The complexity of neophobia in a generalist foraging corvid:

the common magpie, *Pica pica*

Submitted by Toni Vernelli to the University of Exeter as a thesis for the degree of
Doctor of Philosophy in Psychology

April 2013

This thesis is available for library use on the understanding that it is copyright
material and that no quotation from the thesis may be published without proper
acknowledgement.

I certify that all the material in this thesis which is not my own work has been
identified and that no material has previously been submitted and approved for the
award of a degree by this or any other university.

Signature: __Toni Vernelli________
ABSTRACT

It is often suggested that species differences in neophobia are related to differences in feeding or habitat specialisation. Generalist species, which have more to gain from exploring novel resources, tend to be less neophobic than specialists. However, some successful generalists including ravens, brown rats and coyotes also demonstrate high levels of neophobia. I explored this paradox using common magpies, a widespread generalist opportunist that displays behaviour indicative of high neophobia. Using a combination of field and short-term captive studies, I investigated whether novelty reactions were a fixed trait or varied according to object features and context as well as for different categories of novelty (i.e. objects, food, location). I found that novelty reactions in magpies were not influenced by object features such as colour, shape or size but varied greatly depending on environmental context and novelty category. Birds did not show avoidance of novel objects presented in novel environments but were extremely wary of similar novel objects presented in familiar environments, suggesting that violation of expectations may be more important than absolute novelty. Magpies could overcome the neophobia through repeated exploration of the objects over longer periods of time, but it affected their foraging behaviour. To avoid interactions with novel objects, wild-living magpies successfully employed an innovative technique that involves observing and pilfering from caching squirrels. Less aversion was shown towards novel food than to novel objects, while familiar objects and food encountered in novel locations were generally accepted. In total, this thesis suggests that neophobia is a complex and dynamic phenomenon in generalist foragers which may set protective limitations on the level of exploration. It can be overcome through learning and the development of alternative behavioural tactics such as kleptoparasitism.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>2</td>
</tr>
<tr>
<td>List of figures</td>
<td>11</td>
</tr>
<tr>
<td>List of tables</td>
<td>14</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>16</td>
</tr>
<tr>
<td>Declaration</td>
<td>17</td>
</tr>
<tr>
<td>CHAPTER 1: INTRODUCTION</td>
<td>18</td>
</tr>
<tr>
<td>1.1 General introduction</td>
<td>18</td>
</tr>
<tr>
<td>1.2 The ecological view of neophobia</td>
<td>19</td>
</tr>
<tr>
<td>1.2.1 Neophobia threshold hypothesis</td>
<td>20</td>
</tr>
<tr>
<td>1.2.2 Dangerous niche hypothesis</td>
<td>21</td>
</tr>
<tr>
<td>1.2.3 Overcoming neophobia: the two-factor model</td>
<td>22</td>
</tr>
<tr>
<td>1.2.4 Context-specificity of novelty reactions</td>
<td>23</td>
</tr>
<tr>
<td>1.3 Behavioural flexibility and innovation</td>
<td>25</td>
</tr>
<tr>
<td>1.3.1 Novelty responses and innovation</td>
<td>27</td>
</tr>
<tr>
<td>1.4 Kleptoparasitism as a problem-solving strategy</td>
<td>30</td>
</tr>
<tr>
<td>1.4.1 Prevalence of kleptoparasitism</td>
<td>30</td>
</tr>
<tr>
<td>1.4.2 Evolution of kleptoparasitism</td>
<td>31</td>
</tr>
<tr>
<td>1.4.3 The role of cognition in kleptoparasitism</td>
<td>32</td>
</tr>
<tr>
<td>1.4.4 Cache pilfering</td>
<td>33</td>
</tr>
<tr>
<td>1.4.5 Kleptoparasitism and optimal foraging</td>
<td>35</td>
</tr>
</tbody>
</table>
1.5 Study species: common magpie

1.5.1 Magpie ecology

1.5.1.1 Habitat and distribution

1.5.1.2 Feeding ecology

1.5.1.3 Social organisation

1.5.2 Magpie cognition

1.5.2.1 Object permanence

1.5.2.2 What-Where-When memory

1.5.2.3 Mirror self-recognition

1.5.2.4 Human recognition

1.6 Conclusion

1.7 Thesis preview

CHAPTER 2: GENERAL METHODS

2.1 Field studies

2.1.1 Individual identification

2.1.2 Study sites

2.1.3 Ethical note

2.2 Captive study

2.2.1 Magpies

2.2.2 Housing and care

2.2.3 Handling and data collection

2.2.4 Individual identification
2.3 Permissions and licenses 61
2.4 Experimental design 61
2.5 Data collection 64
2.6 Data analysis 64

