Late Pleistocene - Early Holocene glacial dynamics, Asian palaeomonsoon variability and landscape change at Lake Shudu, Yunnan Province, southwestern China

Submitted by Charlotte Cook, to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Geography, September 2009.

This thesis is available for library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

(signature)……Charlotte G Cook……….
Abstract

A lack of well-distributed, high-resolution records of Late Quaternary Asian palaeomonsoon variability remains an outstanding issue for palaeoclimatologists, and is especially marked in remote regions such as the mountains of southwestern China (Wang et al., 2005). Characterising the nature, timing and magnitude of climate variability in southwestern China is essential for understanding the regional climate as a whole, and the potential social, economic and environmental impacts that may result from Asian monsoon system changes.

The NERC-funded research presented in this thesis focuses on a high altitude lake sediment record obtained from Lake Shudu, Yunnan Province, China. The lake is located on the southeastern edge of the Tibetan Plateau. The primary aims of this research were to identify and examine key environmental and climatic shifts which occurred in southwestern China during the Late Pleistocene (Dali) - Early Holocene Period; to examine the possible drivers of these changes; and to compare the findings with other regional proxy records in order to better understand climate dynamics in southwestern China. These aims were chosen in order to test the hypothesis that Late Quaternary millennial to centennial scale climatic and environmental changes in southwestern China were driven by changes in solar insolation and / or glacial climate boundary conditions, characterised by stepwise increases in palaeomonsoon intensity.

AMS 14C radiocarbon dates obtained from bulk sediment samples and pollen concentrations indicated that the seven metre core (06SD) that forms the focus of this research spans the last c. 22.6 ka cal. yr BP, making it one of the longest high-resolution Late Quaternary records available for southwestern China. 06SD was examined using a multi-proxy approach incorporating physical, organic and palaeoecological analyses.

The record captures the shift from colder, drier Pleistocene (Dali) conditions to warmer, wetter Holocene conditions and is punctuated by two events. The first event, centred at c. 17.3 ka cal. yr BP, possibly represents a phase of warmer and / or wetter conditions in response to rising solar insolation during the deglacial period. The second event, commencing at c. 11.7 ka cal. yr BP, possibly denotes the Pleistocene - Holocene Boundary.

Overall, the findings of this research support the view that during the Late Pleistocene, Asian summer monsoon strengthening was non-linear and driven by changes in glacial dynamics and / or solar insolation.
Table of contents

Abstract 2
Table of contents 3
List of figures 6
List of tables 8
List of equations 9
List of appendices 10
Acknowledgements 11

1 Introduction 12
 1.1 Research context 12
 1.2 Research methods 13
 1.3 Research hypothesis, aims and objectives 13
 1.4 Geographical context 14
 1.4.1 Site selection 16
 1.5 Project partners 16
 1.6 Thesis structure 17

2 Asian palaeoclimatic variability during the Late Pleistocene - Early Holocene Period 18
 2.1 Introduction 18
 2.2 The Asian monsoon 19
 2.2.1 Seasonal climatology 22
 2.3 Monsoon China 26
 2.4 Chinese Quaternary terminology 31
 2.5 Millennial to centennial scale proxy records of Late Pleistocene - Early Holocene palaeomonsoon variability obtained from sites in China 32
 2.5.1 Drivers of palaeomonsoon variability 34
 2.5.2 Environmental and climatic trends during the Late Pleistocene - Early Holocene Period 39
 2.5.3 The timing of the Last Glacial Maximum (LGM) in China 41
 2.5.4 Post-LGM climatic conditions 42
 2.5.5 Lateglacial climate events 43
 2.5.6 The Pleistocene - Holocene (P-H) Transition 53
 2.5.7 The Pleistocene - Holocene (P-H) Boundary 53
 2.6 Concluding remarks 55
 2.7 Research questions 56

