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Surface plasmon polaritons on deep,
narrow-ridged rectangular gratings
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The dispersion diagrams of surface plasmon polaritons have been calculated for rectangular gratings, with
very narrow wires, of varying depths. For gratings with a moderate height a family of vertical-standing-wave
resonances may be excited, which consist of surface plasmons, oscillating on either vertical surface, coupling
together through the metal wires. These modes evolve similarly to the manner in which shallow-grating
surface-plasmon dispersion curves evolve into cavity modes in the grooves of the structure. However, on fur-
ther increase in grating height these vertical standing waves evolve into a second resonant feature, which is
independent of yet further increases in height. This new mode is shown to be equivalent to the resonances
found on infinite multilayer metal/dielectric structures illuminated at normal incidence. © 2009 Optical So-
ciety of America
OCIS codes: 240.6680, 050.6624, 230.4170.
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. INTRODUCTION
he primary differences between the electromagnetic re-
ponse of a thick planar metal film and a thick metal film
hat has shallow periodic perturbations on its surface
ave long been understood as the emergence of diffractive
rders and the excitation of surface plasmon polaritons
SPPs) [1–3].

It had been thought that SPPs could not be excited in
he subwavelength regime, where the periodicity of the
urface relief perturbation (grating) is significantly less
han the wavelength of the incident radiation. However, it
as been shown that surface plasmons may be excited in
he zero-order region of the spectrum, as they evolve to
orm cavity modes in the grooves of the structure [4–6].
urther work has also examined the nature of these cav-

ty modes on gratings whose ridges are sufficiently nar-
ow that the surface plasmon modes on each vertical sur-
ace may also interact through the metal ridges, as well as
cross the grooves [7,8]. These cavity modes are essen-
ially the same as the TEM cavity mode in a single
roove, except that their evolution from normal surface
lasmon modes, due to the periodicity of the structure,
eans that there are some subtle differences in their dis-

ersion curves from the well-known TEM mode.
There has also been significant research into planar
ultilayered metal/dielectric stacks, where the transmis-

ion coefficient through such stacks may be several orders
f magnitude larger than that through a single layer of
he metal film [9].

The spectral response of such structures comprises of a
eries of bandpass regions, where transmissivity is high
nd reflectivity low, separated by a series of photonic
and gaps where the opposite is true. It has been demon-
trated that, near either band edge, there is a large en-
ancement of the field intensity due to localization effects
10,11]. Near the high-frequency band edge of the lowest
0740-3224/09/061228-10/$15.00 © 2
requency bandpass region, the electromagnetic field is
redominantly confined to the dielectric regions in a man-
er similar to a stack of Fabry–Perot cavities, while at the

ow-frequency band edge, the fields are more concentrated
n the metal regions [10,12,13].

Recently, we have explained the formation of the band-
ass regions as being due to the matching of the tangen-
ial electric and magnetic fields associated with standing
avity modes in the dielectric, which may have either a
os or a sin wave character, and evanescent standing
odes in the metal, which may have either a cosh or a

inh distribution function [10].
It was shown that the low-frequency band edge of the

owest-frequency bandpass region is formed by the match-
ng of cosh fields in the metal layers and cos standing
aves in the cavities, with adjacent cavities oscillating in
hase. The high-frequency edge is then formed by the
atching of sinh fields in the metal layers with cos stand-

ng waves in the dielectric layers, with adjacent cavities
scillating out of phase—much like a series of Fabry–
erot cavities. The boundary conditions imposed by the
vanescent standing modes may significantly modify the
ffective cavity length that the standing waves in the
avities experience. The sinh fields result in an effective
avity length that is very similar to the physical cavity
ength, such that the stack behaves as a series of Fabry–
erot cavities. The cosh standing waves are able to give a
uch larger effective cavity length than the physical cav-

ty thickness, this significantly redshifts the low-
requency edge of the normal single-cavity Fabry–Perot
esonance, thereby opening up a large bandpass region.

