Low-Mass Stars and Brown Dwarfs

Optical/Infrared Photometry and Spectroscopy
of Low-Mass Stars and Brown Dwarfs
in the Field and Young Clusters

Robert R. King

Submitted by Robert R. King to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics, September 2009.

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signed:
Robert R. King

Date:
Abstract

In this thesis I will present optical and near-infrared photometric and spectroscopic observations of an evolved field brown dwarf binary pair and of populations of low-mass stars in high-mass young stellar clusters and will compare them to stellar and substellar theoretical model predictions.

ε Indi Ba, and Bb are the closest known brown dwarfs to the Earth, and, as such, make possible a concerted observational campaign to obtain a complete characterisation of two intermediate-age T dwarfs. Although some recent observations suggest substellar atmospheric and evolutionary models may be inconsistent with observations, there have been few conclusive tests to date. I will present high angular resolution optical, near-infrared, and thermal-infrared imaging and medium-resolution (up to R~5000) spectroscopy of these two T dwarfs. Using these data I have derived luminosities of \(\log L/L_\odot = -4.699 \pm 0.017 \) and \(-5.232 \pm 0.020 \) for ε Indi Ba, Bb, respectively, and I will show that the predictions of substellar evolutionary models using luminosity and mass constraints are inconsistent with the effective temperatures and surface gravities derived from fitting atmospheric models to observed spectra. Furthermore, I will show that, even where estimates of the effective temperature, surface gravity, and luminosity are available, estimates of the mass of cool brown dwarfs can be up to a factor of two lower than the measured dynamical mass. Considering the difficulty in assigning accurate ages to any system and the mass-luminosity-age degeneracy of brown dwarfs, I would caution against the over-analysis of predicted brown dwarf masses at this time.

I have also used Chandra X-ray observations to identify near-complete and relatively unbiased samples of pre-main-sequence stars in the young stellar clusters NGC 2244 and Trumpler 14. Using optical photometric and spectroscopic observations, I will characterise the apparent age spreads seen in the cluster pre-main-sequences. Mass estimates will then be derived for their stellar populations and used to construct the initial mass function for each cluster. It is found that NGC 2244 appears to have a Salpeter-like IMF for stars in the mass range 0.5–2.0 \(M_\odot \) if a likely age of 2 Myr is adopted, while Tr 14 may have a top-heavy IMF at a similar age. However, I will show that because the observed slopes of the cluster pre-main-sequences are not well-matched by the predicted slope in colour-magnitude space, such determinations are heavily dependent on the assumed age of the cluster and complicated due to the large spreads in isochronal ages.
Contents

1 Introduction To Low-Mass Stars and Brown Dwarfs 12
 1.1 Formation ... 13
 1.1.1 A Little History ... 13
 1.1.2 A Simple Formation Model 14
 1.1.3 Brown Dwarfs ... 17
 1.1.4 The Stellar Initial Mass Function 18
 1.1.5 Formation Environments 21
 1.2 Spectral Classification .. 23
 1.2.1 Modern Spectral Classification 26
 1.2.2 The L and T dwarfs 27
 1.3 Derivation of Physical Properties 30
 1.3.1 Cluster Membership 31
 1.3.2 Atmospheric and Evolutionary Models 33

