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Abstract: Traditional PSO, modelled on individuals of the same species assumes 

homogeneity of behaviour across the swarm, despite there being considerable varia-

tion in capability of individuals within a swarm in the natural world. This paper pro-

poses a PSO algorithm based on continuous behavioural variation, or the ability for 

each member of a swarm to have heterogeneous behavioural capabilities on a contin-

uous scale. Experimentation with standard PSO test functions demonstrates that a 

continuously heterogeneous population is able to search more effectively than a ho-

mogeneous population for all problems of lower dimensionality and some of higher 

dimensionality. 

Introduction 

Traditional particle swarm optimisation consists of a population of particles analo-

gous to members of a flock or swarm in the natural world, and considers each particle 

as a solution to a problem and the movement of these particles through decision space 

determines the exploration capabilities of the algorithm. PSO maintains a homogene-

ous population of these particles which are governed by an identical set of movement 

equations. Although particles adopt very different trajectories as a result of their ini-

tial random starting positions, the movement of two particles starting from the same 

position will be identical.  

In natural flocks, individuals are often of the same species, but there exists consid-

erable variation in the traits possessed by each individual. In much the same way as 

humans display disparate levels of aggression, gregariousness and inquisitiveness, so 

do the animals on which PSO is based [1]. Recent research has shown that this dispar-

ity of behaviour is very important in the ability of the flock to solve problems effec-

tively, which might have profound implications for PSO. One of the key aspects is 

that although certain behaviour types (e.g. more adventurous individuals) might indi-

vidually be better at problem solving; selecting for a group that all have adventurous 

traits reduces performance of the flock as a whole [2]. Therefore a flock that has a 



variety of behaviours leads to better performance in nature and it is this performance 

that motivates the work in this paper.  

This paper explores a variant of PSO known as Continuous Behavioural Variation 

PSO (CBV-PSO) where individuals within a swarm have traits based on a continuous 

scale of variation as opposed to discrete behaviour groupings (e.g. ‘gregarious’ or 

‘shy’ individuals). The algorithm is tested on a number of well known problems taken 

from the literature and results show that in a variety of circumstances, CBV-PSO 

outperforms a standard PSO formulation. 

Previous Research 

Previous research in the field of behavioural variation in PSO has been extensive 

(e.g. see [3]) but the work of direct relevance here is concentrated in two primary 

areas. The first is the use of multiple swarms intended to model different species, with 

disparity of behaviour in each swarm indicating membership of a particular species. 

Work by [4] and [5] has shown that this can be an effective method for searching 

large spaces, but usually there is no interaction between swarm members of the two 

species. This use of multiple species within a PSO run is distinct from the behavioural 

variation discussed here due to the lack of interaction and the highly discrete delinea-

tion between species. In contrast CBV-PSO is concerned with continuous intra-

species variation, whereas speciation is naturally concerned with discrete inter-species 

variation. 

The second method of introducing variation, and in this case, intra-species varia-

tion, is the recent work of Andries Engelbrecht [6] [7].  The methods employed in this 

work are similar in motivation to CBV-PSO and exploit intra-species variation via a 

discrete 'behaviour' pool. This means that the individuals in the swarm have a finite 

number of behaviours from which to select at the beginning of the optimisation. The 

behaviours effect the movement of the particles around the search space, leading to 

very different exploration and exploitation behaviours for the individuals within the 

swarm. A further advance on this approach allows unsuccessful particles to modify 

their behaviour to improve performance [6]. This method effectively performs a meta-

search of the behavioural space in addition to the initial selection of behaviours and 

has been found to improve performance further. The discrete behaviour groups used 

in this work are essentially artefacts used by humans to categorise behaviors.  How-

ever, animals are not simply shy, gregarious, aggressive, or passive and a large range 

of behaviours will exist between these extremes, particularly when discussing a popu-

lation of individuals.  Nevertheless, the work of Engelbrecht has shown that diversity 

of behaviour is a powerful improvement on PSO and has led to significant improve-

ments in performance. 

It is against this backdrop of behavioural variation that the CBV-PSO has been de-

veloped. The algorithm has been developed to be as biologically plausible as possible, 

primarily with the aim of recreating the results seen in the natural world on the 

schooling behaviours of guppies [2].  The algorithm achieves heterogeneity through 

the generation of c1 and c2 coefficient values on a continuous scale to determine dif-

ferent behaviours for each of the particles in the initialisation stage.  Once determined, 



these coefficient selections remain constant for each particle for the duration of the 

optimisation.  The remainder of the PSO algorithm is then run in a standard fashion. 