The next bandpass region is formed in the same way,
xcept that the fields inside the cavities have a sin wave
unction. Subsequent bandpass regions are then the re-
ult of cavity harmonics matching to either cosh or sinh
elds in the metal layers. Of course, this is only exactly
009 Optical Society of America
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rue for structures with an infinite number of layers, as it
s only then that the fields inside the metal and dielectric
ayers can form profiles with exactly cosh or sinh, and cos
r sin functions, respectively. In addition, it has been
hown that the multilayer structures also support SPPs
hen illuminated in an attenuated total reflection con-
guration [14,15].
The present work examines the electromagnetic re-

ponse of a surface relief grating, with a rectangular
ross-section profile, as the ridges of the grating are made
ery thin and then made very high. It is shown that ver-
ical standing waves, that are coupled across the metal
idges rather than the grooves, exist when the ridges are
ery narrow. As the grating height is increased, these
odes evolve into the same modes that exist on metal/

ielectric multilayered stacks.

. THEORETICAL MODEL
ll of the modelling in the present work utilizes the rig-
rous coupled-wave analysis technique, also called the
ourier modal method [16]. In this technique the system

s split into three regions, as in Fig. 1. The permittivity
rofile in the x-direction is approximated as a Floquet se-
ies expansion. In each region, the electromagnetic wave
s described as the superposition of “upward” and “down-
ard” waves in the y-direction. Each of these waves is

hen described as a Rayleigh expansion of eigenmodes,
ach of which is also expanded according to the Floquet
eries expansion associated with the approximation of the
ermittivity profile. Maxwell’s equations are explicity
olved in each region according to the description above of
he electromagnetic fields. The resultant solutions are
hen used to match the electromagnetic boundary condi-
ions, at the interface between each region, using the nu-
erically stable scattering matrix [17].
Figure 1 gives a schematic representation of the model

sed in this work. Region 2 is the grating layer consisting
f silver and air with grating height h, period d, and
ark-to-space ratio f. Region 1, the incidence medium is

Fig. 1. Schematic representation of the theoretical model.
ir, and region 3 is silver such that the structure is a con-
inuous surface relief grating. The incident radiation k is
t an angle � to the interface, normal with the incident
lane containing the grating vector. It is linearly polar-
zed with the E-field perpendicular to the long axis of the
rating wires, TM (in the plane of incidence).

A practical determination of the convergence of the
ode can be specified by the absolute difference between
he approximate and exact (very high truncation order M)
alues. Thus the code can be determined to have con-
erged once the difference between the values obtained
or M and M+1 are lower than an arbitrary value, chosen
s

��M+1 − �M�

��M+1�
� 0.001. �1�

The difference between the exact and approximate val-
es will be different for every single point of a given plot
ecause it will be dependent not only on the geometry of
he structure, but also on the permittivity and wave-
ength. Evidently then, a different truncation order inves-
igation will be required for every point to ensure conver-
ence has been achieved.

Of course, it would be very inefficient to establish these
riteria for every single point of every single plot. The
ompromise, for the sake of practicability, is to implement
low-resolution plot over the parameter space of interest,
t a moderate truncation order, which will reveal the ap-
roximate location of the resonance(s) of interest. Then,
he convergence criteria are determined, according to Eq.
1), for the maxima or minima of the resonance(s). Finally,
he full resolution plot is calculated for the parameter
pace using a truncation order at least as high as the
inimum that is required according to the previously de-

ermined convergence criteria. This process was imple-
ented for every plot given in the present work, and it

ypically resulted in truncation orders M�80.
The permittivity of silver is specified by the Drude
odel, using the parameters �p=1.32�1016 s−1 and �D
1.45�10−14 s, taken from Nash and Sambles [18]. One
eeds to be aware that the permittivities in the case of a
hin wire, as in region 2, may be different from those of an
nfinite film. It has been discussed elsewhere that the
lassical macroscopic approach of electrical permittivity is
dequate for particle dimensions as small as 2 nm [19].
s a bulk metal is reduced in thickness towards this
alue, the mean free path of the electrons decreases as
he electron surface scattering becomes more important.
owever, it has been shown that, for such silver wires as

tudied here, only the imaginary part of the permittivity
ncreases slightly [19]. Thus, it is the present authors’ be-
ief that the underlying physics presented here is sound
nd that the changes in permittivity will only result in a
light broadening and reduction in magnitude of the reso-
ances.

