Assessing patterns of genetic and antigenic diversity in Calliphoridae (blowflies)

Submitted by

Laura Marie McDonagh

To the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biosciences, September 2009.

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signature Date
Acknowledgements

I would firstly like to thank my supervisors Drs Jamie Stevens and Chris Thornton for their guidance, continual support, and encouragement and throughout my PhD.

Thanks must also go to Dr Kate Heesom and Dr Will Mawby at the University of Bristol Proteomics Facility, for her help and advice with 2D gel electrophoresis and MS analyses, and to Pete Splatt and Gavin Wakely, at the University of Exeter Bioimaging Centre, for help with electron microscopy work. For the provision of sample material I would like to thank Dr Rene García (IAEA Consultant, Mexico), Dr Martin Hall (Natural History Museum, London), Professor Richard Wall (University of Bristol, UK), Dr James Wallman (University of Wollongong, NSW), and Dr Jeff Wells (West Virginia University, USA).

I would also like to thank everyone in the School of Biosciences for making the past few years as enjoyable as they have been. In particular, I thank Dr Lucie Evans for technical assistance, and for her blowfly work from which much of my own research has continued, and to Dr Patrick Hamilton for all his advice concerning phylogenetic methods, and for generally being a constant fountain of knowledge. I would also like to take this time to thank the following; Jemma Clancy, Okhyun Lee, Jill (Ashton) Goodwin, Marta Soffker, Viv Fowler, Alvine Mehinto, Dr Angela Pountney, Kate Ball, Toby Coe, all past and present members of Lab C4, and last but not least my fellow GTA’s, for their friendship and support over the years, and particularly over the past few months. I would also like to specially thank Dr Max Frenzel for his friendship, support, and encouragement, and more specifically for his roast dinners and cakes!

Finally, I would like to thank my family for their continual support and encouragement in everything I do.

This work was funded by the School of Biosciences, under the Graduate Teaching Assistant program.
The blowflies (Diptera: Calliphoridae) include some of the world’s most economically significant parasites of livestock. The defining characteristic of blowflies is the need for their larval stages to feed on a proteinaceous substrate, often including the tissues of a living vertebrate host, a process known as myiasis. While the evolution of myiasis has been linked to the development of key adaptations in behaviour and physiology (Stevens et al., 2006), patterns of blowfly evolution suggest that parasitism evolved independently in different blowfly groups after periods of geographic isolation (Stevens et al., 2006).

However, understanding the origin and evolution of myiasis in Calliphoridae is restricted by a lack of agreed theories of evolutionary relationships and taxonomic classification (Stevens, 2003). Mitochondrial genes are some of the most widely used molecular markers in insect systematics, yet most studies have utilised only single genes, with few having systematically assessed which if any are best suited for studying particular insect orders. Accordingly, this thesis presents a comprehensive analysis of 62 hexapod mitochondrial genomes, including 55 from Insecta, and assesses the ability of mitochondrial genes to recover currently recognised insect orders as monophyletic groupings. The greatest amount of phylogenetic signal was recovered when all mitochondrial genes were analysed together, regardless of optimality criterion used (PhyML, RaxML, MrBayes). Of the single-gene analyses, COX1 out-performed all other genes, even performing as well as a combined-gene analysis under Bayesian inference. In view of this finding, nucleotide sequence data from COX1 (mitochondrial protein-coding), EF-1α (nuclear protein-coding gene), and 28S (nuclear rRNA) were combined to present one of the most comprehensive multi-gene phylogenetic studies of Calliphoridae to date, resolving many ambiguous relationships, and also including several taxa that have not previously been analysed in molecular phylogenetic studies.

Within Calliphoridae, Cochliomyia hominivorax (New World screwworm fly), is widely considered one of the most destructive insect parasites of livestock in the Western hemisphere. While successful eradication programmes using sterile insect technique (SIT) have been completed in North and Central America, and on some Caribbean islands, in some areas SIT has failed. It has been hypothesized that failure of SIT may be related to genetic differentiation between populations of C. hominivorax. Consequently, intra-specific variation using nucleotide sequence data from both mitochondrial (COX1 and 12S) and nuclear (EF-1α) markers, was explored. Phylogenetic analysis of these data confirmed some population sub-structuring and suggested a South American origin to all Caribbean island populations, with the exception of Cuba. In agreement with previous studies, Cuban populations appeared distinct from all other Caribbean populations; however, our findings do not support a North American origin for Cuba, as has previously been suggested.