Method 

CBV-PSO is based on a standard PSO implementation.  In standard PSO imple-

mentations, each particle is identical, although they may adopt different positions 

within the search space.  CBV modifies standard PSO by introducing variation in the 

extent to which the particles are influenced by the global and local best positions 

within the group.  The algorithm therefore is run as follows: 

 

1. Generate a random population of particles.   

2. For each particle, select c1 and c2 coefficient values drawn from a Gaussian 

distribution with a specified mean and standard deviation. 

3. Evaluate the population of particles 

4. Use standard computation of velocity (b) to determine the new position of 

each particle (a): 

a. xij[t+1] = xij[t]+vij[t]  

b. vij[t+1] = vij[t] +c1*r1*(pbestxij-xij)+c2*r2*(gbestxij- xij) 
Where xij[t] is the position of the particle i in dimension j at time t, vij[t] is the 

velocity of particle in dimension j at time t, gbest is the best position obtained 

by the flock, pbest is the best position obtained by particle i, c1 and c2 are 

constants determined in step 1 and r1 and r2 are random floating point values 

drawn from a uniform distribution with bounds [0,1]. 

5. Evaluate new particle positions 

6. Assign gbest and pbest positions for global best and local best flock positions 

respectively. 

7. Iterate until stopping criterion reached (in this case, number of function evalu-

ations). 

 

Through this method, a wide variety of behaviours for each particle type can be 

achieved.  For instance, the following four extremes of behaviour can be generated 

thus: 

1. Low c1 and low c2.  Small movements are made over the search space in each 

iteration. This might represent a cautious individual in the natural world. 

2. High c1 and low c2.   Particles of this type will move close to their previous 

known best positions and the social influence of the global best will be small.  

This might represent an introverted individual in the natural world. 

3. Low c1 and high c2.  These individuals will effectively hillclimb towards the 

current best position and are the most socially motivated.  This might represent 

gregarious individuals in the natural world. 

4. High c1 and high c2.  These individuals will make large movements across 

the search space in each iteration with roughly equivalent weighting to gbest 

and pbest. This might represent a risk-taking individual in the natural world. 



Although these four behaviours represent the extremes of behaviour, the use of a 

Gaussian distribution ensures that actual particle behaviours will reside on a continu-

um between these four points, as opposed to discrete behaviours at the end of each 

spectrum.   This method has clear links to the underlying biology of organisms in that 

modern genetics (e.g. genome-wide association studies) identifies traits in behaviour 

for complex organisms rather than absolute behaviour types.  

Experimental Setup 

The CBV-PSO algorithm was coded in C++ and compared with the same PSO set-

up with no behavioural variation.  The algorithm was run for 1000 generations with a 

swarm size of 50, and for 30 repeated trials to account for the effect of the random 

seed.  Runs were conducted on a modern machine with a Core i5 - 2.5GHz CPU and 

8Gb RAM. 

 

CBV-PSO has been tested on four test functions taken from the literature.  These 

are: 
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An additional aspect of the PSO algorithm investigated here is the scalability of the 

approach to larger dimensional problems.  Therefore experiments were conducted on 

problem sizes from 10 to 100 dimensions and are explored in the results below. 

Finally, the extent to which individuals vary within a population is important and 

so the mean and standard deviation of the Gaussian applied to c1 and c2 is modified 

to determine the effect of different levels of variation on the population.  The standard 

PSO operates with fixed c1 and c2 coefficients of 2.0. 



Results 

The following tables of results show the performance of the best performing indi-

vidual for each algorithm and for the four test problems.  The best result for each 

number of dimensions is shown in bold.  Not all dimensions are shown in these tables 

for reasons of brevity. 

Table 1 – Absolute Value Function, Mean Best Solution 

No. of  

Dimensions 

Standard PSO CBV-PSO 

(Mean 2.0, SD 

1.0) 

CBV-PSO 

(Mean 1.0, SD 

1.0) 

CBV-PSO 

(Mean 2.0, SD 

0.5) 

10 9.42E-15 6.23E-15 7.72E-23 2.68E-31 

20 7.30E-07 2.08E-05 8.81E-09 3.91E-11 

30 0.00055294 0.00600296 5.43E-05 1.55E-06 

40 0.0248816 0.0565303 0.00210781 0.00020928 

50 0.163591 0.373818 0.0363336 0.00634206 

60 0.57161 0.744932 0.170024 0.0997118 

70 1.77105 2.85459 0.622282 0.180297 

80 3.30997 4.75152 2.32416 1.05955 

90 5.97625 9.64508 5.13261 1.89295 

100 9.47515 16.092 7.08589 4.06602 

 

 

Table 2 – Spherical Function, Mean Best Solution 

No. of  

Dimensions 

Standard PSO CBV-PSO 

(Mean 2.0, SD 

1.0) 

CBV-PSO 

(Mean 1.0, SD 

1.0) 

