Visualisation of multi-class ROC surfaces
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Abstract

The Receiver Operating Characteristic
(ROC) has become a standard tool for the
analysis and comparison of binary classifiers
when the costs of misclassification are un-
known. Although there has been relatively
little work in examining ROC for more than
two classes — there has been growing interest
in the area, and in recent studies we have
formulated it in terms of misclassification
rates.

Although techniques exist for the numerical
comparison of the fronts generated by these
new methods, the useful visualisation of these
fronts to aid the selection of a final oper-
ating point are still very much in their in-
fancy. Methods exist for the visualisation
of similar surfaces, Pareto fronts, which we
discuss, however the particular properties of
the ROC front that the practitioner is inter-
ested in may also direct us to new and more
suitable visualisation methods. This paper
briefly outlines what is currently in use, and
what avenues may be of interest to examine
in the future.

1. Introduction

A significant proportion of the discussion at the end of
the first Receiver Operating Characteristic Analysis in
Machine Learning (ROCML) workshop, ROC Analy-
sis in Artificial Intelligence, (Hernandez-Orallo et al.,
2004) was on the possible extension of ROC analysis
from its traditional domain of comparing binary clas-
sifier models to classification problems with more than
two classes. We have recently presented a methodol-
ogy for accomplishing this by casting the ROC sur-
face for the (@-class problem in terms of a multi-
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objective optimisation problem (Everson & Fieldsend,
2005; Fieldsend & Everson, 2005). The goal is then to
simultaneously minimise the D = Q(Q — 1) misclassi-
fication rates. This is done using multi-objective evo-
lutionary algorithms (MOEAs) (Coello Coello, 1999).
Techniques for comparing fronts/surfaces produced us-
ing a multi-class analogue of the Gini coeflicient have
also been developed. When @ > 3, we refer to this as
multi-class ROC.

Although we feel a reasonable methodology now ex-
ists for multi-class ROC, a difficulty is still apparent
in the visualisation of the front itself. Although ROC
analysis aids in the comparison of classifier families or
parameterisations, eventually a single operating point
needs to be chosen (or a combination of a few to oper-
ate on the convex hull). It is for the ready selection of
this point that visualisation is useful — if not impera-
tive in some situations.

2. Pareto dominance

Before considering the possible methods for visualising
multi-class ROC surfaces, we should consider the prop-
erties of these surfaces. The optimal trade-off between
the misclassification rates is defined by the minimisa-
tion problem:

minimise Cj;(0) for all k, j. (1)
Here CY; is the misclassification rate of class k as class
4. If all the misclassification rates for one classifier
with parameterisation @ are no worse than the clas-
sification rates for another classifier parameterisation
¢ and at least one rate is better, then the classifier
parameterised by 0 is said to strictly dominate that
parameterised by ¢. Thus 0 strictly dominates ¢ (de-
noted 0 < ¢) iff:

Ck;j(0) < C; ()
Ck;j (0) < Cij(@)

A set A of decision vectors is said to be non-dominated
if no member of the set is dominated by any other

Vk,7 and
for some k,j.

(2)



Figure 1. The estimated Pareto front for synthetic data classified with a multinomial logistic regression classifier viewed
in false positive space. Axes show the false positive rates for each class and different greyscales represent the class into
which the greatest rate of misclassifications are made. (Points better than random shown.)
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A solution to the minimisation problem (1) is thus
Pareto optimal if it is not dominated by any other fea-
sible solution, and the non-dominated set of all Pareto
optimal solutions is known as the Pareto front — of
which the optimal ROC curve for a classifier is an ex-
ample. In the 3 class case (for instance) the Pareto
front/ROC curve (or an estimate of it) is a 5 dimen-
sional surface lying in a 6 dimensional space.

Evolutionary techniques based on dominance measures
for locating the Pareto front for a given problem are
now well developed; see (Coello Coello, 1999; Deb,
2001) and (Veldhuizen & Lamont, 2000) for recent re-
views. Assuming that a good approximation to the
ROC surface for a problem has been found using these
types of methods, then the problem arises as to how
to visualise this ROC surface to aid in the comparison
and selection of the final operating point(s).