CHAPTER 3: NOVEL OBJECT REACTIONS IN FREE-LIVING URBAN MAGPIES 66

3.1 Introduction 66
3.2 Methods 68
 3.2.1 Study sites and animals 68
 3.2.2 Materials 69
 3.2.3 Experimental protocol 69
 3.2.4 Data collection 72
 3.2.5 Data analysis 74
3.3 Results 76
 3.3.1 Food source preferences 76
 3.3.2 Effect of experimental condition on ambivalent behaviour 80
 3.3.3 Relationship between ambivalence and tray acceptance 80
 3.3.4 Condition 3 81
 3.3.5 Object colour and shape preferences 82
3.4 Discussion 83
CHAPTER 4: DIFFERENTIAL NOVELTY REACTIONS IN NOVEL VERSUS FAMILIAR ENVIRONMENTS

4.1 Introduction

4.2 Methods

4.2.1 Study site and animals

4.2.2 Materials

4.2.3 Experimental protocol

4.2.4 Data collection

4.2.5 Data analysis

4.3 Results

4.3.1 Novel environment test

4.3.2 Familiarisation period

4.3.3 Familiar environment tests

4.3.4 Ambivalent behaviour across the tests

4.3.5 Effects of test sequence

4.4 Discussion

CHAPTER 5: THE INFLUENCE OF COMPETITION AND NEOPHOBIA ON THE FORAGING STRATEGIES OF URBAN MAGPIES

5.1 Introduction

5.2 Methods

5.2.1 Study sites and animals

5.2.2 Materials
5.2.3 Experimental protocol 113
5.2.4 Data collection 115
5.2.5 Data analysis 118

5.3 Results 119

5.3.1 Effect of condition on feeding behaviour 119
5.3.2 Effect of condition on squirrel numbers 124
5.3.3 Effect of condition on ambivalent behaviour 125
5.3.4 Relationship between ambivalence and feeding behaviour 126
5.3.5 Prevalence and success of the two pilfering methods 127

5.4 Discussion 128

CHAPTER 6: DIFFERENTIAL REACTIONS TO SMALL OBJECTS IN SHINY AND MATT FINISHES 133

6.1 Introduction 133

6.2 Methods 136

6.2.1 Study sites and animals 136
6.2.2 Materials 137
6.2.3 Experimental protocol 137
6.2.4 Data collection 140
6.2.5 Data analysis 142

6.3 Results 142

6.3.1 Evidence of shiny object attraction 142
6.3.2 Effect of object presence on feeding behaviour 143
6.3.3 Effect of object presence on ambivalent behaviour 145
6.3.4 Effect of object colour on feeding behaviour 148
6.4 Discussion 150

CHAPTER 7: NOVEL FOOD REACTIONS IN FREE-LIVING URBAN MAGPIES 153
7.1 Introduction 153
7.2 Methods 155
 7.2.1 Study sites and animals 155
 7.2.2 Materials 156
 7.2.3 Experimental protocol 156
 7.2.4 Data collection 160
 7.2.5 Data analysis 161
7.3 Results 162
 7.3.1 Food acceptance and preference 162
 7.3.2 Effect of condition and colour on feeding latency 164
 7.3.3 Effect of condition on ambivalent behaviour 168
 7.3.4 Effect of test order on feeding and ambivalent behaviour 169
 7.3.5 Behaviour patterns at each site 170
7.4 Discussion 171
CHAPTER 8: OBJECT HABITUATION AND GENERALISATION IN FREE-LIVING URBAN MAGPIES