CBV-PSO 

(Mean 2.0, SD 

0.5) 

10 9.40E-26 5.31E-35 2.12E-52 2.91E-48 

20 5.21E-11 6.18E-16 5.74E-21 4.06E-18 

30 1.74E-06 3.94E-10 1.01E-13 1.03E-11 

40 0.00089097 4.11E-05 1.13E-07 1.02E-06 

50 0.0185017 0.00015653 0.00017071 4.89E-05 

60 0.114694 0.00436014 0.00325725 0.0028324 

70 0.490711 0.0327966 0.0737765 0.0200073 

80 1.53618 0.172011 0.258165 0.163199 

90 3.4506 0.604844 1.38218 0.329333 

100 6.7252 1.94237 2.52391 1.15571 

 

Table 3 – Griewank Function, Mean Best Solution 

No. of  

Dimensions 

Standard PSO CBV-PSO 

(Mean 2.0, SD 

1.0) 

CBV-PSO 

(Mean 1.0, SD 

1.0) 

CBV-PSO 

(Mean 2.0, SD 

0.5) 

10 0.163126 0.106684 0.154858 0.12956 

20 0.0146919 0.0103463 0.0114139 0.016249 



30 0.0103463 0.00856124 0.00752455 0.00853706 

40 0.00462193 0.0051753 0.0096526 0.005418 

50 0.00472468 0.0064188 0.00923136 0.00484678 

60 0.00596461 0.00648561 0.00738712 0.00665521 

70 0.0131454 0.00890112 0.0142913 0.00551836 

80 0.0275156 0.0173526 0.027529 0.00733312 

90 0.0508129 0.019459 0.0431736 0.0119852 

100 0.0822002 0.0465551 0.0563486 0.0201065 

 

Table 4 – Ackley Function, Mean Best Solution 

No. of  

Dimensions 

Standard PSO CBV-PSO 

(Mean 2.0, SD 

1.0) 

CBV-PSO 

(Mean 1.0, SD 

1.0) 

CBV-PSO 

(Mean 2.0, SD 

0.5) 

10 1.12E-13 3.40E-18 3.05E-18 2.01E-18 

20 3.76E-06 0.00034368 0.148285 3.80E-10 

30 0.00122449 0.565017 1.23208 0.268053 

40 0.07018 1.67546 2.27732 1.18875 

50 0.286271 2.07832 2.75871 1.93871 

60 0.879147 2.53535 3.21985 2.35003 

70 1.27674 3.19615 3.90879 2.7222 

80 1.85029 3.50581 4.25278 2.98451 

90 2.1071 3.92109 4.71472 3.44805 

100 2.49497 4.17211 5.51884 3.58679 

 

Clearly the CBV-PSO improves the search procedure at low dimensionalities for 

all problems.  However, the performance is superseded by the standard PSO for high 

dimensionalties on the simpler problems and for a larger part of the Ackley function. 

 

To better determine performance, a comparison across all problems and dimen-

sionalities would be beneficial.  However, determining the mean performance for all 

dimensionalities is difficult as the results would clearly be skewed to the larger values 

present in higher dimensionalities.  Therefore in the following plots, a ranking system 

is used.  Each algorithm is ranked from 1 (the best) to 4 (the worst) for each problem 

type and dimensionality.  The mean ranks are then used to determine performance for 

the algorithms.  This is performed for the average performance of algorithm (Figure 

1) and the best solutions generated across all runs (Figure 2). 

 



 
Figure 1 – Mean Ranked average best performance for all algorithms 

 

Figure 1 shows the mean rank of the average performance for all algorithms across 

dimensionalities and from this it is clear that the CBV-PSO with a mean of 2 and a 

standard deviation of 0.5 is superior to standard PSO on the Spherical and Griewank 

functions and competitive on the remaining functions.  CBV-PSO with a mean and 

standard deviation of 1 is universally poor, indicating perhaps that there are too many 

individuals with small c1 and c2 values leading to poor exploration of the search 

space.  The results for the CBV-PSO, Mean 2, SD 1 are inbetween these two results.  

 

Figure 2 – Mean ranked best performance for all algorithms 
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Figure 2 shows that the best performing algorithm on three of the four problems is 

CBV-PSO with a mean of 2 and standard deviation of 0.5.  It is apparent that the 

standard PSO performs very poorly on this function for lower dimensionalities, lead-

ing to a number of ‘4’ ranked solutions in this category.  This is perhaps best shown 

with a radar plot as shown in Figure 3. 

 

 
Figure 3 – Radar plot of ranks for all algorithms for the Absolute function (di-

mensionality is indicated around the circumference of the plot, outer ranks are 

worse). 