3 Methods 57
 3.1 Introduction 57
 3.2 Multi-proxy analysis 57
 3.3 Physical properties 59
 3.3.1 Particle size 59
 3.3.2 Magnetic susceptibility (χlf) 59
 3.4 Organic analysis 61
 3.4.1 Loss on Ignition (%LOI) 61
 3.4.2 Total Organic Carbon (%TOC) and Total Nitrogen (%TN) 62
 3.4.3 Carbon and Nitrogen (C/N) ratios 64
 3.4.4 δ^{13}C analysis 64
3.4.5 Organic sample preparation and analysis
3.5 Palaeoecological analysis
3.5.1 Principles of pollen analysis
3.5.2 Approaches
3.5.3 Pollen productivity and dispersal
3.5.4 Pollen source area
3.5.5 Modern Chinese vegetation analogues
3.5.6 Driver - response lag
3.5.7 Pollen extraction
3.5.8 Pollen counting
3.5.9 Pollen identification
3.5.10 Statistical methods
3.5.10.1 Pollen percentages
3.5.10.2 Pollen concentrations
3.5.10.3 DCA / PCA
3.5.10.4 Ratios and indicative pollen types
3.5.11 Charcoal analysis
3.6 Dating methods
3.6.1 AMS 14C radiocarbon dating of bulk sediments
3.6.2 AMS 14C radiocarbon dating of coniferous pollen concentrations
3.7 Concluding remarks

4 Results
4.1 Introduction
4.2 Site investigation
4.2.1 Geology / geomorphology
4.2.2 Climate
4.2.2.1 Temperature
4.2.2.2 Precipitation
4.2.3 Vegetation
4.3 Core recovery
4.3.1 Selection of samples for dating
4.3.2 AMS 14C radiocarbon dating of bulk sediments and pollen concentrations
4.3.2.1 Pollen assessment
4.3.2.2 Pilot test 1
4.3.2.3 Pilot test 2
4.3.2.4 A new method for extracting pollen concentrates from lake sediments for AMS 14C radiocarbon dating
4.3.3 Chronology construction
4.4 Physical properties
4.4.1 Particle size
4.4.2 Magnetic susceptibility (χ_{lf})
4.5 Organic analysis
4.5.1 Modern values
4.5.2 Loss on Ignition (%LOI)
4.5.3 Total Organic Carbon (%TOC)
4.5.4 Total Nitrogen (%TN)
4.5.5 Carbon and Nitrogen (C/N) ratios
4.5.6 δ^{13}C analysis
4.5.7 Combined results of C/N and δ^{13}C analysis
4.6 Palaeoecological analysis
4.6.1 Pollen analysis
4.6.1.1 Pollen zones
4.6.2 Charcoal analysis
4.7 Construction of 06SD multi-proxy zones
4.8 Concluding remarks
Late Pleistocene - Early Holocene environmental changes in southwestern China

5.1 Introduction
5.2 Zone MS-SD1 (c. 22.6 - 20.3 ka cal. yr BP)
5.2.1 Zone MS-SD1 summary
5.3 Zone MS-SD2 (c. 20.3 - 17.5 ka cal. yr BP)
5.3.1 Zone MS-SD2 summary
5.4 Zone MS-SD3 (c. 17.5 - 13.5 ka cal. yr BP)
5.4.1 Subzone MS-SD3a (c. 17.5 - 17.0 ka cal. yr BP)
5.4.2 Subzone MS-SD3b (c. 17.0 - 13.5 ka cal. yr BP)
5.4.3 Zone MS-SD3 summary
5.5 Zone MS-SD4 (c. 13.5 - 11.1 ka cal. yr BP)
5.5.1 Subzone MS-SD4a (c. 13.5 - 12.3 ka cal. yr BP)
5.5.2 Subzone MS-SD4b (c. 12.3 - 11.1 ka cal. yr BP)
5.5.3 Zone MS-SD4 summary
5.6 Concluding remarks

Late Pleistocene - Early Holocene glacial dynamics and Asian palaeomonsoon variability in southwestern China