I Constraining Theoretical Models of Brown Dwarfs 37

2 ε Indi Ba, Bb - Observations and Analysis Techniques 38
 2.1 Motivation ... 38
 2.2 Observations and Reduction 41
 2.2.1 Optical Photometry 41
 2.2.2 Near- and Thermal-IR Photometry 41
 2.2.3 Image Fitting - PSF Profiles 44
 2.2.4 Photometric Variability 47
 2.2.5 AO Deep Companion Search 48
 2.2.6 Optical Spectroscopy 49
 2.2.7 Near-IR Spectroscopy 49
 2.2.8 Thermal-IR Spectroscopy 50
 2.2.9 Spectral Fitting Routine 51
 2.2.10 Photometric Calibration 55
 2.3 Spectral Classification 61
 2.3.1 Near-IR Spectral Classification 61
 2.3.2 Optical Spectral Classification 64
3 ε Indi Ba, Bb - Comparison to Evolutionary and Atmospheric Models 69
 3.1 Constraints from ε Indi A 69
 3.2 Luminosity Determination 70
 3.3 Dynamical Masses 70
 3.4 Evolutionary Model Comparisons 71
 3.4.1 Photometry 71
 3.4.2 Physical Properties 75
 3.4.3 Age of the ε Indi System 75
 3.5 Atmospheric Model Comparison 77
 3.5.1 Effective Temperature Effects 78
 3.5.2 Metallicity and Surface Gravity Effects 79
 3.5.3 Unidentified Feature at 1.35–1.40 μm 82
 3.5.4 Alkali Depletion 84
 3.5.5 Lithium .. 85
 3.5.6 Chemical Equilibrium Departures 87
 3.6 Mass limits on further system members 89
 3.7 Comparison of Model Predictions 89
 3.7.1 Previous Determinations 89
 3.7.2 Our model predictions 91
 3.8 Discussion and Further Work on ε Indi Ba, Bb 92
 3.8.1 Conclusions 92
 3.8.2 Further work 93

II Determining Properties of Low-Mass Stars in Clusters 95

4 Observations of Two Young Stellar Clusters 96
 4.1 Motivation ... 96
 4.2 Cluster Selection 97
 4.2.1 The Carina Nebula - Trumpler 14 97
 4.2.2 The Rosette Nebula - NGC 2244 102
 4.3 Imaging Observations 104
 4.3.1 Photometric Calibration 107
 4.4 Cluster Membership 110
 4.4.1 X-ray Selection 110
 4.4.2 Colour-Magnitude Selection 111
 4.5 Multi-Object Spectroscopy 114
 4.5.1 Observations 114
 4.5.2 Reduction .. 116
 4.6 Spectral Classification 119
 4.6.1 The Hammer 121
 4.6.2 SPTCLASS 123
CONTENTS

4.6.3 Derived Spectral Types .. 127

5 Initial Mass Functions and
Apparent Age Spreads ... 130
 5.1 Removing Extinction Effects ... 130
 5.1.1 Intrinsic Colours ... 130
 5.1.2 Extinctions ... 131
 5.1.3 Extinction-Corrected CMDs 134
 5.2 Sample Biases .. 134
 5.2.1 Photometric Completeness 134
 5.2.2 X-ray Sample ... 136
 5.3 Theoretical Models ... 139
 5.4 Physical Properties ... 140
 5.4.1 Influence of Age Spreads 140
 5.4.2 Apparent Age Spreads in NGC 2244 and Tr 14 143
 5.4.3 Stellar Masses ... 144
 5.4.4 Mass Function Estimates 147
 5.5 Discussion and Further Work on YSCs 148
 5.5.1 Discussion .. 148
 5.5.2 Further Work on Young Stellar Clusters 152

6 Conclusions ... 155

A Derived Spectral Types and Photometry 170

B Full Resolution Spectra of \(\varepsilon \) Indi Ba, Bb 188
List of Figures

1.1 Schematic evolution of a protostar .. 15
1.2 Schematic of the SFRs in the solar neighbourhood 22
1.3 Hα map showing the large-scale structure of local star-forming regions 24
1.4 Optical stellar spectra of O to M class stars 25
1.5 Optical stellar spectra of M class stars 25
1.6 Optical to near-IR spectra of ultracool dwarfs with spectral types L0–T6 28
1.7 Schematic of the local solar neighbourhood 29

