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Abstract— When optimising receiver operating characteristic
(ROC) curves there is an inherent degree of uncertainty
associated with the operating point evaluation of a model
parameterisation x. This is due to the finite amount of training
data used to evaluate the true and false positive rates of
x. The uncertainty associated with any particular x can be
reduced, but only at the computation cost of evaluating more
data. Here we explicitly represent this uncertainty through
the use of probabilistically non-dominated archives, and show
how expensive ROC optimisation problems may be tackled by
only evaluating a small subset of the available data at each
generation of an optimisation algorithm. Illustrative results are
given on data sets from the well known UCI machine learning
repository.

I. INTRODUCTION

A growing area in the application of (evolutionary) opti-
misation techniques is that of the tuning of classifiers and
other prediction systems where there are multiple measures
of error to be traded-off (see e.g. [1] for a collection of
recent work in the area). However, a significant problem
has been encountered in transferring these methods from the
academic to the industrial sphere. Whereas the data used
from academic machine learning repositories (e.g. [2]) may
contain a few hundred or a few thousand samples, industrial
data sets can easily be of the order of hundreds of thousands
(if not larger). Coupled with this the system to be optimised
may also be on a specific architecture, and may therefore
have limited scope for parallelisation (see e.g. [3], [4] for a
problem that demonstrates both these traits). Research has
already borne fruit in the development of specialised multi-
objective optimisers (MOO) for general time/cost expensive
problems (see for instance the recent work of Knowles [5]).
However here we will focus our attention exclusively on
problems whose cost (in time and/or money) is due to the
use of data, and develop novel methods to trade-off this
cost against the uncertainty manifest when training with
fewer data (specifically in the context of receiver operating
characteristic curve optimisation).

Given that the computational cost of processing data
samples for the majority of widely used classifiers is lin-
early proportional to the sample size, the principled use of
subsampling methods can be of significant use when there
are constraints on time. The methods described here rely the
use of probabilistic dominance to maintain a ‘thick’ archive
which contains elements which are mutually non-dominating
with a known probability. This is necessary because solutions
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that are only an approximation to the true (infinite data)
objectives are evaluated and stored during the optimisation.
The savings in evaluation time are shown to allow optimisers
using these archiving approaches to find good classifier
parameterisations far quicker (and to maintain them) than
when using standard deterministic archiving.

The paper is organised as follows: the commonly used
receiver operating characteristic is described in Section II.
Dominance and probabilistic dominance are outlined in Sec-
tion III and the effect of varying the number of sample data
points used in an evaluation in ROC analysis is discussed in
Section IV. A general multi-objective optimisation algorithm
that draws on the work described in the earlier sections is
introduced in Section V, and an implementation with various
sample sizes is contrasted with a benchmark deterministic
archiving scheme in Section VI. Conclusions are drawn in
Section VII and future work in the area, based on the results
described here, is also discussed.

II. RECEIVER OPERATING CHARACTERISTIC CURVES

Depending on the classification problem at hand the
cost of making the wrong classification may range from
the negligible to life threatening. Some false positives are
inevitable in most practical systems (e.g. mis-identification
of someone as belonging on a “stop list” at passport control
when using a recognition classifier). Attempts to reduce these
false positives often leads to a decrease in the number of true
positives the system alerts. Selecting a particular classifier
and the set of operating parameters, x, to simultaneously
maximise the true positive rate, T (x), while minimising the
false positive rate, F (x), is a multi-objective optimisation
problem gaining application popularity amongst proponents
of evolutionary MOO.

If one is using a classifier that gives an estimate of a data
sample’s probability of belonging to each of the classes, and
when the relative costs of misclassification are known, it is
straightforward to determine the decision rule that minimises
the average cost of misclassification. However, the true costs
of misclassification are frequently unknown and difficult to
determine precisely (e.g. [6], [7]). In such cases those using
classification systems must either guess the misclassification
costs or explore the trade-off in classification rates as the
decision rule is varied.