6.1 Introduction
6.2 The timing of the LGM
6.3 Post-LGM climatic conditions
6.3.1 Evidence for an abrupt climate amelioration from c. 17.5 - 17.2 ka cal. yr BP
6.3.2 Evidence for rising lake levels at c. 16 ka cal. yr BP
6.4 The Pleistocene - Holocene Transition
6.5 The Pleistocene - Holocene Boundary
6.6 Comparisons with events in other regional proxy records
6.7 The influence of glacial - interglacial boundary conditions upon palaeomonsoon intensity during the deglacial period
6.8 Concluding remarks

Main conclusions and suggestions for further work

7.1 Main conclusions
7.2 Suggestions for further work
7.2.1 The timing of the LGM
7.2.2 The timing of the response to warming
7.2.3 Abrupt shifts from c. 17.5 - 17.2 ka cal. yr BP
7.2.4 Quantification of the forest ecosystem response to climate change
7.2.5 The P-H Transition and Boundary
7.2.6 Human - landscape - climate interactions

Appendices

References
List of figures

Figure 1-1: Map showing the location of Yunnan Province, China, the provincial capital, Kunming, and Lake Shudu (study site). 15

Figure 2-1: The global climate system. 20
Figure 2-2: Global atmospheric circulation. 21
Figure 2-3: Contemporary pressure and surface wind patterns over Asia. 23
Figure 2-4: Map showing the altitudinal zones of China. 27
Figure 2-5: Elevation profile, Zhongdian - Jinghong, Yunnan Province, China. 28
Figure 2-6: Map showing the climate subsystems influencing China. 30
Figure 2-7: Map showing the locations of key speleothem and ice core records in China and their proximity to Lake Shudu. 33
Figure 2-8: Correlations between southwestern monsoon intensity and solar insolation during the last deglaciation. 37
Figure 2-9: Graph showing the estimated age offsets between the Hulu Cave speleothems and the Greenland Ice Core Records (GISP2 and GRIP). 46
Figure 2-10: Graph showing the Lateglacial section of the Hulu Cave \(\delta^{18}O\) speleothem records compared with the GISP2 \(\delta^{18}O\) ice core record. 47
Figure 2-11: Graph showing the Lateglacial changes in the Dongge Cave \(\delta^{18}O\) speleothem record. 49
Figure 2-12: Graph comparing the \(\delta^{18}O\) and \(\delta^{13}C\) values obtained from key high and mid latitude ice core and speleothem records, 20 - 10 ka BP. 52
Figure 2-13: Suite of graphs showing 1000-year averages of dust concentrations and \(\delta^{18}O\) values obtained from Core D-3, Dunde Ice Cap, 40 - 0 ka BP. 54

Figure 3-1: Diagram showing the pathways of carbon and nitrogen for a lake located at the treeline. 63
Figure 3-2: Graph showing theoretical \(\delta^{13}C\) values plotted against C/N ratios. 65
Figure 3-3: Relationship between lake size and pollen source area. 70
Figure 3-4: Altitudinal gradient of key modern arboreal taxa, Yulongshan Mountains, northwestern Yunnan. 77
Figure 3-5: Simplified idealised vegetation map for Yunnan Province, showing the most common types prior to disturbance by human activity. 79
Figure 3-6: Selected altitudinal zonations in Yunnan Province. 80

Figure 4-1: Lake Shudu, Yunnan Province, China, looking northeast. 101
Figure 4-2: Map of the Lake Shudu catchment, Yunnan Province. 102
Figure 4-3: Map showing the key geomorphological and geological features in the Lake Shudu catchment. 104
Figure 4-4: Limestone outcrop, southeastern shore of Lake Shudu. 105
Figure 4-5: Exposed facies with limestone bedrock covered fluvial deposits and thick topsoil, northwestern shore of Lake Shudu. 105
Figure 4-6: Lateral moraine, southeastern shore of Lake Shudu. 106
Figure 4-7: Landform located just after the lake outflow, to the southwest of Lake Shudu. 107
Figure 4-8: Closer view of landform located just after the lake outflow to the southwest of Lake Shudu. 108
Figure 4-9: Angular, unsorted fluvio-glacial deposits located on the western shoreline of Lake Shudu. 109
Figure 4-10: Laminated fluvial deposits located on primary inflow, eastern shoreline of Lake Shudu. 110
Figure 4-11: Palaeshoreline running parallel to the present day western shoreline. 111
Figure 4-12: Mean monthly temperatures for Dali, Yunnan Province, 1939 - 1988. 114
Figure 4-13: Mean monthly precipitation rates and maximum / minimum monthly precipitation (in mm) for Zhongdian, Yunnan Province, 1972 - 2002. 116
List of tables