8.1 Introduction

8.2 Methods

8.2.1 Study sites and animals

8.2.2 Materials

8.2.3 Experimental protocol

8.2.4 Data collection

8.2.5 Data analysis

8.3 Results

8.3.1 Object habituation

8.3.2 Acceptance of novelty

8.3.3 Effect of condition on feeding latency and frequency

8.3.4 Effect of condition on ambivalent behaviour

8.3.5 Effect of test order on feeding and ambivalent behaviour

8.3.6 Behaviour patterns at each site

8.4 Discussion

CHAPTER 9: GENERAL DISCUSSION

9.1 Major findings

9.1.1 Novel object reactions, habituation and generalisation

9.1.2 Specificity of novelty reactions

9.1.3 Neophobia and behavioural flexibility
LIST OF FIGURES

Chapter 2

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Attempts to individually mark magpies</td>
<td>53</td>
</tr>
<tr>
<td>2.2</td>
<td>Members of a magpie pair</td>
<td>54</td>
</tr>
<tr>
<td>2.3</td>
<td>The aviary used in the captive study</td>
<td>59</td>
</tr>
<tr>
<td>2.4</td>
<td>Observation hide used in the captive study</td>
<td>60</td>
</tr>
<tr>
<td>2.5</td>
<td>Upright and inverted feeding trays</td>
<td>63</td>
</tr>
</tbody>
</table>

Chapter 3

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Experimental protocol</td>
<td>73</td>
</tr>
<tr>
<td>3.2</td>
<td>Individual feeding behaviour</td>
<td>77</td>
</tr>
<tr>
<td>3.3</td>
<td>Mean feeding latencies for loose nut piles</td>
<td>78</td>
</tr>
<tr>
<td>3.4</td>
<td>Mean feeding latencies and frequencies for tray-feeding birds</td>
<td>79</td>
</tr>
<tr>
<td>3.5</td>
<td>Mean ambivalence scores in three experimental conditions</td>
<td>81</td>
</tr>
</tbody>
</table>

Chapter 4

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Test arena with food sources arranged as in novel environment test</td>
<td>93</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean feeding latencies for the novel feeding trays in all six tests</td>
<td>104</td>
</tr>
<tr>
<td>4.3</td>
<td>Mean ambivalence scores across all six tests</td>
<td>105</td>
</tr>
<tr>
<td>4.4</td>
<td>Mean feeding latencies for the six tests in chronological order</td>
<td>106</td>
</tr>
</tbody>
</table>
Chapter 5

5.1 The four experimental conditions presented in the study
5.2 Mean number of feeding events
5.3 Mean number of direct takes and pilfer attempts
5.4 Mean number of squirrels feeding in each condition
5.5 Mean ambivalence scores across conditions

Chapter 6

6.1 Experimental protocol
6.2 Mean feeding latencies for all food sources
6.3 Mean feeding frequencies for all food sources
6.4 Mean ambivalence scores in captive tests
6.5 Mean ambivalence scores in field tests

Chapter 7

7.1 Experimental protocol
7.2 Pattern of acceptance in the nuts/novel food tests
7.3 Mean feeding latencies for all food sources
7.4 Mean ambivalence score across the five conditions

Chapter 8

8.1 Experimental protocol
8.2 Acceptance of the tray in all of the novelty tests
8.3 Mean feeding latencies in all novelty tests 187
8.4 Mean feeding frequencies in all novelty tests 187
8.5 Mean ambivalence scores in all novelty tests 189
LIST OF TABLES

Chapter 2

2.1 Sites used in the field studies 56

Chapter 3

3.1 Location and description of research subjects 69
3.2 Behavioural reactions coded from the videos 74
3.3 Summary of GEE analyses 83

Chapter 4

4.1 Description of research subjects 91
4.2 Behavioural reactions coded for the videos 95
4.3 Summary of GEE analyses 98
4.4 Tests before and during familiarisation with the environment 99
4.5 Tests in the familiar environment: single novel tray 101
4.6 Tests in the familiar environment: two novel trays 103

Chapter 5

5.1 Ethogram of key behaviours recorded during experimental sessions 117
5.2 Interobserver reliability check 118
5.3 The eight variables used in the analysis 119
5.4 Summary of GEE analyses 121
5.5 Summary of Spearman's correlation coefficient analyses 128

Chapter 6
6.1 Behavioural reactions coded from the videos 141
6.2 Summary of GEE analyses 149
6.3 Feeding behaviour during the tests in both phases 150

Chapter 7
7.1 Behavioural reactions coded from the videos 161
7.2 Summary of GEE analyses 167
7.3 Feeding behaviour towards the different colours of food 167
7.4 Feeding and ambivalent behaviour in four tests based on presentation order 171

Chapter 8
8.1 Behavioural reactions coded from the videos 183
8.2 Summary of GEE analyses 188
8.3 Feeding and ambivalent behaviour in four tests based on presentation order 191