Receiver operating characteristic (ROC) analysis provides
a useful graphical display of the trade-off between true and
false positive classification rates. Since its introduction in
the medical and signal processing literatures [8], [9] ROC
analysis has become a prominent method for selecting an



operating point. Recent work [10], [11] reintroduced ROC
analysis to the machine learning community; see [12], [13],
[14] for recent collections of methodologies and applications.
The fundamental trade-off between true and false positive
rates permits ROC analysis to be cast as a multi-objective
optimisation problem. The evolutionary optimisation point
of view allows a straightforward generalisation of the two
class classification methodology to multiple classes, which
we describe in [15]; we shall focus on purely two-objective
problems here, however the methods described within are
easily applied to the multiple class ROC formulation.

III. MOO AND PROBABILISTIC DOMINATION

Formally, the generation of an optimal ROC curve can
be viewed as an instance of the general multi-objective
optimisation problem. In these types of problem one seeks
to maximise or minimise d different objectives yi: yi =
fi(x), i = 1, . . . , d, where each objective fi depends upon a
vector of p parameters x = (x1, x2, . . . , xp) (this vector is
also known as a solution). In the case of ROC optimisation
these x are typically the parameters of the classifier (e.g.,
the weights in a neural network). The parameters may also
be subject to the k constraints:

ej(x) ≥ 0, j = 1, . . . , k. (1)

Without loss of generality we can cast the problem as strictly
a minimisation one, and therefore we can express it as
minimise

f(x) = (f1(x), f2(x), . . . , fd(x)) (2)

subject to

e(x) = (e1(x), e2(x), . . . , ek(x)) ≥ 0. (3)

When multiple objectives are to be minimised as opposed to a
single objective, solutions may exist for which performance
on one objective cannot be improved without sacrificing a
degree of performance on one or more of the other objectives.
Such solutions are known as Pareto optimal solutions, and
the set of all of these solutions is known as the Pareto front.

Dominance can be used to make Pareto optimality clearer.
In the standard framework, a decision vector x is said to
strictly dominate another x′ (x ≺ x′) iff

fi(x) ≤ fi(x′) ∀i = 1, . . . , d and
fi(x) < fi(x

′) for some i.
(4)

A less stringent weakly dominates form (x � x′) exists iff

fi(x) ≤ fi(x′) ∀i = 1, . . . , d. (5)

A set of solutions A is known as a non-dominated set if no
member of the set is dominated by any other member:

x 6≺ x′ ∀x,x′ ∈ A. (6)

Most recent multi-objective optimisers maintain a non-
dominated set A (known as an archive), which is its estimate
of the true Pareto front, and in elitist algorithms is actively
used in the search process rather than merely being a passive

repository. For instance an elitist multi-objective genetic
algorithm will typically have two populations which are
drawn from to provide ‘parents’ for new potential solutions,
a search population S and the elite set A. The proportion
of parents that are drawn from A influencing the degree of
elitism within a multi-objective search algorithm.

A. Probabilistic dominance

Many optimisation problems exhibit uncertainty in their
function evaluation which affects the notation previously
introduced. In the case of classification problems this uncer-
tainty is due to the fact that the objective evaluations (true
and false positive rates) are based on a finite set of training
data, drawn from the process being modelled.1 A repeat draw
of data of the same size from the same process will often lead
to a different objective evaluation, although the uncertainty
(measured by the variance) in the mean reduces with the
square root of the number of data samples [16]. To indicate
the dependence of the objectives on the data D as well as
the parameters we may denote an objective evaluation as
yi = fi(x;D).

Given that the evaluation of an objective is uncertain we
ought really to speak in terms of the probability of dominance
rather than strict dominance. We use the notation, introduced
in [17], x ≺α x′ to denote that p(x ≺ x′) ≥ α. When α = 1
this reverts to the standard deterministic dominance.

