The role of the tail of fungal kinesin-3 in binding to early endosomes and their role in plant pathogenicity.

Submitted by Ewa Bielska

to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Biological Sciences

February 2013

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Ewa Bielska
Abstract

The dimorphic fungus *Ustilago maydis* is a pathogen of maize and it was used for decades to understand the molecular basis of plant pathogenicity aspects. Recently, much effort went into understanding the cell biology that underlies the virulence of *U. maydis*. It was shown previously that early endosomes (EEs) move bidirectionally within fungal hyphal cells. Although it was shown that the motility of EEs facilitates growth of the infectious hypha and mutants defective for kinesin-3 (Kin3), the major EE transporter, exhibit impaired polarized growth, the importance of EEs and their motility in plant colonization is not known. The first part of this thesis is focused on the role of EE motility during plant infection. In collaboration with Natalie Steinberg, who performed the plant infection assays, I used a synthetic molecular anchor, K1rPX, to block the motility of EEs at early and late stages during the host plant infection and I found that EE motility is essential during the first two days of pathogenic development, when infectious hyphae exhibit most prominent elongation, whereas blockage of EE motility after 3 days post infection does not inhibit plant colonization. Moreover, I documented that the blockage of EE motility during early stages of the infection causes high plant defence response, which means that the pathogen becomes recognized by the host plant defence system. These results indicate that EE motility is essential during the first two days of pathogenic development, when infectious hyphae exhibit most prominent elongation, whereas blockage of EE motility after 3 days post infection does not inhibit plant colonization. Moreover, I documented that the blockage of EE motility during early stages of the infection causes high plant defence response, which means that the pathogen becomes recognized by the host plant defence system. These results indicate that EE motility is essential during the first two days of pathogenic development, when infectious hyphae exhibit most prominent elongation, whereas blockage of EE motility after 3 days post infection does not inhibit plant colonization. Moreover, I documented that the blockage of EE motility during early stages of the infection causes high plant defence response, which means that the pathogen becomes recognized by the host plant defence system. These results indicate that EE motility is crucial during initial stages of the plant host infection and enables colonization by *U. maydis* and additionally suggests involvement of EEs in some defence response machinery. The second part of the thesis addresses the relationship between Kin3, the major motor for EE motility, and the microtubule (MT) array. I demonstrate here that Kin3 uses all MT tracks available in the cell, which is in contrast to published results in other systems. In the third part I focused on the interaction between Kin3 and the EEs. I found that the pleckstrin homology (PH) domain localized at the distal part of the Kin3 tail is of minor importance for EE association. This conclusion is supported by *in vivo* experiments, showing that truncated Kin3ΔPH, which lacks the PH domain, was still able to bind to the organelles. By systematic truncation of parts of the Kin3 tail I found two adjacent regions, a DUF3694 domain and a "linker" region, that are important for binding of Kin3 to EEs. By using a synthetic anchor...
composed of Kin1 rigor domain and selected Kin3 domains I proved that both domains anchor the EEs to MTs and inhibit EE motility. I also showed that the PH domain is not able to block EE motility. In collaboration with Dr. Nicholas Harmer, who performed structural modelling of selected PH domains, I demonstrated that the PH domain is likely to interact with the motor domain of Kin3. This result was confirmed by using a yeast-two hybrid approach and a protein affinity assay. This indicates a globular organization of the Kin3 motor, which was confirmed by a split-YFP assay in living cells. Deletion of the PH domain and most probably lack of intramolecular interaction between the tail and motor domain reduces Kin3 motility parameters like velocity, frequency and run length indicating that the interaction of the PH domain with the motor domain has a role in the control of Kin3 motility.
Table of Contents

Abstract .. 2
Table of Contents .. 4
List of Tables ... 8
List of Figures .. 9
List of accompanying material ... 11
Author’s declaration ... 12
Abbreviations ... 13

Chapter 1. Introduction

1.1 The model fungus *Ustilago maydis* ... 19
 1.1.1 Molecular basis of the transition from yeast-like to filamentous growth 22
 1.1.2 *Zea mays* - *U. maydis* relation .. 24
1.2 The basic requirements for fast growing hypha .. 25
 1.2.1 Role of microtubules in tip growth of fungi .. 26
 1.2.2 Molecular motors and tip growth ... 28
 Kinesins ... 28
 Myosins ... 29
 Dynein ... 30
 1.2.3 Endocytosis and tip growth ... 30
 1.3 Early endosomes ... 32
 1.3.1 Long-distance and bidirectional transport of EEs ... 32
 1.3.2 EE specific markers .. 33
 PI(3)P .. 33
 EEA1 ... 34
 Yup1 .. 34
 Rab4 and Rab5 ... 34
 1.3.3 EE involvement in cellular processes – universal platforms 35
 1.3.3.1 EE involvement in cellular processes in sporidia .. 35
 1.3.3.2 EE involvement in cellular processes in hyphae ... 39
 1.3.4 Molecular motors involved in EE transport ... 42
1.4 Kinesin-3 is a major membrane transporter .. 43
 1.4.1 Kinesin-3 in *U. maydis* .. 44
 1.4.2 Kinesin-3 organization and regulation ... 45
 1.4.2.1 The distal part of the kinesin-3 tail is responsible for cargo binding. 46
 1.4.2.2. The proximal part of the kinesin-3 tail is an autoregulation region. 50
1.5 Aims and objectives ... 52

Chapter 2. General methods

2.1 Plasmid generation .. 56
 2.1.1 PCR ... 56
 2.1.2 Purification of PCR products .. 57
Chapter 3. Early endosome motility is essential for colonizing of corn plants by the smut fungus *Ustilago maydis* 64

Abstract .. 67

Introduction ... 67

Results ... 69

 Early endosomes show prominent motility with invading fungal hypha. 69
 The synthetic molecular anchor K1rPX blocks EE motility. ... 70
 EE motility is crucial for hyphal growth but of minor importance for cell separation.......... 71
 EE motility is crucial for early plant infection but dispensable for late pathogenic development ... 71
 Inhibition of EE motility during early infection triggers plant defence............................ 73

Discussion .. 73

 EE motility is of minor importance for septum formation in yeast-like cells 74
 EE motility is required for hyphal growth. ... 76
 EE motility occurs during all pathogenic stages. ... 76
 Hyphal growth and escape from the host defence. .. 78

Methods ... 80

 Strains and plasmids .. 80
 Growth conditions ... 80
 Protein extraction and immunodetection by Western Blotting .. 81
 Laser-based epifluorescence microscopy .. 81
 Quantitative assessment of cell morphology and EE motility 82
 Microscopy of infected plant tissue .. 83
 Quantitative assessment of fungal virulence ... 84

Acknowledgement ... 84

References ... 84

Figures legends .. 91

Supplementary online material .. 97

Supplementary Figures .. 97

Supplementary Tables ... 98

Supplementary Methods .. 102

 Strains .. 102
 Plasmids ... 103
 Microscopy of infected plant tissue .. 106
 Quantitative assessment of cell morphology and EE motility 107
Chapter 6. Conclusions

EE motility is essential during initial steps of pathogenic development of *Ustilago maydis*. 185
The PH domain of kinesin-3 controls motor motility *in vivo*. 188
Ustilago maydis kinesin-3 is a nonselective motor protein for microtubule tracks. 192

Appendix 197
Acknowledgements 204
Bibliography 205