. RESULTS
n order to examine the optical response of a rectangular
rating with a large amplitude and very narrow wires, we
egin with a grating with thick wires, which supports cav-
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ty modes and then vary the width of the wires. This evo-
ution is shown in Fig. 2, where the reflection efficiency of
grating of height h=350 nm and period d=200 nm, that

s illuminated at �=4.89°, is presented, while the mark-
o-space ratio is varied in the range 0.05� f�0.95. The
avelength range is 370 nm�	�850 nm, which equates

o a frequency range of 2.22�1015 rad·s−1���5.1
1015 rad·s−1. The slight dotted effect is due to a lower

esolution for f and d than for �. Note that the dotted
ines indicate the location of the subsequent field plots
hown in Figs. 3 and 5.

At the high f values of Fig. 2 there is a family of modes
including the lowest-frequency mode for 0.5� f�0.9),
hich increase in frequency as f reduces, that is as the
ires narrow and the grooves broaden. This family of
odes exists even for optically thick wires; therefore, they

annot be a family of surface plasmons coupled across the
ires. For cavity modes in a single groove in a perfect con-
uctor, it has been shown that end effects lead to a de-
rease in frequency as the groove is broadened [20]. How-
ver, it has been discussed elsewhere [21] that, for very
arrow grooves in a finite conductor, as the groove is
roadened there is an increase in frequency of the cavity
ode due to the finite conductivity, and that in the optical

egime, this effect dominates [22]. It is therefore expected
hat cavity modes, on the structure presented here, will
ncrease in frequency as the grooves are broadened, and
urthermore, that the resonance will broaden and dimin-
sh. This is clearly the case for the family of modes at high
values, identifying these as a family of cavity modes.
To confirm this hypothesis, the �Hz�-fields associated

ith the two lowest frequency resonances observable at
=0.93 are presented in Fig. 3. Figure 3(a) gives the
Hz�-fields for the higher-frequency reflection minimum in
ig. 2 at f=0.93 and �=3.77�1015 rad·s−1; Fig. 3(b) gives

he �Hz�-fields for the lowest reflection minimum at f
0.93 and �=2.90�1015 rad·s−1. The black line indicates
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ig. 2. Reflection efficiency response of the grating as a function
f both the incident frequency and f. The fixed grating param-
ters are d=200 nm, h=350 nm, and �=4.89°. The wavelength
ange is 370 nm�	�850 nm, which equates to a frequency
ange of 2.22�1015 rad·s−1���5.1�1015 rad·s−1. f is in the
ange 0.05� f�0.95. The dotted lines indicate the location of the
ubsequent field plots (Figs. 3 and 5).
he location of the surface of the grating. Note that the
cales are different and that the lower-order mode has a
arger maximum field enhancement.

Clearly, the two reflection minima are adjacent har-
onics of the fundamental cavity mode resonance that

xists in the grooves of the structure when the wires are
ptically thick and the grooves are narrow. Furthermore,
xamining the dependence of this family of modes on the
rating height, and examining their dispersion diagrams
s the height is varied, shows that they evolve from nor-
al surface plasmon modes and, subsequently, they be-
ave in exactly the same way as the cavity modes dis-
ussed in a similar investigation into surface relief
ratings with a Gaussian cross-section [6].

Returning to Fig. 2, we now consider the family of reso-
ances that occur for low values of f and which decrease

n frequency as the wires are narrowed (and the grooves
re broadened). Figure 4 presents a similar investigation
o that given in Fig. 2, except that the period is allowed to
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ig. 3. �Hz� for the two lowest-frequency reflection minima in
ig. 2 for f=0.93. The black line indicates the location of the sur-

ace of the grating.
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ary such that the groove width is held constant, at �1
f�d=166 nm, as the wire width is varied in the range
nm� fd�50 nm.
When the wire width is varied for a constant groove

idth, the family of resonances behaves in an almost
dentical way to when the groove width is allowed to vary.
his indicates that the groove width has little or no influ-
nce on the resonance, and hence, the resonance is not a
avity mode.