2.1 FORS2 VRIz and ISAAC JHKLM images of ϵ Indi Ba, Bb 42
2.2 ISAAC J-band image of the ϵ Indi Ba, Bb and residuals of the fitted profiles 46
2.3 The full 0.6–5.1 μm spectrum of ϵ Indi Ba and Bb 51
2.4 0.6–5.1 μm spectrum of ϵ Indi Ba and Bb with logarithmic flux 51
2.5 Gaussian and Moffat profile fits of an example spectral region 52
2.6 Residuals of the Gaussian and Moffat profile fits to an example spectral region 53
2.7 Our ϵ Indi Ba JHK spectra compared to that of Kasper et al. 2008 53
2.8 Our ϵ Indi Bb JHK spectra compared to that of Kasper et al. 2008 54
2.9 Our ϵ Indi Ba, Bb JHK spectra compared to that of Kasper et al. 2008 56
2.10 Comparison of ISAAC and MKO near-IR filter sets 57
2.11 Direct spectra comparison of ϵ Indi Ba with T spectral standards 62
2.12 Direct spectra comparison of ϵ Indi Bb with T spectral standards 62
2.13 Optical spectra of ϵ Indi Ba and the early T standard spectra 64
2.14 Optical spectra of ϵ Indi Bb and the late T standard spectra 65
2.15 Full resolution 0.63–1.3 μm spectra of ϵ Indi Ba and Bb 66
2.16 Full resolution 1.3–2.0 μm spectra of ϵ Indi Ba and Bb 67
2.17 Full resolution 2.0–5.1 μm spectra of ϵ Indi Ba and Bb 68

3.1 M$_K$–(J – K) colour-magnitude diagram of T dwarfs 71
3.2 M$_K$–(K – L$'$) colour-magnitude diagram of T dwarfs 72
3.3 M$_J$–(I – J) colour-magnitude diagram of T dwarfs 72
3.4 Variation of mass with age at constant luminosity for the COND03 models 76
3.5 Near-IR spectra of ϵ Indi Ba and models with varying metallicity and T_{eff} 77
3.6 Variation of K I lines in ϵ Indi Ba as a function of T_{eff} 78
3.7 Near-IR spectra of ϵ Indi Bb and models with varying metallicity and T_{eff} 79
3.8 Variation of K I lines in ε Indi Bb as a function of T_{eff} 80
3.9 Near-IR spectra of ε Indi Ba and models with varying logg, metallicity and T_{eff} 81
3.10 Near-IR spectra of ε Indi Bb and models with varying logg, metallicity and T_{eff} 82
3.11 Optical to thermal-IR spectra of ε Indi Ba and the best fit model 83
3.12 Optical to thermal-IR spectra of ε Indi Bb and the best fit model 83
3.13 Comparison of observations and models around Li I 6707Å 86
3.14 The 2.27–2.35 µm spectrum of ε Indi Ba showing the CO 2-0 overtone 87
3.15 The L-band spectrum of ε Indi Ba and different chemistry model 89

4.1 Optical mosaic of the Carina Nebula ... 98
4.2 An Hα mosaic of the Rosette Nebula from IPHAS ... 103
4.3 I-(R-I) colour-magnitudes diagram of NGC 2244 ... 106
4.4 Photometric uncertainty as a function of magnitude for NGC 2244 106
4.5 I-(R-I) colour-magnitudes diagram of Tr 14 ... 107
4.6 Photometric uncertainty as a function of magnitude for Tr 14 108
4.7 Histogram of matches to X-ray positions for NGC 2244 109
4.8 Histogram of matches to X-ray positions for Tr 14 110
4.9 Optical image of NGC 2244 overlaid with the Chandra ACIS-I X-ray image 112
4.10 Optical and Chandra ACIS-I X-ray images of Trumpler 14 112
4.11 ugriz colour-magnitude diagrams for NGC 2244 ... 113
4.12 X-ray objects in the NGC 2244 and Tr 14 CMDs .. 114
4.13 Photometric selection of X-ray objects in the NGC 2244 and Tr 14 114
4.14 An image of the spectra observed with one Tr 14 slit mask 116
4.15 The measured gradient in the sky background in our VIMOS slit spectroscopy 117
4.16 Optical spectra of a range of spectral types from our sample 118
4.17 The fitted spectral type using The Hammer for full resolution and smoothed spectra 120
4.18 The fitted spectral type using The Hammer for spectra reddened by $A_V=1, 5$ 120
4.19 The fitted spectral type using The Hammer SDSS spectra 122
4.20 The fitted spectral type using The Hammer for SDSS spectra reddened by $A_V=1, 5$ 122
4.21 The fitted spectral type using SPTCLASS-LATE for full res. and smoothed spectra 124
4.22 The fitted spectral type using SPTCLASS-LATE for reddened spectra 124
4.23 The fitted spectral type using SPTCLASS-LATE for SDSS spectra with $A_V=0, 5$ 125
4.24 The fitted spectral type using SPTCLASS-GTYPE for full res. and smoothed spectra 126
4.25 The fitted spectral type from SPTCLASS-GTYPE for reddened spectra 126
4.26 The fitted spectral type using SPTCLASS-HAEBE for full res. and smoothed spectra 127
4.27 The fitted spectral type using SPTCLASS-HAEBE for reddened spectra 128
4.28 The median known spectral type for each derived spectral type 128