3. Visualisation methods

Some methods for visualising multi-dimensional
Pareto fronts are already in use in the MOEA com-
munity. We discuss these below and highlight some
additional properties of multi-class ROC analysis that
may point to fruitful future research for their visual-
isation. First, however, we briefly discuss the special
situation where @ = 3.

3.1. Special case, Q=3

In the special case where the number of classes @ = 3,
we can project our Q(Q — 1) dimensional operating

points down to () dimensions by plotting their corre-
sponding false positive rate Fj for each class; that is,
by plotting:

Fp(0) =) Cy;

i#k

k=1,...,0 (4)

where C}; is the proportion of class j points classified
as class k for a model with parameterisation 8. The
false positive rate front is easily visualised when @ = 3.
Figure 1 shows the solutions on the estimated Pareto
front obtained using the full Q(Q—1) objectives for the
multinomial logistic regression classifier, but each so-
lution is plotted at the coordinate given by the @ = 3
false positive rates (4).! Exact information is lost on
exactly how misclassifications are made, however the
use of colour (or greyscale here) can convey additional
information such as the class into with the greatest
number or rate of misclassifications are made. Solu-
tions are shaded according to both the class for which
most errors are made and the class into which most
of those solutions are misclassified; that is, according
to the largest entry in the confusion matrix for that
solution. We call this the type of misclassification.

Although the solutions obtained by directly optimising
the false positive rates lie on the full Pareto surface
(in Q(Q — 1) dimensions) the converse is not true and
the projections into false positive space do not form a
surface. Nonetheless, at least for these data, they lie
close to a surface in false positive space, which aids
visualisation and navigation of the full Pareto front.

!Corresponding to the front found for the multinomial
logistic regression classifier on the synthetic data, from
Fieldsend and Everson (2005).
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Figure 2. Coordinated graph for a @ = 3 problem. Top: All points on the front (over 9000). Middle: All 1615 points
with a misclassification of class 1 to class 2 rate of zero. Bottom: All 205 points with a misclassification of class 1 to class
2 rate of zero and a misclassification of class 3 to class 2 rate of zero.

3.2. Parallel coordinated graphs

Parallel co-ordinated graphs or trade-off graphs (Fon-
seca & Fleming, 1993; Parmee & Abraham, 2004),
have been used for most of the life of the MOEA com-
munity to represent the trade-offs between multiple
objectives. An example is shown in Figure 2, in the sit-
uation of multi-class ROC and its Q(Q — 1) misclassifi-
cation formulation, where ) = 3 (using the same data
as the previous section). The top plot in the figure
shows the parallel coordinates of all the points found
on the multi-class ROC front; the middle plot shows
those members that satisfy an additional condition,
minimising the misclassification of class 1 to class 2;
the bottom plot shows those members that also meet a
further constraint. It is through manipulating different
constraints and desires that search can be focused onto
a particular area of the front—or, equivalently, a par-
ticular subset of models. A drawback of this approach
is that the order in which the objectives are plotted can
influence the perceived relationship between objectives
(misclassification costs). This notwithstanding, paral-
lel coordinated graphs are a commonly used and easily
understood representation.

3.3. Pairwise plots

Another approach popular in the MOEA literature is
the generation of pairwise plots of objectives.? That
is, plotting the Pareto front in two objective space, for
all different objective pairings. Figure 3 shows points
on the Pareto front/ROC surface discussed in the pre-
vious section plotted in this manner.

Although this formulation allows a quick visualisation
of some of the interactions between objectives, for in-
stance what combinations of misclassification rates are
not apparent in the front, the removal of all other ob-
jective information makes it difficult to ascertain the
other trade-offs that are taking place when moving
around this two-dimensional space (however, colour-
ing by misclassification type, as provided in Figure 3,
does give some indication of this). Another detraction
from this method is that the number of pairwise plots
it is possible to make is (Q(QZ_D), which rapidly makes
this method unwieldy as @) increases.

2This method is also often used to view parameter
space.
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Figure 3. Pairwise plots of the Pareto front, with the surface mapped with regard to only two objectives at a time. Top
left plots show the greyscales associated with the 6 misclassification types used throughout the paper.