The use of probabilistic dominance still permits us to use
standard deterministic optimisation algorithms, but with an
altered archiving mechanism; one in which we have a degree
of confidence. This confidence relates to the probability that
we haven’t omitted solutions from the archive that may
actually perform better on the underlying process. There are
two principal ways to do this. We can take the approach that
a proposal x is only accepted into the archive A if the total
probability that it is dominated by other points in the archive
is less that 1 − α. In this scheme a proposal x′ is added to
the archive A if ∑

x∈A
p(x ≺ x′) ≤ 1− α. (7)

Once a new entrant has been accepted into A we then need
to remove any solutions x for which∑

z∈A
p(z ≺ x) ≥ 1− α. (8)

(Please refer to [17] for details on how this may be performed
in a computationally efficient fashion.)

This approach may become problematic when the archive
becomes large, as lots of small probabilities can quickly
accumulate. A second scheme, which we adopt in this paper,
is therefore simply to insert a proposal if no single archive
solution dominates it with a probability greater than 1 − α.
That is

p(x ≺ x′) ≤ 1− α ∀x ∈ A. (9)

1There may also be uncertainty generated by errors in the labelling of
the data itself, however this is outside the scope of this particular paper.



Once a new entrant has been accepted into A in this
framework, we then remove any solutions x for which

p(z ≺ x) > 1− α for at least one z ∈ A. (10)

It is worth noting that, while this second framework does
mitigate the effect of lots of small probabilities accumulating,
it does leave open the possibility of points entering the
archive which are almost dominated by a large subset of
A at the 1− α level.

When using a probabilistic dominance framework the
crucial issue is how to appropriately calculate p(x ≺ x′)
for the particular problem at hand, and then deciding on an
appropriate level for α. We now discuss using this for ROC
optimisation.

B. Using probabilistic dominance for ROC optimisation

If the uncertainty affecting the function evaluations can
be assumed to be affecting each independently then the
probability of dominance can be decomposed in to a product
of probabilities for each objective dimension:

p(x ≺ x′) =

d∏
i=1

p(fi(x) < fi(x
′)) (11)

Each of the constituent probabilities p(fi(x) < fi(x
′)) is:∫ ∞

−∞
p(fi(x;D))

∫ ∞
fi(x)

p(fi(x
′;D′)) dfd(x

′;D′) dfd(x;D)

(12)

where D and D′ represent the data used in the evaluation of
the parameters x and x′ respectively (these data may be the
same or may be different as discussed in Section IV).

In [17] we discuss equation (12) where the evaluated
objective is the true objective plus a Gaussian-distributed
noise term. In the case of ROC optimisation the variability in
the true positive rate, T (x), and false positive rate, F (x), can
be quantified using a “stratified” bootstrap sample [4]. We
concentrate on the true positive rate, but exactly analogous
expressions hold for the false positive rate. Given N1 samples
from class 1 (chosen at random from the training set with
replacement) and N2 from class 2 (selected in a similar
fashion), the probability of obtaining exactly y true positives
in this sample is known to follow the binomial distribution:

p(y|T (x)) =
(
N1

y

)
T (x)y(1− T (x))N1−y, (13)

The variance of the number of true positive examples in
a bootstrap sample is T (x)(1−T (x))N1, so the variance in
the true positive rate is

σ2
T =

T (x)(1− T (x))
N1

(14)

Evaluating (12) for binomial probabilities leads to unwieldy
expressions, but when the number of examples in each class
is even moderately large (N1, N2 ' 20) the binomial is well
approximated by a Normal distribution:

p(y|T (x) = N (y|f(x;D), σ2
T ) (15)
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Fig. 1. The possible true positive and false positive combinations (ROC
elements) as data size varies (assuming identical numbers of each class in
data and all objective combinations feasible).
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Fig. 2. Varying confidence in selected true positive rates as the number of
positive samples in the training data change (illustrated using two standard
deviations either side – as calculated from equation (14)).

may be used instead of (13), with σ2
T given by (14) and

N (y|µ, σ2) = (2πσ)−
1
2 e−

(y−µ)2

2σ2 . (16)

is the standard normal density with mean µ and standard
deviation σ2. Using (15) in (12) gives the probability of
dominance in terms of the error function [18]:

p(f(x;D) < f(x′;D′)) =
1

2

[
1 + erf

(
m/
√
2
)]

(17)

where

m =
f(x′;D′)− f(x;D)√

σ2
T + σ2

T ′

. (18)

This expression shows that the probability of one solution
dominating another can be calculated with increasing accu-
racy as the number of data samples increases (as the σ2

T terms
decrease; see (14)). This reduction is proportional to the
square root of the number of samples. (Note, if f(x;D) =
f(x′;D′) then m = 0 and p(f(x;D) < f(x′;D′)) = 1/2,
as expected.)