In order to examine the nature of the thin wire reso-
ances, Fig. 5(a) gives the Hz-fields for the higher-

requency reflection minimum in Fig. 2 at f=0.17 and
=4.71�1015 rad·s−1; Fig. 5(b) gives the Hz-fields for the

owest reflection minimum at f=0.17 and �=4.24
1015 rad·s−1. The black line indicates the location of the

urface of the grating. If the phase of the incident radia-
ion is assumed to be 
=0, these instantaneous fields are
lotted at a phase of 
=� /2—the phase at which maxi-
um field enhancement occurs.
Figure 5 indicates that the two resonances are also har-
onics of a vertical standing wave resonance. However,

he resonance is not a standing wave associated with the
avities of the structure, but with the wires. That is, sur-
ace plasmons on the walls of the wires are now coupled
ogether through the wires rather than across the grooves.
t is noted that the penetration depth of the fields into sil-
er (the value at which their magnitude falls to 1/e) in the
requency range of Fig. 2 is approximately 25 nm. This
orrelates with the fact that the highest value of f at
hich these resonances occur is seen to be f�0.3, which
ives a wire width of �49.8 nm—approximately twice the
ecay length, which is expected because the resonances
ccur on either side of the wire.

These resonances are similar to the resonances found
reviously on thin Gaussian ridges [7,8]. The instanta-
eous fields also show that the coupling across the wires

s asymmetric, that is, Hz goes through a zero inside the
etal. This explains why these modes cannot be excited

t normal incidence. The symmetry of the H-fields re-
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ig. 4. Reflection efficiency response of the grating as a function
f both the incident frequency and wire width, fd. The fixed grat-
ng parameters are �1− f�d=166 nm, h=350 nm, and �=4.89°.
he frequency range is the same as in Fig. 2. The wire width is in

he range 1 nm� fd�50 nm.
uires that the E-field on opposite sides of the groove
oint in exactly opposite directions; therefore, this mode
annot be coupled to at normal incidence because, at any
nstant in time, it is impossible for the incident E-field to

atch this field distribution. Away from normal incidence
his symmetry is broken, and the incident E-field can
atch components of the resonant E-field distribution

nd thus excite the mode.
The reduction in frequency as the wires become thinner

s expected from the behavior of coupled surface plasmons
n a thin semi-infinite film. On such a film, the evanes-
ent field of the normal surface plasmon excited on one in-
erface is able to excite a second surface plasmon on the
pposite interface. These two modes are degenerate if the
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ig. 5. (Color online) Hz for the two lowest-frequency reflection
inima in Fig. 2 for f=0.17. Both fields are plotted at a phase of
=� /2 relative to the incident radiation at a phase 
=0. The
lack line indicates the location of the surface of the grating.
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djacent dielectrics are the same. As they become more
trongly coupled, the normal surface plasmon dispersion
urve undergoes a splitting into a high- and a low-
requency branch, each of which increase and decrease in
requency, respectively, as the film is made thinner [23].
he high-frequency branch is associated with a symmet-
ic distribution of Hz across the film, while the low-
requency branch has an asymmetric distribution [24].
he fraction of the fields of the symmetric mode that exist

nside the metal, where absorption dominates, reduces as
he film is made thinner; therefore, absorption losses de-
rease and the resonances’ propagation length
ncreases—the long-range, coupled SPP. The opposite is
rue for the asymmetric resonance—the short-range,
oupled SPP [25]. Therefore, as the coupling across the
ires is asymmetric, it is expected that the resonance will

edshift in frequency as the wire becomes thinner.
This analysis also corroborates the discussed increase

n frequency of the cavity mode resonance as the groove is
idened. Surface plasmons coupled across a dielectric be-

ween two metals behave in the opposite sense to the situ-
tion described above. It is well known for cavity modes
hat the coupling is symmetric across the gap; therefore,
ecause the symmetric/asymmetric modes behave in the
pposite sense, it is expected that the mode will increase
n frequency as the groove is broadened.

The nature of the low f standing waves may now be in-
estigated further. We first examine the spectral depen-
ence of these modes on grating height to ascertain if they
ave the 1/h frequency response that would be expected
or vertical standing waves, while taking into account the
ossibility of dispersion curve anticrossing that has been
hown to arise for cavity resonances on deep gratings [6].
e then proceed with a similar investigation as carried

ut by Hooper and Sambles [6], observing the dispersion
iagrams of the structure as the grating height is varied,
n order to examine the evolution of these modes from
ormal SPPs.
Figure 6 gives the dependence of the standing waves on
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ig. 6. Reflection efficiency response of the grating as a function
f both the incident frequency and grating height, h. The fixed
rating parameters are �1− f�d=225 nm, fd=10 nm, and �
4.89°. The frequency range is the same as in Fig. 2. The height