Finally, this thesis attempted to explore the relationship between antigenic proteins expressed in larvae from species displaying different forms of parasitism, and in doing so assessed the utility of such target proteins as potential candidates for species-specific vaccines and diagnostic tools. However, while this work discovered distinct antigenic profiles for different blowfly species, the ability to characterize specific antigens was fundamentally limited by an apparent lack of homologous proteins in current databases.
Chapter One: Introduction

1.1 *Parasitism in Diptera (true flies)*

1.2 *The evolution of myiasis in Diptera*

1.2.1 Calliphoridae (blowflies)

1.2.2 Sarcophagidae (flesh flies)

1.2.3 Oestridae (bot and warble flies)

1.3 *Myiasis in wild and domesticated animal populations*

1.4 *The economic significance of myiasis*

1.5 *The medical, veterinary and economic importance of Calliphoridae*

1.5.1 Ecological significance

1.5.2 Forensic entomology

1.5.3 ‘Maggot therapy’

1.5.4 ‘Sheep strike’

1.5.5 New and Old World screwworm flies

1.6 *Methods of controlling blowfly myiasis*

1.6.1 Insecticides

1.6.2 Mulesing

1.6.3 Genetic approaches to improving sheep strike resistance

1.6.4 Grazing management practises

1.6.5 Sterile Insect Technique

1.6.6 Genetic sexing systems

1.6.7 Vaccine development

1.6.8 Baited traps

1.7 *Diagnostic techniques*

1.7.1 Morphology

1.7.2 DNA-based analyses

1.7.3 Rapid diagnostic tests

1.8 *Methods of phylogenetic inference*
Chapter Two: Materials and Methods

2.1 Molecular methods .. 56
 2.1.1 Sample collection and storage for DNA analysis 56
 2.1.2 DNA extraction .. 56
 2.1.3 PCR amplification .. 58
 2.1.4 Gel electrophoresis ... 62
 2.1.5 Automated sequencing ... 62
 2.1.6 Polyclonal antibody (PAb) production 62
 2.1.7 SDS PAGE gel electrophoresis 63
 2.1.8 Western blotting ... 63
 2.1.9 N-terminal sequencing ... 64
 2.1.10 Two-dimensional gel electrophoresis 65

2.2 Numerical methods .. 66
 2.2.1 Multiple sequence alignment 66
 2.2.2 Nucleotide substitution model selection 66
 2.2.3 PAUP* .. 66
 2.2.4 MrBayes ... 67
 2.2.5 PhyML ... 68
 2.2.6 RaxML ... 68
 2.2.7 Sliding windows analysis .. 69

2.3 Analytical methods .. 69
 2.3.1 Mass spectrometry ... 69
 2.3.2 Peptide de novo sequencing from MS/MS spectrum 69
 2.3.3 Electron microscopy gold labelling 70
Chapter Three: Which mitochondrial gene (if any) is best for reconstructing insect phylogenetic relationships?

3.1 Introduction ... 74
3.2 Materials and Methods .. 77
 3.2.1 Phylogenetic reconstruction using selected mtDNA genomes ... 77
 3.2.1.1 mtDNA genome selection ... 77
 3.2.1.2 Multiple sequence alignment and substitution model selection .. 77
 3.2.1.3 Phylogenetic analysis .. 78
 3.2.1.4 Quantifying the phylogenetic utility of each mtDNA gene ... 80
 3.2.2 Quantifying nucleotide diversity using all available mtDNA genomes ... 80
 3.2.2.1 mtDNA genome sequences and alignment .. 80
 3.2.2.2 Calculating nucleotide diversity by sliding window analysis ... 81
3.3 Results ... 83
 3.3.1 Phylogenetic Reconstruction .. 83
 3.3.1.1 Nucleotide versus amino acid sequence data .. 83
 3.3.1.2 Measuring clade support ... 84
 3.3.1.3 Single-gene analyses .. 87
 3.3.1.4 Concatenated-gene analyses .. 90
 3.3.1.5 Comparing phylogenetic methods ... 90
 3.3.2 Nucleotide diversity ... 91
 3.3.2.1 Single-gene levels of nucleotide diversity .. 91
 3.3.2.2 Levels of nucleotide diversity across the mtDNA genome ... 95
 3.3.3 The importance of gene length .. 96
3.4 Discussion .. 98
 3.4.1 Should mtDNA markers be used to resolve deep level relationships? .. 98
 3.4.1.1 Detecting phylogenetic ‘signal’ .. 98
 3.4.2 Which mitochondrial gene (if any) is best? ... 100
 3.4.2.1 Detecting ‘noise’ in the data ... 101

Chapter Four: Molecular systematics of blowflies (Diptera: Calliphoridae): A multi-gene approach. 103