IV. CONFIDENCE VERSUS COMPUTATION EXPENSE

As described above, the greater the number of data sam-
ples used in calculating the fitness evaluation (true and false
positive), the greater the confidence (or lesser the uncertainty)



Algorithm 1 Elitist (1+1)–ES multi-objective evolution scheme for ROC optimisation using probabilistic dominance archives.
α Probability of dominance level
D Training data
N Maximum number of data samples to be processed during run

1: (A, tot num samp) := initialise(D,α) Initialise archive A and record number of samples evaluated
2: counter := tot num samp Initialise sample counter
3: while counter < N Loop until number of data sample evaluations reaches N
4: x := select(A) Select from archive
5: x′ := vary(A) Vary parameters
6: (D′, num samp) := sample(D, counter) Bootstrap sample with replacement from D
7: (T (x′), F (x′)) := classify(x′, D′) Evaluate TP and FP rates
8: x′ := update(x′, T (x′), F (x′), num samp) Associate TP and FP evaluations, and samples used, with x
9: if !prob doms(A,x′, 1− α) If x′ is not dominated at the 1− α level by the set A

10: A := A ∪ x′ Insert x′

11: foreach x ∈ A Check each archive element
12: if prob doms(A,x, 1− α) If x is dominated at the 1− α level by the set A
13: A := A \ {x} Remove dominated elements
14: end
15: end
16: counter := counter + num samp Update counter with the number of samples evaluated
17: end

associated with the assigned fitness. Also, in order to increase
confidence in both the true positive rate and the false positive
rate then both the number of class 1 samples and the number
of class 2 samples must be increased. As the number of
samples increases, so does the resolution in objective space
(that is the number of distinct objective combinations). As
illustrated in Figure 1 this growth is rapid; indeed one can
quickly determine that the maximum number of distinct
points in objective space is N1N2 and, because the Pareto
front is a non-decreasing curve, the maximum number of
possible points in the Pareto front is min(N1, N2). Another
effect of having a higher number of data points is the reduced
uncertainty illustrated in Figure 2. Here the variability in the
form of two standard deviations to either side of selected true
positive rates is given, as the number of positive samples in
the data set is varied – note for any particular number of
positive samples in the data set, the standard deviations at
different TP rates vary.

The increased confidence from evaluating a parameter set
on a larger data sample does not come for free however.
This extra data needs to be processed by whatever prediction
model depends upon the parameters x, and this will take
time, which is typically linear in the number of data points
(for any given classifier topology and parameterisation).
Indeed there is a ready trade-off between the confidence one
can obtain in the accuracy of the assigned ROC evaluation of
an x and the computation time it takes assess the objective
functions. There are many industrial classification problems
that take a significant amount of time to evaluate on the
training data provided (e.g. [4] discusses a classifier problem
that takes 5 minutes per evaluation). Techniques that can
reduce this cost while still leading to good solutions are
therefore of significant use.

V. A GENERAL PROBABILISTIC MULTI-OBJECTIVE
OPTIMISATION ALGORITHM

Algorithm 1 presents a general framework for implement-
ing a probabilistic archiving approach in a (1 + 1) multi-
objective evolution strategy (ES). It is worth noting that the
only parts which vary from a deterministically archiving
(1+1)–ES are lines 8-16 which are concerned with the
maintenance of a probabilistically non-dominated algorithm
and line 6 which subsamples the data prior to evaluation.
As such the archiving approach is easily inserted into any
other multi-objective optimiser which otherwise uses a non-
dominated archive.