 

Figure 3 shows that the standard PSO performs comparatively badly up to 70-100 

dimensions whereas the CBV-PSO-2-0.5 performs well at this point and never has a 

rank worse than 2 for all dimensionalities.  The CBV-PSO could be said to be more 

robust over problem dimensionalities for this problem type. 

Comparison with Previous Work 

The direct competitor to this algorithm is the discrete heterogeneous algorithm 

(HPSO) presented in [6].  Comparisons are made with the static heterogeneous PSO 

described in this paper as this is the direct competitor to CBV-PSO.  The dynamic 

DHPSO has additional online learning of behaviour.  From Table 4 and 5 it would 

appear that the standard PSO and CBV-PSO (Mean 2, SD 0.5) implementation used 

here improves on the performance demonstrated by HPSO on both functions. 

 

Table 5 – Comparison with HPSO on Griewank Function 

Dimensions  HPSO CBV-PSO-2-0.5 

10 0.0782 0.130 

30 0.0407 0.0085 

50 0.154 0.0048 
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100 3.61 0.02 

 

 

Table 6 – Comparison with HPSO on Ackley Function 

Dimensions  HPSO CBV-PSO-2-0.5 

10 3.99E-15 2.01E-18 

30 1.20 0.27 

50 2.87 1.94 

100 2.87 3.58 

 

Conclusion 

A continuous behavioural variation PSO has been developed and tested on 4 opti-

misation problems taken from the literature.  The algorithm has been shown to outper-

form a standard PSO formulation on these problems, particularly for lower dimen-

sional versions of these problems.  A broad comparison with HPSO is not conclusive, 

but does appear to show that the continuous approach has benefits over the discrete 

behavioural selection approach.  A more in-depth comparison of these approaches is 

now warranted. 

A feature of this algorithm is that the mean performance is not affected as much as 

the best performance of the algorithm which suggests that the effect of producing a 

population with a variety of characteristics does aid the performance of one individ-

ual, as is shown in real flocks [2].  The variation of the mean and standard deviation 

of the c1 and c2 coefficients clearly has an effect on the performance of the algorithm.  

In the experiments conducted here, it is apparent that a larger mean and smaller stan-

dard deviation produce the best results.  It is hypothesised that the larger standard 

deviations and smaller means lead to a greater number of individuals that have small 

c1 and c2 values, producing slow-moving populations that cannot discover good solu-

tions in the 1000 generation timeframe.  This is particularly the case where the mean 

and standard deviation of 1.0 are used. 

It is not particularly clear why the beneficial effect of continuous heterogeneity 

should be so apparent at small dimensions and break down in a number of cases at 

higher dimensions.  One hypothesis might be that for the larger problems, there is less 

of an opportunity for the c1 and c2 parameters to influence the search, but this does 

not explain why performance would dip below that of the standard PSO. 

Further Work 

A further, more comprehensive comparison should be made with the discrete varia-

tion systems proposed by Engelbrecht and a further investigation is planned into the 

settings of c1 and c2 and the extent of behavioural variation within species. 



Acknowledgements 

This work was funded by the “Bridging the Gaps: Exeter Science Exchange” pro-

ject funded by the EPSRC (EP/I001433/1 – PI Prof. David Butler). 

References 

Bibliography 

 

[

1]  

D. Croft, J. Krause, S. Darden, I. Ramnarine, J. Faria and R. James, 

"Behavioural trait assortment in a social network: patterns and implications," 

Behavioral Ecology and Sociobiology, vol. 63, pp. 1495-1503, 2009.  

[

2]  

J. Dyer, D. Croft, L. Morrell and K. J, "Shoal composition determines foraging 

success in the guppy," Behavioral Ecology, pp. 165-171, 2009.  

[

3]  

M. Montes de Oca, J. Pena, T. Stutzle, C. Pinciroli and M. Dorigo, 

"Heterogeneous Particle Swarm Optimizers," IRIDIA – Technical Report Series, 

Brussels, 2009. 

[

4]  

M. Iwamatsu, "Multi-Species Particle Swarm Optimizer for Multimodal 

Function Optimization," IEICE TRANSACTIONS on Information and System, vol. 

E89, no. 3, pp. 1181-1187, 2006.  

[

5]  

C.-k. Chow and H.-t. Tsui, "Autonomous agent response learning by a multi-

species particle swarm optimization," in Congress on Evolutionary Computation. 

CEC2004. , 2004.  

[

6]  

A. Engelbrecht, "Heterogeneous Particle Swarm Optimisation," in ANTS 2010, 

Brussels, 2010.  

[

7]  

A. Engelbrecht, "Scalability of A Heterogeneous Particle Swarm," in IEEE 

SSCI 2011, Paris, France, 2011.  

 

 

 

 


