Modification of electronic properties of graphene by interaction with substrates and dopants

Submitted by Alexander Markevich to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Physics.

December, 2012

This thesis is available for library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.
Abstract

First-principles calculations have been carried out to investigate structural and electronic properties of graphene on SiC and diamond substrates and for a study of doping of fluorographene with various surface adsorbates.

New insight is given into the problem of the decoupling of the graphene layers from SiC substrates after epitaxial growth. Mechanisms of hydrogen penetration between graphene and SiC(0001) surface, and properties of hydrogen and fluorine intercalated structures have been studied. Energy barriers for diffusion of atomic and molecular hydrogen through the interface graphene layer with no defects and graphene layers containing Stone-Wales defect or two- and four-vacancy clusters have been calculated. It is argued that diffusion of hydrogen towards the SiC surface occurs through the hollow defects in the interface graphene layer. It is further shown that hydrogen easily migrates between the graphene layer and the SiC substrate and passivates the surface Si bonds, thus causing the graphene layer decoupling. According to the band structure calculations the graphene layer decoupled from the SiC(0001) surface by hydrogen intercalation is undoped, while that obtained by the fluorine intercalation is p-type doped.

Further, structure and the electronic properties of single and double layer graphene on H-, OH-, and F- passivated (111) diamond surface have been studied. It is shown that graphene only weakly interacts with the underlying substrates and the linear dispersion of graphene π-bands is preserved. For graphene on the hydrogenated diamond surfaces the charge transfer results in n-type doping of graphene layers and the splitting of conduction and valence bands in bilayer graphene. For the F- and OH-terminated surfaces, charge transfer and doping of graphene do not occur.

Finally, the possibility of doping fluorographene by surface adsorbates have been investigated. The structure and electronic properties of fluorographene with adsorbed K, Li,
Au atoms, and F4-TCNQ molecule are described. It is shown that adsorption of K or Li atoms results in electron doping of fluorographene, while Au atoms and F4-TCNQ introduce deep levels inside the band gap. The calculated value of the fluorographene work function is extremely high, 7.3 eV, suggesting that p-type doping is difficult to achieve.
Acknowledgements

I would sincerely like to thank my supervisor, Bob Jones, for accepting me as a PhD student. Through the time of my PhD study, I have felt Bob’s full support and has benefitted from his exceptional experience and knowledge.

I wish to thank Derek Palmer and Hugo Pinto for being my mentors and for providing me with general support in Exeter.

I wish to express my thanks to all the members of AIMPRO group for their friendly support and very helpful discussions. Specially I am grateful to Professor Sven Öberg for collaborating on many problems and for the great and productive time I had in Luleå. Many thanks to Chris Ewels, Jonathan Goss, Patrick Briddon, Mark Rayson, José Coutinho and Alexandra Carvalho for their assistance and partnership.

I am very grateful for the financial support provided by College of Engineering, Mathematics and Physical Sciences of the University of Exeter.

I gratefully thank my family for kind support and encouragement.
Contents

List of Tables 9

List of Figures 11

List of Publications 20

1 Introduction 21

1.1 Graphene crystal structure 22
1.2 Electronic structure of graphene 22
1.3 Production of graphene 25
1.4 Doping of graphene 26
1.5 Effect of substrates on electronic transport in graphene . . 27
1.6 Band-gap engineering in graphene 29
1.7 Goals of the present work 30
1.8 Thesis organisation 31
2 Method

2.1 Many body problem .. 32
2.2 Born-Oppenheimer approximation 34
2.3 Variational principle .. 35
2.4 Density Functional Theory 37
 2.4.1 Kohn-Sham equations 38
 2.4.2 The exchange-correlation functional 39
2.5 Pseudopotentials .. 42
2.6 The AIMPRO implementation of DFT 45
 2.6.1 The supercell method 45
 2.6.2 Basis functions .. 46
 2.6.3 Basis functions in reciprocal space 47
 2.6.4 Sampling of the Brillouin zone 48
2.7 Modelling graphene 49
 2.7.1 Choice of k-points for the graphene Brillouin zone sampling 51

3 Intercalation of hydrogen and fluorine into graphene/SiC(0001) interface 54

3.1 Introduction .. 54
3.2 Details of calculations ... 57
3.3 Electronic and structural properties of the interfacial carbon layer on SiC(0001) according to the $R3$ and 4×4 models .. 59
3.4 Effect of lattice strain on the binding energy and diffusion of hydrogen through a graphene layer .. 62
3.5 Properties of a quasi-free-standing graphene layer on H- and F-passivated SiC(0001) ... 66
3.6 Mechanisms for hydrogen penetration through the interfacial carbon layer on SiC(0001) 69
3.7 Hydrogen diffusion between the interfacial carbon layer and SiC substrate 75
3.8 A model of hydrogen intercalation into graphene/SiC interface 76
3.9 Conclusions .. 77

4 Graphene on diamond substrates 79
4.1 Introduction .. 79
4.2 Details of calculations 81
4.3 Effect of the termination on the diamond (111) surface electronic properties 86
 4.3.1 Clean surface .. 86
 4.3.2 Hydrogenated surface 87
 4.3.3 Fluorinated surface 89
 4.3.4 Hydroxylated surface 90
4.4 Graphene on passivated diamond substrates 92
 4.4.1 Graphene on the H-passivated diamond (111) surface 92
 4.4.2 Graphene on the F- and OH-passivated diamond (111) surfaces 95
 4.4.3 Bilayer graphene on the passivated diamond substrates 96
4.5 Discussion .. 97
4.6 Conclusions .. 99
5 Doping of fluorographene by surface adsorbates

5.1 Introduction .. 100
5.2 Details of calculations 102
5.3 Structural and electronic properties of fluorographene 102
5.4 K, Li and Au atoms on fluorographene 105
5.5 F4-TCNQ on fluorographene 110
5.6 Effect of doping on structural parameters of fluorographene 112
5.7 Conclusions ... 113

6 Concluding remarks

6.1 Summary ... 115

 6.1.1 Graphene on SiC(0001) substrates 115
 6.1.2 Graphene on passivated diamond substrates 117
 6.1.3 Doping of fluorographene by surface adsorbates 119

6.2 Outlook ... 119