4.1 Introduction ... 104
 4.1.1 Calliphoridae (Diptera: Oestroidea) ... 104
 4.1.1.1 Auchmeromyiinae ... 105
 4.1.1.2 Bengaliiinae ... 106
 4.1.1.3 Calliphorinae ... 106
 4.1.1.4 Chrysomyiinae .. 108
 4.1.1.5 Luciliinae ... 108
4.1.2 The evolution of myiasis in Calliphoridae .. 113
4.1.3 Choice of molecular marker .. 114
4.1.4 Aims ... 116
4.2 Methods and Materials ... 120
 4.2.1 Sample collection ... 120
 4.2.1.1 Lucilia bufonivora specimens .. 120
 4.2.1.2 Lucilia cuprina hybrid specimen ... 120
 4.2.2 DNA extraction ... 121
 4.2.3 PCR amplification ... 121
 4.2.3.1 Cytochrome oxidase 1 ... 121
 4.2.3.2 Elongation factor-1α .. 121
 4.2.3.3 28S .. 121
 4.2.4 PCR product purification and sequencing .. 122
 4.2.5 Sequence proofreading ... 122
 4.2.6 Multiple sequence alignment .. 122
 4.2.7 Nucleotide substitution model selection ... 122
 4.2.8 Bayesian phylogenetic inference .. 122
 4.2.9 Partition homogeneity test .. 123
4.3 Results ... 127
 4.3.1 Substitution models .. 127
 4.3.2 Congruence between gene trees .. 127
 4.3.3 Auchmeromyiinae ... 127
 4.3.4 Bengaliiinae ... 128
 4.3.5 Calliphoridae .. 128
 4.3.6 Chrysomyiinae ... 129
 4.3.7 Luciliinae ... 129
 4.3.8 Larval feeding habits within Calliphoridae .. 131
4.4 Discussion ... 136
 4.4.1 Taxonomic review of Calliphoridae ... 136
 4.4.2 Hybridisation and introgression .. 137
 4.4.3 Evolution of parasitism within Calliphoridae ... 139
 4.4.4 Future work .. 141
Chapter Five: Phylogenetic analysis of the New World screwworm fly, Cochliomyia hominivora

5.1 Introduction .. 145
5.2 Materials and methods .. 150
 5.2.1 Samples and DNA extraction .. 150
 5.2.1.1 ‘Historical’ North American samples and DNA extraction 154
 5.2.2 DNA sequences .. 154
 5.2.3 Sequence alignment and phylogenetic analysis .. 155
5.3 Results .. 158
 5.3.1 Phylogenetic analysis: EF-1α ... 158
 5.3.2 Phylogenetic analysis: 12S ... 158
 5.3.3 Phylogenetic analysis: COX1 ... 159
 5.3.4 Combined dataset .. 159
5.4 Discussion .. 163
 5.4.1 Regional genetic variability of NWS fly populations 163
 5.4.2 Mitochondrial vs. nuclear genealogy ... 164
 5.4.3 General findings of the FAO/IAEA research project 165

Chapter Six: An investigation into the diversity of antigenic larval proteins, concentrating on four key blowfly species, Calliphora vicina, Lucilia caesar, Lucilia cuprina and Lucilia sericata.

6.1 Introduction ... 171
 6.1.1 The evolution of myiasis within Calliphoridae ... 171
 6.1.2 The cycle of myiasis in sheep ... 172
 6.1.3 Immunomodulation of host responses ... 173
 6.1.4 Levels of resistance to sheep strike ... 174
 6.1.5 Methods for control of myiasis ... 175
 6.1.6 Immunisation trials and vaccine development ... 175
 6.1.7 DNA-based species identification of blowfly species 177
 6.1.8 Aims ... 181
6.2 Methods and Materials ... 182
 6.2.1 Taxonomic sampling ... 182
 6.2.2 Sample collection .. 182
 6.2.3 Polyclonal antibody (PAb) production ... 182
 6.2.4 Gel electrophoresis and Western blotting .. 183
 6.2.5 N-terminal sequencing ... 183
 6.2.6 Two-dimensional gel electrophoresis .. 183
 6.2.7 Mass spectrometry (MS) ... 183
6.2.7.1 Peptide de novo sequencing from MS/MS spectrum 184
6.2.8 Electron microscopy (EM) gold labelling 184
6.3 Results ... 185
6.3.1 Sample collection ... 185
6.3.2 Rabbit polyclonal antiserum .. 185
6.3.3 Gel electrophoresis and Western blotting ... 186
 6.3.3.1 Biogeographic diversity ... 189
6.3.4 Two dimensional gel electrophoresis .. 190
6.3.5 Mass Spectrometry ... 192
 6.3.5.1 MALDI-TOF/TOF ... 192
 6.3.5.2 De novo peptide sequencing ... 192
6.3.6 Localization of antibody binding by EM gold labelling 198
6.4 Discussion .. 204
 6.4.1 Future work .. 208

Chapter Seven: General discussion .. 209
 7.1 Introduction ... 210
 7.2 Phylogenetic signal within the mitochondrial genome 210
 7.3 Molecular systematics of Calliphoridae ... 213
 7.4 Intra-specific diversity of Cochliomyia hominivorax 215
 7.5 Antigenic diversity within Calliphoridae .. 217
 7.6 Future work ... 220

References .. 222
Appendix A ... 267