Compressibility Approximations in Jovian Regimes: A Normal Mode Analysis

Submitted by Rebecca Holly Mitchell,
to the University of Exeter as a thesis for the degree of
Doctor of Philosophy in Mathematics,
February 2009.

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

.................................. (signature)
R H Mitchell
Abstract

The atmospheres and interiors of planetary and stellar systems has been studied in various forms, though the complexity of these systems currently makes full replication of their dynamics impossible. In order to make these complex systems tractable it is necessary to make significant simplifications. For many years models have concentrated on making use of the Boussinesq approximation, often with a constant density reference profile. More recently, anelastic approximations have been developed to allow for the analysis of some degree of reference state density variation. The validity of these approximations is well understood for modelling the adiabatic, inviscid, terrestrial atmosphere, however their use in modelling other regimes remains equivocal. We consider the fully compressible, Boussinesq, anelastic, quasi-hydrostatic and pseudo-incompressible equation sets governing fluid flow within a rotating, differentially heated system. We consider both tangent plane and spherical shell geometries and conduct a normal model analysis in order to examine the validity of these approximations outside of terrestrial parameters. We find the compressibility approximations can cause spurious distortion of the normal mode solutions including misrepresentation of the frequencies, growth/decay rates, and modal structure. This in turn can have knock on effects including energy redistribution. The level of distortion is found to be dependent on mode type, reference profile and geometry and varies according to approximated equation set. Selected eigenmodes and frequencies are presented and discussed.

We conclude that the most suitable approximated equation sets for use in modelling the various regions of the Jovian atmosphere depends primarily on the type of wave it is necessary to reflect most accurately; and that the scale analyses, upon which the approximated equation sets are based, provide a good indication of the regimes in which their use is appropriate.
Acknowledgements

I would like to gratefully acknowledge many people who have helped and supported me whilst I have undertaken this project. It is impossible to mention everyone who has helped me directly or indirectly; however, there are some that it would be remiss of me not to thank individually.

I would like to thank my supervisors; Professor Chris Jones who, prior to his move to Leeds, supervised me during my first year, and Professor John Thuburn who took me under his wing after Prof. Jones’ departure. Prof. Jones’ enthusiasm for the study of the Jovian regime is infectious, and was what led me to investigate further the various approximations that have been used in advancing our understanding of the complex dynamics of its atmosphere and interior. More recently, I would like to thank him for his role as lead author in writing up the work I aided with during my first year, and that he and Dr Kuzanyan have continued at Leeds. I cannot overstate my thanks to Prof. Thuburn for ensuring that I was able to continue my project, for his encouragement, advice, insightful comments and for pointing me in the right direction on so many occasions.

For financial aid I am indebted primarily to the Science and Technology Facilities Council who funded my full-time research. I would also like to thank Exeter University School of Engineering, Computer Science and Mathematics and the Royal Meteorological Society who have funded my attendance at conferences.

My thanks must also go to those whose support I could not have done without, foremosly my family but also my office mates and colleagues, both whilst studying and latterly whilst employed.

Finally my heartfelt thanks go to Karen, her support and encouragement have kept me sane through the tough times, without her I could not have completed this project and it is to her I dedicate this thesis.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents</td>
<td>2</td>
</tr>
<tr>
<td>1 Motivation</td>
<td>7</td>
</tr>
<tr>
<td>2 Fully Compressible Model</td>
<td>16</td>
</tr>
<tr>
<td>2.1 Jupiter’s structure</td>
<td>16</td>
</tr>
<tr>
<td>2.1.1 Internal structure</td>
<td>17</td>
</tr>
<tr>
<td>2.1.2 Atmospheric Structure</td>
<td>18</td>
</tr>
<tr>
<td>2.2 Governing Equations</td>
<td>20</td>
</tr>
<tr>
<td>2.3 Gravitational Approximations</td>
<td>22</td>
</tr>
<tr>
<td>2.4 Instability</td>
<td>23</td>
</tr>
<tr>
<td>2.4.1 Free convection</td>
<td>24</td>
</tr>
<tr>
<td>2.4.2 Effect of rotation</td>
<td>26</td>
</tr>
<tr>
<td>2.4.3 Potential temperature form</td>
<td>27</td>
</tr>
<tr>
<td>2.5 Perturbation and Linearisation</td>
<td>28</td>
</tr>
<tr>
<td>2.5.1 Linearisation</td>
<td>31</td>
</tr>
<tr>
<td>2.6 Viscous and Diffusive Terms</td>
<td>32</td>
</tr>
</tbody>
</table>
CONTENTS

2.7 Boundary Conditions ... 34
 2.7.1 Rigid Surfaces .. 35
 2.7.2 Free-Slip Surfaces ... 35
2.8 Energetics ... 36
 2.8.1 Rescaled Variables .. 37
 2.8.2 Rescaled Boundary Conditions 38
2.9 Reference Profiles .. 38
 2.9.1 Parameter Regime ... 39
 2.9.2 Isothermal Reference State 39
 2.9.3 Polytropic Reference State 41
 2.9.4 Constant mass model 42
2.10 Summary ... 47

3 Approximated Equation Sets .. 48
 3.1 Boussinesq Equation Set ... 48
 3.1.1 Energetics .. 53
 3.1.2 Rescaled Boussinesq Set 53
 3.2 Anelastic Approximations .. 53
 3.2.1 Energetics .. 57
 3.2.2 Rescaled Anelastic Sets 58
 3.3 Pseudo-Incompressible Approximation 59
 3.3.1 Energetics .. 61
CONTENTS

3.3.2 Rescaled Pseudo-Incompressible set 62
3.4 Quasi-Hydrostatic Approximation 62
 3.4.1 Energetics .. 63
 3.4.2 Rescaled Quasi-Hydrostatic set 63
3.5 Switchable Equation Sets 64
 3.5.1 Nonlinear, unscaled equation sets 64
 3.5.2 Linearised, rescaled equation sets 65
3.6 Summary .. 66

4 Analysis of Isothermal Regime 68
 4.1 Analytic analysis of an inviscid, non-rotating system 70
 4.2 Inviscid F-f Plane 77
 4.3 External Modes ... 82
 4.3.1 Vertical Structure 82
 4.3.2 Dispersion relation 86
 4.3.3 External Modes: Summary 88
 4.4 Internal Modes .. 89
 4.4.1 Vertical Structure 89
 4.4.2 Dispersion relation 96
 4.5 Summary .. 109

5 F-f Plane: Polytropic Regime 115
 5.0.1 Numerical Method 118
CONTENTS

7.1.1 Boussinesq limit ... 198
7.1.2 Convection at negative Ra 200
7.2 Small \mathcal{E} asymptotic theory 202
 7.2.1 Equations for the z-structure 204
 7.2.2 Local analysis .. 205
 7.2.3 Global analysis ... 207
 7.2.4 Evaluation of asymptotic theory 208
 7.2.5 Numerical Formulation 209
7.3 Results from the asymptotic theory 210
 7.3.1 Uniform density Boussinesq case 210
 7.3.2 Compressible results 211
7.4 Summary ... 219

8 Conclusion ... 222
 8.1 Acoustic Modes ... 223
 8.2 Inertio-Gravity Modes .. 225
 8.2.1 Shallow Gravity Modes 225
 8.2.2 Deep Gravity Modes and Deep Convective Modes 226
 8.2.3 Rossby Modes ... 229
 8.3 Onset of Anelastic Convection 231
 8.4 Summary ... 231