s in the range 10 nm�h�1000 nm.
he grating height in the range 10 nm�h�1000 nm. The
rst feature that can be observed is that the standing
aves do not have a true 1/h dependence. At low grating
eights there is an approximately 1/h dependence; how-
ver, this dependence does not continue to zero frequency,
s h→�, because there appears to be a finite limit fre-
uency that all of the modes tend towards, with the
igher-frequency modes tending to this limit more slowly
t increasingly larger values of grating height. The field
lots of Fig. 5 show that, in the vertical direction, there is
efinite harmonic behavior between adjacent resonances,
ndicating that they have a vertical standing wave char-
cter. This fact, combined with their approximate 1/h de-
endence for small values of h (Fig. 6), shows that the
esonances behave as vertical standing waves at low grat-
ng height. However, they cannot be true standing waves
or all grating heights because they do not tend to zero
requency as the height tends to infinity.

To address this question, it is now important to look at
he evolution of the standing waves from normal surface
lasmon modes. To achieve this aim, Figs. 7(a), 7(b), 8(a),
nd 8(b), give the dispersion diagrams of a grating with
ires 6.5 nm wide, grooves 166 nm wide, and varying in
eights of h=40,80,160,320 nm, respectively. The disper-
ion diagram is calculated by determining the poles of the
lobal scattering matrix, S, by summing over all its ele-
ents. The dotted lines indicate the light line and the
rst-order diffracted line.
In Figure 7(a) there are two flat-banded modes that ex-

st before the light line. If the wires were thick and very
hallow, it would be expected that the surface plasmon
ispersion would not be significantly perturbed. There-
ore, the surface plasmon modes would be expected at
ery high frequencies—the first band gap would be ex-
ected at 	=345 nm. However, because the wires are very
hin, and at 40 nm not very shallow, they are causing sig-
ificant perturbation to the surface plasmon propagation
nd hence their dispersion curves. This is a result of a
ombination of the wire amplitude no longer being negli-
ible, and hence perturbing the SPP propagation, and
hen these perturbed modes interacting through the thin
etal wires and result in the opening of large and flat

and gaps. Thus, the kg ,2kg . . . ,qkg scattered surface
lasmon modes have been brought down significantly in
requency and have also flattened. This can also be ob-
erved in the nonradiative region where the unscattered
ode has been brought down in frequency by a large

mount. Figures 7(b) and 8 show that this modification of
he surface plasmon modes continues to a greater extent,
s the grating height is increased further, so that many
at modes may be observed when h=320 nm [Fig. 8(b)].
This evolution is almost identical to the evolution of

ormal surface plasmon modes into cavity modes on grat-
ngs with broad wires [6]. Therefore, this evolution to-
ether with previous field plots (Fig. 5) and the depen-
ence on grating height (Fig. 6), confirms that, at low
rating heights, the modes act as vertical standing waves,
hich are coupled across the thin wires and thus are lo-

alized to each wire, as seen by the flat-banded behavior.
owever, as shown in the previous work on gratings with

hick wires, if true cavity modes are formed, then this
volution continues such that the flat bands are displaced
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own in frequency continuously, as the grating height is
ncreased, and they tend to zero frequency. This is not the
ase for standing waves coupled across the wires, as there
s a clear finite frequency limit to which all of the modes
end. Beyond approximately h=300 nm, the lowest-
requency mode has reached this limit and has formed
nto a new type of mode, which is no longer flat-banded,
nd appears to increase in frequency, toward a different
imit, as 2kx /kg→1. In Fig. 8(b) this is the s-shaped mode
hat starts at ��2.35�1015 rad·s−1, when 2kx /kg=0, and
ncreases in frequency to 4.96�1015 rad·s−1 when
kx /kg=1. As the grating height increases further, the
igher-order scattered modes shift down in frequency and
lso tend to this new mode. This behavior shows that, at
ow grating heights, the normal surface plasmon modes
volve into vertical standing modes that are coupled
cross the wires of the grating. However, as the grating
eight is increased further, the standing modes then
volve into a new type of resonance.
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ig. 7. Poles of the scattering matrix of a silver rectangular
rating as a function of both the incident frequency and in-plane
omentum for increasing h. The fixed grating parameters are
=172.5 nm, fd=6.5 nm. The frequency is in the range 0��
6.28�1015 rad·s−1, giving a wavelength range �	�300 nm,