Table 2-1: Chinese terminology for the Late Pleistocene (Dali) - Holocene Period. 31
Table 3-1: Biome classifications for China. 72
Table 3-2: Idealised vegetation regions, Yunnan Province, China. 74
Table 3-3: The altitudinal belts (excluding base and mid-low mountain belts) found in the high mountainous zones of China. 75
Table 3-4: Climatic correlations of selected vegetation types, Yunnan Province, China. 81
Table 3-5: Climatic correlations of selected vegetation types, Tibetan Plateau. 84
Table 4-1: Lake Shudu site investigation tasks. 99
Table 4-2: Conventional and calibrated AMS 14C radiocarbon dates for the 06SD core. 140
Table 4-3: 06SD final core chronology. 143
Table 4-4: 06SD core resolution and annual sedimentation rates. 145
Table 4-5: Ages of 06SD stratigraphic zones ST1 - 5. 147
Table 4-6: Modern %TOC, %TN, C/N ratios and δ^{13}C values derived from plant and sediment samples obtained from Lake Shudu. 154
Table 5-1: Lake Shudu proxies, zones and environmental inferences. 186
List of equations

Equation 1: Calculation of Loss on Ignition percentages. 66
Equation 2: Pollen concentration calculation. 90
List of appendices

A1: Additional information for Chapter 3 (Methods) 241
A.1.1: Assignments of pollen taxa from China to selected Plant Functional Types (PFTs). 241
A.1.2: Vegetation types, Yunnan Province, China. 242
A.1.3: Pollen preparation method for Chinese sediment samples. 246
A.1.4: Canoco DCA / PCA metadata. 247

A.2: Additional information for Chapter 4 (Results) 250
A.2.1. 14C AMS radiocarbon dating of coniferous pollen concentrations extraction method. 250
Acknowledgements

I would like to thank the following people for their help with various aspects of this research;

- My PhD Supervisor, Dr Richard Jones (University of Exeter), for his unfailing support, enthusiasm and superior baking skills;
- Dr Enlou Zhang and colleagues at the Nanjing Institute of Geography and Limnology (NIGL China) for providing me with a lake sediment core to work on, and for advice and logistical support whilst on fieldwork in China;
- Dr Pete Langdon (University of Southampton) and Prof. Melanie Leng (NERC Geosciences Isotope Laboratory (NIGL Keyworth) for providing expert guidance;
- Angela Elliot, Jackie Hatton and technical staff at the University of Exeter for advice and assistance in the lab;
- The Natural Environment Research Council (NERC), who funded this research under studentship NER/S/A/2005/13320;
- Staff at NIGL (Keyworth), for providing expert advice and laboratory space;
- The NERC Radiocarbon Laboratory (NERC RCL), East Kilbride and the Oxford Radiocarbon Accelerator Unit (ORAU) for help with AMS \(^{14}\)C radiocarbon dating;
- Prof. Rewi Newnham (University of Plymouth) and Dr Leanne Franklin-Smith (University of Southampton) for pollen concentration dating advice;
- The Quaternary Research Association (QRA) and the University of Exeter for providing additional funding to attend conferences in the UK and abroad.

Special thanks goes to;

- Andrew Cook, for reasons too numerous to mention here, and for being possibly the best husband anyone could ask for;
- Family and friends, for supporting and encouraging my academic endeavours.