Algorithm 1 commences with the initialisation of the
archive with a number of seed solutions (the insertion taking
the same fashion as lines 9-15), the counter which keeps track
of the total number of data points processed is then updated
with the archive initialisation cost in line 2. Line 6 allows
the number of data points sampled to be dependent upon
the point in the optimisation process (if desired) and line 8
ensures that the number of data points used to calculate the
objective evaluation is maintained by the solution for later
use in the archiving process (lines 9-15).

VI. EXPERIMENTS

In this section we present an analysis of the effect of using
a probabilistically non-dominated archive when optimising
ROC problems, and of varying the amount of training data
used during the optimisation process (line 6 of Algorithm
1). A simple evolutionary optimiser is used to implement
the framework, but as discussed above, the archive scheme
should fit into any elitist MOO framework.

The benchmark algorithm is an elitist (1+1)–ES, similar
to that used in [4], [15]. At each generation a member is
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Fig. 3. Plots of mean AUC on complete training data and statistical significance versus number of data points for different optimisation regimes using
(a) Ripley’s synthetic data, (b) UCI Australian credit data, (c) UCI chess data and (d) UCI heart data. In each subplot; Top: plot of mean AUC versus
number of data point evaluations for different optimisers. AUC averaged over 20 runs for each method (AUC calculated using full training data). Solid
line denotes the mean when optimisation is based on a bootstrap sample (with replacement) of 20% of the training data. Dotted line 40%, dash-dotted line
60%, dashed line 80%. The thick dash-dotted line denotes 100%. The thick dashed line is the benchmark optimiser results. Bottom subplot of number of
other optimisers each optimiser is significantly better than on the AUC measure (at the 0.05 level using the non-parametric Mann-Whitney “U” test).

selected from the archive and perturbed. It is then evaluated
on all the training data, its true and false positive rates noted
and archived in the standard fashion if appropriate.2 This
algorithm is modified in the comparison implementations to
conform to Algorithm 1. α is fixed at 0.2 and the sample
method is implemented with sample size equal to 0.2|D|,
0.4|D|, 0.6|D|, 0.8|D| and 1.0|D|.3

The vary and select schemes were identical across all
optimisers. In vary, the probability of an element of x being
mutated was 0.2, with the mutation being the addition of a
Laplacian-distributed random number with a width of 0.8.
select was implemented in a similar fashion to [4], [15],
with an objective dimension chosen at random, followed by
a random draw of a value from the range of that objective in
the archive; the archive member to be copied and perturbed is
that with the closest objective evaluation to this value. The
initialise scheme randomly generates 10 parameterisations

2For the purposes of this paper each parameterisation is treated as a hard
classifier. It is worth noting if in practice one is using a soft classifier a
range of true and false positive rates may typically be accessed for a single
model parameterisation by varying a classification threshold.

3Note this last model is not the same as the benchmark as the bootstrap
sampling is with replacement.

x (from draws from a Normal distribution) and evaluates
each of these parameterisations on a bootstrap sample of the
training data (or in the case of the benchmark optimiser,
all the training data). The (probabilistically) non-dominating
members of these initial 10 forming the initial archive A.

The algorithms were evaluated on four two-class classifi-
cation test problems: the synthetic problem described in [19],
along with three problems from the UCI machine learning
repository [2] (details provided in Table I).

TABLE I
DATA SET DETAILS.

Data set Source |D| Test size Features
Synthetic [19] 250 1000 2

Australian credit [2] 460 230 14
Chess [2] 2130 1066 36
Heart [2] 180 90 13

The classifier used for all problems was the Netlab [20]
implementation of an MLP with 10 hidden units and a logis-
tic output unit activation function thresholded at 0.5. All opti-
misers were run for up to 200,000 data sample evaluations on
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Fig. 4. Plot of example archives after 10,000 data samples evaluated on
the synthetic Ripley data. Top left each objective calculation made on a
bootstrap sample (with replacement) of 20% of the training data. Top right
40%, bottom left 100%. Bottom right is the benchmark optimiser results.
Dots indicate the objective values held in the archive and circles indicate
the classifiers evaluated on all the training data.