3.4. Unsupervised learning methods

A variety of techniques exist for representing and vi-
sualising high-dimensional data by projecting it down
into two or three dimensions. Prominent among these
are principal component analysis (PCA) and factor
analysis which locate a new low dimensional coor-
dinate system which best approximates the original
data. While these methods are attractive because
of their simplicity and ease of calculation, they are
not generally suitable for representing Pareto fronts
or ROC surfaces because these surfaces are generally
highly curved. PCA on the other hand is best suited
to representing data clouds that are convex; indeed,
the assumption underlying PCA is that the data are
Gaussian distributed. This inevitably means that the
PCA representation of the curved manifold forming
the Pareto front will be poor. Mixtures of probabilis-
tic principal component analysers (Tipping & Bishop,

1999) or local linear embedding (Roweis & Saul, 2000),
which approximate the manifold by many local linear
mappings, may be useful for visualisation but we in-
vestigate the use of global methods here.

Unsupervised learning methods such as Self-
Organising Maps (SOMs) (Kohonen, 1995), the
Generative Topographic Mapping (Bishop et al.,
1998) and Neuroscale (Lowe & Tipping, 1996; Tipping
& Lowe, 1998) find a low dimensional representation
of data through a nonlinear mapping. SOMs have
been used by Obayashi (2002) and Neuroscale has
also been used by Everson and Fieldsend (2005) in
order to visualise D > 3 Pareto surfaces. Here we
demonstrate the use of two of these methods (SOMs
and Neuroscale) for mapping multi-class ROC fronts
to two or three dimensional space for visualisation.



oSl o o “o.‘

0300

o
0
0
0
=5
6
0
0
S
20,
0
0
029
0
0
0
0

636

080,
e
020!
020!
020,
026!
020!
020!
252035
020,
020!
020!
020!
020
020!
020!
006!
036
06

080!
086!
086!
086!
836!
656!
600!
006!
086!
636!
006!
006!
006!
636!
026!
006!
006!
086!
636!
520

0,
2
$0%
$=%
26
06
26
26
B8
20!
20
26
26
20
26
26
26
26
ot

(=
©
©
O
©
(=)
(89
(89
(3
O
€
€
(8
(&
O
©
©
©
©
(=)

©
©
©
@
(=)
€
(8
(2
(8
(8
(&
(8
(8
&
©
©
©
©
O
©

=
©
©
@
(20
(=)
(8
€
(8
©
(8
(8
(8
(5
(&)
(8
(8
©
(8
&

&
08!
$20=S
$20=S
S0
20
$0
0
$202S
26
0
205
$805S
D6
26
$205
§20
§202S
26
26!

(=0
(=0
(=0
O
©
(=0
(=0
©
©
©
(80
(80
(8
©
©
©
©
©
©
)

0,
%
§o0
§20
26
20
§0S
§0S
$05
e
6
6
8059
26
§2039
§2039
§2039
02
26
ot

©
©
(20
©
O
©
@
@
(5
(=)
(59
©
(89
(8
©
(2
©
©
O
©

90!
90!
o6,
o6,
o6,
28,
o8,
o8,
26,
o8,
20,
o6,
26,
a6,
o6,
o6,
o6,
26,
%)

©
©
(20
©
(5
(59
(59
(59
()
(8
(59
©
©
(=)
©
(8
©
©
(5)

o
o
o
o
O
o
(&
&
O
O
(&
&
O
()
(g
(o
(20
(20
€
®

Figure 4. SOM for a @ = 3 problem. Left: Unified distance matrix between map units, high values (darker grey levels)
indicate cluster borders. Right: Categorisation of units concerned with particular regions of the Pareto front. In the
example here it shows which of the Q(Q — 1) misclassification rates it is chiefly concerned with minimising.

3.4.1. SOMs

The SOM is a neural network model that consists of
units organised in a grid, typically in two dimensions.
Each unit is connected to its neighbouring units by
a relation that determines the structure of the map
(here, like Obayashi (2002), we use a two dimensional
hexagonal structure). Each unit is associated with a D
dimensional weight vector, and these parameters are
adjusted during training so that the unit which is clos-
est to an example in the training data is moved closer
to the example — pulling its neighbours with it. For-
mally, at each iteration t a point is randomly selected
from the ROC curve, and its off diagonal elements of
C projected into a Q(Q — 1) length vector y(t). The
unit closest within the SOM, k, based on its weight
vector w(t), is selected based on a distance measure
(typically Euclidean (Vesanto et al., 2000)),

ly(t) = wi (@[] = min|ly(t) —=wi@OI  (5)

After finding the unit with the closest weights, the
unit’s, and those of its immediate neighbours, are then
altered to pull it closer to y(¢).