nd the in-plane momentum is in the range 0�2kx /kg�1. The
otted lines indicate the light line and the first-order diffracted
ine.
Of course, the reduction in frequency of the dispersion
f the normal SPP modes, as the grating is made deeper,
an also be understood through previous work on spoof
lasmons [26–29]. This red-shift can be considered as the
tructure of the metal inducing plasmoniclike behavior
ell away from the true plasma frequency of silver. In the

eferenced work, the spoof plasmon modes occur where
he light line experiences anticrossings with the nondis-
ersive cavity resonances (which can be considered as
aving formed as a result of the self-coupling of SPPs in
he grooves of the structure [6]). In other words, the red-
hift of the SPP occurs due to the self-coupling of SPPs in
he grooves forming cavity resonances, and where these
ondispersive modes anticross with the light line spoof
lasmons are formed. Similar behavior can be seen in
igs. 7(a) and 7(b); however, the subtle difference in the
resent work is that the presence of spoof plasmons is due
o the anticrossing of the light line with nondispersive
tanding-wave resonances in the wire, not in the cavities.
or the larger gratings heights, where the new mode has
volved, as can be seen in Figs. 7(c) and 7(d), the anti-
rossing is clearly much more complicated.

2kx kg

ω
(1

015
ra

d
.s

−1
)

(λ
(n

m
))

0

(∞)

3.14

(600)

6.28

(300)

0 0.5 1

0.0

0.25

> 0.5

2kx kg

ω
(1

015
ra

d
.s

−1
)

(λ
(n

m
))

0

(∞)

3.14

(600)

6.28

(300)

0 0.5 1

0.0

0.25

> 0.5

(a)

(b)

ig. 8. Poles of the scattering matrix of a silver rectangular
rating as a function of both the incident frequency and in-plane
omentum for increasing h. The fixed grating parameters are
=172.5 nm, fd=6.5 nm. The frequency and in-plane momentum
anges are the same as in Fig. 7.
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This new resonance is independent of further increases
n grating height, this implies that, beyond a certain
eight, the structure is effectively acting as a multilayer
etal/dielectric structure with each layer being (effec-

ively) infinitely wide, and the whole structure consisting
f an infinite number of layers at least to the lowest-order
tanding wave. The grating height must be increased fur-
her to act this way for the higher-order standing waves.
t is possible to investigate whether the grating is indeed
ehaving as an infinite multilayer structure, to the
owest-order mode, by comparing the response of this

ode to the theory, which has recently been presented de-
cribing the behavior of truly infinite multilayer stacks
10].

Figure 9 is a plot showing the dependence of the reflec-
ion efficiency response of a multilayer structure compris-
ng of ten silver layers of thickness, b, in the range

nm�b�50 nm, separated by nine 166 nm air layers. In
10], it was shown that only the (negative) real part of the
ermittivity of the silver is important in the formation of
he bandpass regions, so we chose the refractive index of
he silver layers as n2=��r= ik2. The refractive index of
he air layers is described by n1, and these layers have a
hickness denoted by a. The black squares are the limit
olutions to Eqs. (11) and (12) of [10], which respectively
escribe a cosh and a sinh field function in the metal lay-
rs matching to a cos standing wave function in the di-
lectric layers.

n1 tan�n1k
a

2	 = k2 tanh�k2k
b

2	 . �2�

n1 tan�n1k
a

2	 = k2 coth�k2k
b

2	 . �3�

The incident and transmission materials are also air,
nd the structure is illuminated at normal incidence.
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ig. 9. Reflection efficiency response of the multilayer struc-
ure, comprising ten silver layers of thickness 1 nm�b�50 nm,
eparated by nine 166 nm air layers. The black squares are the
imit solutions to Eqs. (2) and (3). The incident and transmission

aterials are also air, and the structure is illuminated at normal
ncidence. The frequency range is the same as in Fig. 7.
he frequency range is 0�1015 rad·s−1���6.28
1015 rad·s−1 ��	�300 nm�. The reflectivity response

s modelled using a multilayer Fresnel calculation.
If the ground plane of the grating is ignored, and the

ires are assumed to be infinitely high, as justified for the
owest-order mode when h300 nm, then it has the same
arameters as the multilayer metal/dielectric stack, al-
eit rotated by 90°. However, the grating is an infinite
tructure in the x-direction, whereas the metal/dielectric
tack only consists of ten metal layers because it is not
ossible to model an infinite number of layers using a
resnel calculation. For the multilayer stack, the slight
eviation of the band edges of the reflectivity response
rom the exact solutions (black squares), which occurs at
ow b �=fd�, is due to the modelled metal/dielectric struc-
ure being finite; therefore, the standing waves in the
avities and fields in the metal layers are not able to form
tanding fields with exactly cos�h� or sin�h� distribution
unctions.