each training set and each run was repeated 20 times to allow
statistical comparisons. During the optimisation process the
true positive and false positive rates on all the training data
were also recorded for the archived solutions and stored
in a second set whose membership was identical to the
primary archive but which played no part in the optimisation
process. Clearly this incurred an additional computational
cost, however in practice this computation would only be
required on the final archive after an optimisation run has
completed when using a probabilistic archiving optimiser in
order to reassess the final solutions with greater confidence.
By maintaining this secondary store we can track the effect
of stopping the optimisers at any point between 0-200,000
data samples and assess their comparative performance on a
fixed data set.

The area under the curve (AUC) is one of the most popular
measures for assessing the quality of an ROC curve [8]
(which resembles the commonly used hypervolume measure
in the MOO literature, with the volume being the unit
square). This was calculated on the secondary store for each
optimiser every 1000 data samples.

Empirical results are presented in Figure 3, which shows
the average growth in AUC for each optimiser as the number
of samples processed increases, along with the number of
other optimisers each optimiser is significantly better than
at each sample level (significance measured using the non-
parametric Mann-Whitney “U” test at the 0.05 level). As
can clearly be seen the optimisers using a small subsample
of the data rapidly find good solutions. On most data sets
the deterministic archiving optimiser, which processes more
data samples at each parameter evaluation, catches up and
overhauls those optimisers subsampling the data in the later
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Fig. 5. Plot of example archives after 200,000 data samples evaluated on
the synthetic Ripley data. Top left each objective calculation made on a
bootstrap sample (with replacement) of 20% of the training data. Top right
40%, bottom left 100%. Bottom right is the benchmark optimiser results.
Dots indicate the objective values held in the archive and circles indicate
the archived classifiers evaluated on all the training data.

stages. This result is what we would have predicted (and
the latter point to be expected). The optimisers which only
subsample the data are able to evaluate a larger number
of different model parameterisations for the same sample
processing cost, and therefore should be expected to rapidly
push forward (when archived using an accurate assessment of
the uncertainty/confidence that can be attributed to their eval-
uations). As the optimisation process matures the benchmark
model catches them up on the AUC measure as it uses the
entirety of the training data in the archiving of its solutions,
which the AUC is calculated on here. (Though this does
leave it susceptible to potentially overfitting to this data, as
we shall see Section VI-A.)

Indicative plots of the archives produced for the Ripley
data are provided in Figures 4 and 5, with the primary
(search) archive indicated with dots and the secondary store
(evaluated on all the training data) indicated with circles. The
probabilistic archives can be seen to be getting progressively
‘narrower’ as the proportion of the training data sampled
is increased due to the increase in evaluation confidence.
Again note that the optimiser that evaluates the objectives on
a sample (drawn with replacement) whose size is the same
as all the training data still yields a ‘thick’ front as the data
set is still finite and there is therefore still some uncertainty
in the “true” objective values.

Of crucial importance is the point at which the benchmark
approach overtakes the probabilistically archiving methods
in terms of AUC. For the Ripley data this can be seen in
Figure 3 to occur between 80,000 and 128,000 data sample
evaluations; for the Australian credit data this occurs just
after 100,000 data sample evaluations; and for the heart data
around 38,000 sample evaluations. For the chess data set the
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Fig. 6. Plots of mean AUC on test data and statistical significance versus number of data points for different optimisation regimes using (a) Ripley’s
synthetic data, (b) UCI Australian credit data, (c) UCI chess data and (d) UCI heart data. In each subplot; Top: plot of mean AUC versus number of data
point evaluations for different optimisers. AUC averaged over 20 runs for each method (AUC calculated using full training data). Solid line denotes the
mean when optimisation is based on a bootstrap sample (with replacement) of 20% of the training data. Dotted line 40%, dash-dotted line 60%, dashed line
80%. The thick dash-dotted line denotes 100%. The thick dashed line is the benchmark optimiser results. Bottom subplot of number of other optimisers
each optimiser is significantly better than on the AUC measure (at the 0.05 level using the non-parametric Mann-Whitney “U” test).

benchmark model is still significantly worse than 4 of the 5
probabilistic archiving optimisers after 200,000 data samples
evaluations. Interestingly the chess data is also the largest
dataset, and there is a direct correlation between the number
of data points in the complete training set and the time it
takes for the standard optimiser to approach the performance
of the subsampling probabilistic optimisers. This result is
a useful one if it holds up in general as computationally
expensive industrial classifiers in the authors’ experience tend
to have a large corpus of training data.

