation ... 28
 2.4.1 Prediction region estimation for FIXED POINT method 29
 2.4.2 Prediction region estimation for FIXED TIME method 30
2.5 Spectrum based wave prediction model ... 32
 2.5.1 Linear wave prediction for the Fixed Point mode .. 32
 2.5.2 Linear wave prediction for the fixed time mode ... 33
 2.5.3 Prediction improvement using End Matching .. 35
2.6 Time \ Spatial Domain based prediction model ... 35
2.7 Wave model .. 37

Chapter 3
Wave Shadowing and Nonuniform sampling .. 40
3.1 Introduction .. 40
3.2 Wave Shadowing .. 41
3.2.1 Shallow Angle LIDAR Simulations ... 42
3.2.2 Shadow region Parameters .. 45
3.3 Wave Reconstruction .. 47
3.4 Nonuniform Sampling ... 48
3.5 The Time Variant method .. 49
3.6 Papoulis and Gerchberg method .. 54
 3.6.1 Iteration algorithm with added spatial domain restriction 57
 3.6.2 Iteration algorithm with added dynamic information 60
3.7 Wave Reconstruction results using iterative methods 63
 3.7.1 Wave Reconstruction for extensive scanning 63
 3.7.2 The Effect on Wave Reconstruction of the number of data points .. 66

Chapter 4

Spectrum analysis of DSWP ... 69
 4.1 Two dimensional spectrum of unidirectional deep water waves 69
 4.1.1 Prediction using infinite time records 71
 4.1.2 Prediction using infinite snap shot 73
 4.1.3 Prediction using Mixed data .. 76
 4.2 The Energy leakage problem .. 80
 4.2.1 Effect of energy leakage on Fixed Time mode wave prediction ... 82
 4.3 Partial linearization of propagation filter 86
 4.4 Weighting windows .. 88
 4.5 End matching .. 90
 4.5.1 Data record reduction associated with End-matching method ... 94
 4.5.2 Comparing the End-Matching method and the Hanning window ... 95
 4.6 Window Expansion method ... 97

Chapter 5

Prediction Region Examination ... 100
 5.1 Introduction .. 100
 5.2 Space/ Time Diagrams of Pierson-Moskowitz Seas 100
 5.3 Prediction Error Surfaces .. 103
 5.4 Wind Speed Effect on Prediction Region of Pierson-Moskowitz Seas 105
 5.5 Comparison of different Spectral Prediction Techniques 106
 5.6 Prediction Region Modelling ... 108
Chapter 6

Time/Space Domain Filter based Prediction ...116

6.1 Introduction ..116

6.2 Prediction using time domain/space domain filters117

6.3 Energy concentration regions in prediction filters120

6.4 Approximating the filters properties ...122

6.4.1 Fixed point mode (Polygonal Approximation)122

6.4.2 Fixed point mode (Unsymmetrical system analysis)125

6.4.3 Fixed Time mode (Polygonal Approximation)130

6.4.4 Fixed Time mode (Unsymmetrical system analysis)132

6.5 Prediction region estimation using impulse response properties136

6.6 Numerical estimation of truncated impulse response energy141

6.7 Prediction region estimation using prediction filter’s properties143

6.8 Prediction using terminated impulse response ..145

6.8.1 Fixed Point mode ..146

6.8.2 Fixed time mode ..152

Chapter 7

Conclusion and future work ..156

7.1 List of contributions ...158

7.2 Future work ..159

Appendix A : Shadow region parameters distributions162

Appendix B : User interface Panels ...174

B-1 Shadow region and wave reconstruction ..174

B-2 Wave Predection (Fixed Time mode) ...176

Appendix C : Fresnel Integrals ...177

Appendix D ..178

D-1 Unsymmetrical System Fixed Point mode ..178

D-2 Unsymmetrical System Fixed Time mode ..184

References ...188