5.1 The intrinsic SDSS (r − i) colour for different spectral types 131
5.2 The intrinsic Cousins (R − I) colour for different spectral type 132
5.3 The extinction distribution observed in NGC 2244 and Tr 14 133
5.4 The extinction as a function of derived spectral type in NGC 2244 and Tr 14 134
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>CMDs of Tr 14 and NGC 2244 with MOS objects dereddened</td>
</tr>
<tr>
<td>5.6</td>
<td>CMDs of Tr 14 and NGC 2244 with all objects dereddened</td>
</tr>
<tr>
<td>5.7</td>
<td>The number of detected sources as a function of magnitude in NGC 2244</td>
</tr>
<tr>
<td>5.8</td>
<td>PMS completeness limits as a function of I-band magnitude</td>
</tr>
<tr>
<td>5.9</td>
<td>CMD of NGC 2244 with dereddened objects and isochrones</td>
</tr>
<tr>
<td>5.10</td>
<td>CMD of Tr 14 with dereddened objects and isochrones</td>
</tr>
<tr>
<td>5.11</td>
<td>I-band luminosity functions of NGC 2244 and Tr 14</td>
</tr>
<tr>
<td>5.12</td>
<td>Relation between mass and the I-band magnitude</td>
</tr>
<tr>
<td>5.13</td>
<td>The mass function of NGC 2244 derived from a 2 Myr and a 5 Myr isochrone</td>
</tr>
<tr>
<td>5.14</td>
<td>The mass function of Tr 14 derived from a 2 Myr and a 5 Myr isochrone</td>
</tr>
<tr>
<td>B.1</td>
<td>The full resolution ε Indi Ba, Bb spectra from 0.63–0.85 μm</td>
</tr>
<tr>
<td>B.2</td>
<td>The full resolution ε Indi Ba, Bb spectra from 0.63–0.85 μm</td>
</tr>
<tr>
<td>B.3</td>
<td>The full resolution ε Indi Ba, Bb spectra from 0.80–1.00 μm</td>
</tr>
<tr>
<td>B.4</td>
<td>The full resolution ε Indi Ba, Bb spectra from 1.00–1.165 μm</td>
</tr>
<tr>
<td>B.5</td>
<td>The full resolution ε Indi Ba, Bb spectra from 1.15–1.31 μm</td>
</tr>
<tr>
<td>B.6</td>
<td>The full resolution ε Indi Ba, Bb spectra from 1.30–1.465 μm</td>
</tr>
<tr>
<td>B.7</td>
<td>The full resolution ε Indi Ba, Bb spectra from 1.45–1.615 μm</td>
</tr>
<tr>
<td>B.8</td>
<td>The full resolution ε Indi Ba, Bb spectra from 1.60–1.765 μm</td>
</tr>
<tr>
<td>B.9</td>
<td>The full resolution ε Indi Ba, Bb spectra from 1.75–1.925 μm</td>
</tr>
<tr>
<td>B.10</td>
<td>The full resolution ε Indi Ba, Bb spectra from 1.95–2.065 μm</td>
</tr>
<tr>
<td>B.11</td>
<td>The full resolution ε Indi Ba, Bb spectra from 2.05–2.205 μm</td>
</tr>
<tr>
<td>B.12</td>
<td>The full resolution ε Indi Ba, Bb spectra from 2.20–2.36 μm</td>
</tr>
<tr>
<td>B.13</td>
<td>The full resolution ε Indi Ba, Bb spectra from 2.80–4.20 μm</td>
</tr>
<tr>
<td>B.14</td>
<td>The full resolution ε Indi Ba, Bb spectra from 4.5–5.1 μm</td>
</tr>
</tbody>
</table>
List of Tables