From Fig. 8 it can be seen that the low-frequency limit
t 2kx /kg=0 occurs at ��2.35, and the higher-frequency
imit at 2kx /kg=1 occurs at ��4.96. These two limits are
ery close to the limit solutions, shown in Fig. 9, which, at
d �=b�=6.5 nm, are �=2.36�1015 rad·s−1 and �=5.46

1015 rad·s−1. It is hypothesized, therefore, that the two
imits observed in Fig. 8, for a rectangular grating with a
arge amplitude, are equivalent to the two band edges ob-
erved in Fig. 9, for a multilayer stack. To confirm this hy-
othesis, Figs. 10(a) and 10(b) present the equivalent in-
estigation as Fig. 9 (varying the width of the metal
ayers-wires in this case) at the appropriate values of in
lane momentum, 2kx /kg=0,1, respectively.
In Fig. 10(a) the lowest pole represents the behavior of

he new, large-grating-height mode. The black squares
re the solution to Eq. (2). Clearly, the dependency of the
ole on the width of the wires behaves in the same way as
he low-frequency band edge of a metal/dielectric stack
epends on the thickness of the metal layers. In Fig. 10(b)
t is clear which pole relates to the higher-frequency limit,
s the other poles all behave in a different manner be-
ause the grating height is not large enough for these
igher-order standing waves to have evolved into the new
ode. Similarly to the low-frequency limit, this pole re-

ponds to varying wire width in the same way as the
igh-frequency band edge of a multilayer stack.
However, neither the low- nor the high-frequency limits

een in the grating structure match the solutions from
qs. (2) and (3) exactly. The discrepancy between the
igh-frequency solution for the multilayer stack and that
een from the grating structure [Fig. 10(b)] can be under-
tood simply as a result of the fact that the solution is oc-
uring in the nonradiative region �2kx /kg=1�. This fact in-
orms us that the wavevector must have an imaginary
ertical component such that ky= iky. As k0

2=kx
2+ky

2, the
maginary wavevector results in a negative ky

2, and the
requency of the resonance is lower than expected.

The discrepancy between the low-frequency solution
nd that seen from the grating structure [Fig. 10(a)] can
e understood in a similar manner to the discrepancy of
he high-frequency solution, in that it is also the result of
n imaginary vertical component of the wavevector. How-
ver, the solution occurs in the radiative region, and so
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he cause of the imaginary wavevector is due to a finite
vanescent decay of the incident fields in the vertical di-
ection. The height at which the standing-wave modes
ave evolved into the multilayer modes gives information
bout the decay length of the fields in the vertical direc-
ion. For example, if Fig. 6 is repeated for the structure in
ig. 10(a), with the ridge width set at fd=50 nm, then the

owest-frequency mode has converged to the limit fre-
uency at a grating height of approximately hlim
225 nm. Setting this as an approximation for the decay

ength of the fields allows an estimation of the magnitude
f the vertical wavevector (the inverse of the decay
ength) as iky=1/hlim= i4.44�106 m−1. Modifying the so-
ution of Eq. (2) by iky (as above) gives a value for the ex-
ected frequency of the mode, taking into account an ex-
onential decay of the fields within the cavities, as �
3.99�1015 rad·s−1. The actual frequency, as taken from
ig. 10(a), is �=3.98�1015 rad·s−1. This process can be
epeated for any value of fd, and the correct behavior is
bserved—the exact and modified solutions converge as
d→0—because the decay length of the fields tends to �
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ig. 10. Poles of the scattering matrix of a silver rectangular
rating as a function of both the incident frequency and wire
idth for the two extreme values of 2kx /kg. The fixed grating pa-

ameters are �1− f�d=166 nm and h=320 nm. The frequency and
ire width ranges are the same as in Fig. 9. The black squares
re the limit solutions to Eqs.(2) and (3).
the grating height at which the modes have reached their
requency limit increases), hence iky→0.