We can train a SOM using the same data as used in
the previous section, and view the front in the lower
dimensional SOM representation, as shown in Figure 4
using a batched version of SOM (the whole ROC sur-
face is presented to the SOM before any weights are
shifted).> The left plot shows the unit distances be-
tween neighbours, which can indicate clusters (groups

3Here we use the free Matlab SOM toolbox available

of units dealing with similar points). The right plot
gives an example of how this visualisation may be
presented for interpretation: it shows which of the
Q(Q — 1) misclassification rates it is chiefly concerned
with minimising (equally one could look at the rates
on which they are doing worse, or other measures).
This in turn shows that the SOM has identified dis-
tinct regions on the front in different distinct regions
of the SOM.

3.4.2. NEUROSCALE

Neuroscale constructs a mapping, represented by a ra-
dial basis function neural network, from the higher di-
mensional space into the visualisation space. The form
of the mapping is determined by the requirement that
distances between the representation of solutions in
visualisation space are as close as possible, in a least
squares sense, to those in objective space. More pre-
cisely, if d;; is the distance on the Pareto front be-
tween a pair of solutions 8; and €; and let czij be the
distance between them in the visualisation space, then
the Neuroscale mapping is determined by minimising
the stress defined as

S = (dij — diy)* (6)
i<j
where the sum runs over all the solutions on the Pareto
front.

Figure 5 shows two-dimensional and three-dimensional

from http://www.cis.hut.fi/projects/somtoolbox.



Figure 5. Left: Three-dimensional representation of the Pareto front for the synthetic data. Right: Top-down view of left
plot. Solutions are shaded according to the class which is (proportionally) most misclassified.

Neuroscale representations of the Pareto front. Points
are shaded according to their type of misclassifica-
tion. It is immediately apparent from the visual-
isations that the front is divided into regions cor-
responding to the misclassifications of a particular
type. The three dimensional views show that these
regions are broadly homogeneous with distinct bound-
aries between them. The two dimensional representa-
tion, however, is unable to show this homogeneity and
gives the erroneous impression that solutions with dif-
ferent types of misclassifications are intermingled on
the front (especially, for example, the class-2 true to
class-1 predicted misclassification). We therefore pre-
fer the three-dimensional Neuroscale representations.
The structure may most easily be appreciated from
motion and colour and we therefore make short movies

of the fronts available from http://www.dcs.ex.ac.
uk/“reverson/research/mcroc.

3.5. Curvature

A common use of the two-class ROC curve is to lo-
cate a ‘knee’; a point of high curvature. The param-
eters at the knee are chosen as the operational pa-
rameters because the knee signifies the transition from
rapid variation of true positive rate to rapid variation
of false positive rate. Methods for numerically calcu-
lating the curvature of a manifold from point sets in
more than two dimensions are, however, not well de-
veloped (although see work on 3D point sets by Lange
and Polthier (2005) and Alexa et al. (2003)). Ini-
tial investigations in this direction have so far yielded



only very crude approximations to the curvature in
the 6-dimensional objective space and we refrain from
displaying them here. Direct visual inspection of the
curvature for multi-class problems is presently infeasi-
ble and we feel this is an interesting and useful future
area of research.

4. Conclusions

A number of different methods for visualisation of
many-class ROC fronts have been briefly discussed.
Some are already in use in the MOEA literature,
while some are specific to the ROC case. We note
that none of the projection methods employed here
utilise the fact that the Pareto set is a set of non-
dominated points. Although in general the mutual
non-dominance of these elements must be sacrificed
when projecting them into a lower dimensional space
for visualisation, an area of research is projection
methods that attempt to preserve approximate non-
dominance. Calculating and visualising curvature has
also been highlighted as a future, ROC-specific, area
of interest. Other representations, like cost curves
(Drummond & Holte, 2004), may also prove useful in
higher dimensions.
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