2.1 The flux ratio (Ba/Bb) of ε Indi Ba, Bb in the observed FORS2 and ISAAC filters 43
2.2 The derived apparent magnitudes of ε Indi Ba, Bb 43
2.3 The \(I\)-band magnitudes adopted for the combined ε Indi Ba, Bb system 47
2.4 2MASS magnitudes adopted for ε Indi Ba, Bb in different studies 48
2.5 Near-IR spectral indices and classifications for ε Indi Ba, 60
2.6 Optical spectral indices and classifications for ε Indi Ba, Bb 63

3.1 Derived physical parameters of ε Indi Ba, Bb at 1, 5, and 10 Gyr 74
3.2 Predicted physical parameters of ε Indi Ba and Bb at 3.6–4.2 Gyr 75

4.1 The distance, age, and \(R_V\) for Trumpler 14 101
4.2 Distance and age for NGC 2244 ... 105
4.3 The fraction of false detections expected in our match to the X-ray positions .. 110
4.4 The mean true spectral type for each derived type from The Hammer 123

5.1 The derived mass function slope for NGC 2244 and Tr 14 148

A.1 The derived spectral types for each X-ray source in NGC 2244 170
A.2 The derived spectral types for each X-ray source in Tr 14 179
Declaration

Chapters 2 and 3 are drawn from a paper published in Astronomy & Astrophysics by King, R. R., McCaughrean, M. J., Homeier, D., Allard, F., Scholz, R.-D., and Lodieu, N (A&A 2010, 510, A99). The grid of atmospheric models against which we compared our observations was produced by Derek Homeier. The rest of the work presented is my own.

Chapters 4 and 5 contain work which will be published in the near future in collaboration with McCaughrean, M. J., Townsley, L., and Feigelson, E., but the work presented here is my own.
Acknowledgements

There are many people who deserve some thanks for helping me through the past four years and especially through this past year.

Firstly, Mark McCaughrean for four years of supervision and starting me out on two very interesting projects. Hopefully some of the LATEX pedantry has rubbed off. If not, this may be a good place to stop reading. Thanks also go to Tim Naylor for statistical and photometry advice as well as a more interesting first observing run than intended. Cameron Bell and Tim have provided invaluable assistance and discussion on the various theoretical models of young stars.

I have made use of NSO/Kitt Peak FTS data, produced by NSF/NOAO, and the SpeX Prism Spectral Libraries, maintained by Adam Burgasser\(^1\) and I would like to thank Adam Burgasser, Mark Marley, Davy Kirkpatrick, and Sandy Leggett for useful discussion and Isabelle Baraffe for supplying the grid of brown dwarf evolutionary models.

Eric Saunders and Nathan Mayne deserve special thanks for general advice, distracting conversations, communal moaning, and reasonable gibberish. I wish to specifically recall Eric’s advice that ‘you can either worry about things, or not, but they tend to get done either way’ - I have not always agreed. My family have help me a lot even though I live far away in a foreign land. Finally and most importantly, thanks to Jen for enjoying the ups with me and helping me through the downs.

RRK
Exeter, U.K.
September 2009

\(^1\)http://www.browndwarfs.org/spexprism