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Abstract 

Bumble bees (bombus spp.) are significant pollinators of many plants, and are particularly 

attracted to mass-flowering crops such as Oilseed Rape (Brassica Napus), which they cross-

pollinate.  B. napus is both wind and insect-pollinated, and whilst it has been found that wind is 

its most significant pollen vector, the influence of bumble bee pollination could be non-trivial 

when bee densities are large.  Therefore, the assessment of pollinator-mediated cross-pollination 

events could be important when considering containment strategies of genetically modified 

(GM) crops, such as GM varieties of B. napus, but requires a landscape-scale understanding of 

pollinator movements, which is currently unknown for bumble bees. 

 

I developed an in silico model, entitled HARVEST, which simulates the foraging and 

consequential inter-patch movements of bumble bees.  The model is based on principles from 

Reinforcement Learning and Individual Based Modelling, and uses a Linear Operator Learning 

Rule to guide agent learning.  The model incoproates one or more agents, or bees, that learn by 

‘trial-and-error’, with a gradual preference shown for patch choice actions that provide 

increased rewards. 

 

To validate the model, I verified its ability to replicate certain iconic patterns of bee-mediated 

gene flow, and assessed its accuracy in predicting the flower visits and inter-patch movement 

frequencies of real bees in a small-scale system.  The model successfully replicated the iconic 

patterns, but failed to accurately predict outputs from the real system.  It did, however, 

qualitatively replicate the high levels of inter-patch traffic found in the real small-scale system, 

and its quantitative discrepancies could likely be explained by inaccurate parameterisations.  I 

also found that HARVEST bees are extremely efficient foragers, which agrees with evidence of 

powerful learning capabilities and risk-aversion in real bumble bees. 

 

When applying the model to the landscape-scale, HARVEST predicts that overall levels of bee-

mediated gene flow are extremely low.   Nonetheless, I identified an effective containment 

strategy in which a ‘shield’ comprised of sacrificed crops is placed between GM and 

conventional crop populations.  This strategy could be useful for scenarios in which the 

tolerance for GM seed set is exceptionally low. 
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