A. Generalisation error

Up until now we have been concerned with the perfor-
mance of solutions on the training data, the data available to
alter the model parameters. We end the empirical section with
an analysis of the generalisation performance by evaluating
the true and false positive rates on independent test data.
Figure 6 replicates the results discussed in the previous
section, but with the secondary archive storing performance
evaluations for the true and false positive rates on the test
data for each problem. When compared to the set of solutions
stored by the optimisers using probabilistically dominating

archives the benchmark optimiser is seen to significantly
under-perform on all data sets, because the optimisation has
led to classifiers over-fitted to the particular training data
set. The probabilistic archive achieve a better generalisation
performance because a sample used during training is statis-
tically equivalent to the others, but, because each sample is
different, and the archive maintained is probabilistically non-
dominated, the classifiers cannot be optimised to any partic-
ular one. An obvious question that arises from this is how to
determine the better generalising classifiers from those in the
archive prior to evaluating them on the test data (see Figure 7
for an example of the range of solution performance). At this
point in time it is unclear, although aggregating and ensemble
techniques [1] may be an appropriate starting point (based
on e.g. regions of classifiers from the archive) – and this is
an area of current research by the authors.

VII. CONCLUSION

In this paper we have applied the probabilistic dominance
framework to ROC optimisation – a problem which exhibits
inherent uncertainty due to the function assessment depend-
ing on a data set of finite size. Methods for maintaining
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Fig. 7. Plot of example archives after 200,000 data samples evaluated on
the synthetic Ripley training and test data. Left: each objective calculation
made on a bootstrap sample (with replacement) of 20% of the training data.
Right: standard deterministic archiving optimiser results. Dots indicate the
objective values maintained in the archive and circles indicate the evaluation
of x on the test data.

a probabilistically non-dominated archive in this situation
were introduced and results shown on four different well-
known data sets of varying size and difficulty. A benchmark
algorithm was compared to other optimisers based on the
benchmark, but maintaining probabilistically non-dominated
archives using different data subsampling proportions. As the
computational cost for evaluating these types of problem is
proportional to the quantity of data processed by any par-
ticular parameterisation of a classifier, these optimisers were
compared in terms of amount of total data processed during
an optimisation run (using the widely used AUC measure).
It was observed that the probabilistic archiving optimis-
ers’ performance significantly outperformed the deterministic
archiving algorithm when the total amount of data processed
during an optimisation run was small (around 100,000 for
three of the four problems examined here), however as the
amount processed grew large the deterministic algorithm
overtook the probabilistic algorithms (with respect to the
AUC measure calculated on the training data) – although
for the problem with the largest amount of data this was not
the case. One potential reason for this is that the optimisers
have still yet to converge on this problem (as evinced by the
AUCs for all optimisers still increasing at the 200,000 sample
cut-off point). As such the probabilistic archiving optimisers
may still be in their advantageous stage.

It was however also shown that the deterministic archiving
algorithm was prone to overfitting, as the solutions main-
tained by it were less capable of generalisation than a number
of those maintained by the probabilistic archiving optimisers.
(The deterministic benchmark algorithm consistently per-
forming worse on the AUC measure calculated on the test
data). Although this result shows the probabilistic archiving
method actively maintains better general solutions, ways to
effectively select this subset a priori are, as yet, unclear and
is an area worthy of further research. Finally α was not tuned
at all in this paper, and it would be useful to evaluate the
effect different α values have on the convergence speed of
optimisers using probabilistic archives.
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