Clearly then, the low- and high-frequency limits of the
ew mode presented are indeed equivalent to the low- and
igh-frequency band edges that occur in a multilayer
etal/dielectric stack. The final question is why does only

he low-frequency band edge occur at 2kx /kg=0, whereas
nly the high-frequency band edge occurs at 2kx /kg=1?
ig. 5 of [10], reproduced here in Fig. 11, answers this
uestion.
In Fig. 11(a), the field distribution for the high-

requency band edge, the fields in adjacent cavities oscil-
ate out of phase, while in Fig. 11(b), the field distribution
or the low-frequency band edge, the fields in adjacent
avities oscillate in phase. Therefore, the periodicity of
he fields that are associated with the high-frequency
and edge is half the periodicity of the structure, that is
x=kg /2, while the periodicity of the fields associated with
he low-frequency band edge is the same as the periodic-
ty of the structure, that is kx=kg. Therefore, only the
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ig. 11. The E� fields for an infinite multilayer structure, com-
rising 20 nm silver layers separated by 150 nm air layers. The
ermittivity of the silver layers are approximated by the Drude
odel, using the parameters defined in the main text, with the

maginary part removed. The fields are plotted using the solu-
ions to Eqs. (2) and (3), corresponding to the band edges of the
andpass region. The solid lines are the cos standing waves in
he dielectric, the dashed curves are the (a) sinh and (b) cosh
aves in the metal, and the dotted curves show where the dielec-

ric standing waves would continue if no metal were present. The
old and narrow curves are � out of phase and the vertical dot-
ash lines indicate the effective cavity length.
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igh-frequency edge may exist at 2kx /kg=1 and may only
ccur for grazing incidence as expected, while the low-
requency band edge occurs for kx /kg=1 and thus can only
ccur at 2kx /kg=0 as a result of a kg scattering.

. CONCLUSIONS
he electromagnetic response of silver, rectangular sur-

ace relief gratings with a large amplitude and narrow
ires has been explored. By analyzing the dispersion

urves of the system for varying grating heights, it has
een shown that at moderate grating heights a family of
esonance exists that has much the same character as
ertical standing waves in the grooves of the structure,
.e., cavity modes. These well-known cavity resonances
ave been shown to form from the deformation of the sur-

ace plasmon dispersion curve as the grating height is in-
reased, due to self-coupling of surface plasmons on either
ertical surface across the dielectric in the groove. It has
een shown that the new family of modes presented here,
hich occur when the wires are narrow, evolve in a very

imilar manner, except that they are standing waves
ormed by the coupling of surface plasmons oscillating
long the vertical surfaces, through the metal wires.
owever, these new vertical standing waves cannot be

rue standing waves as they do not show 1/h behavior for
ll large h, because they tend to a finite low-frequency
imit as h→�.

It is shown that for very large h a second new mode is
ormed, which is independent of h, by further evolution of
he vertical standing waves. By comparing the behavior of
his new mode with that of infinite multilayer metal/
ielectric structures, it is shown that this second new
ode is equivalent to the resonant states that may exist

n such a multilayer structure. Therefore, it is shown that
he severe modification of the surface plasmon dispersion
urves, due to large grating heights and very thin wires,
esults in the diffractive coupling to the same resonances
hat occur on multilayer structures illuminated at normal
ncidence. This allows the possibility of diffractive cou-
ling to these multilayer resonances when there is an ef-
ectively infinite number of layers—something not pos-
ible in either theory or practice using planar multilayer
tructures.

This equivalence is not surprising, because the theory
f multilayer stacks states that it is the matching of eva-
escent fields inside the metal layers, with standing
aves in the dielectic layers, which determine the reso-
ances the structure can support. It was mentioned in the
ntroduction that previous studies have also observed
imilar bandpass regions on multilayer structures illumi-
ated in an ATR configuration, thereby exciting surface
lasmons on the first interface that couple through the
tructure [14,15]. The equivalence presented here, be-
ween the resonances formed by simple illumination of
ultilayer stacks and the surface plasmon resonances on

arrow wire (and large height) gratings, proves that the
esonances formed on multilayer stacks illuminated in
he ATR configuration are also equivalent to the reso-
ances formed by simple illumination of such multilayer
tacks.
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