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The electromagnetic field is canonically quantized in the presence of a linear, dispersive and
dissipative medium that is in uniform motion. Specifically we calculate the change in the normal
modes of the coupled matter–field system and find a Hamiltonian that contains negative energy
normal modes. We interpret these modes as the origin of phenomena such as quantum friction,
and find that a detector initially in its ground state and coupled to the electromagnetic field in
the vicinity of, or within a uniformly moving medium has a non–zero probability of excitation at
T = 0 K.

PACS numbers: 03.70.+k,12.20-m,42.50.-p,03.50.De,03.30.+p

I. INTRODUCTION

In quantum field theory, time and space play quite dif-
ferent roles. One consequence of this is the production of
particles in the presence of moving boundaries, which is
particularly evident in the predicted response of the vac-
uum electromagnetic field to a dielectric medium in mo-
tion: nonuniformly accelerated mirrors should radiate [1],
and a process analogous to that of Hawking emission [2]
has been predicted to occur when a localized change in
the refractive index moves through a medium at a speed
exceeding the phase velocity of light in the medium [3–
5]. Indeed, it is surprising is that there should be effects
of this type that occur for dielectrics in uniform motion.
Nevertheless, one such effect is that of quantum friction,
whereby two dielectric plates in relative lateral motion
are predicted to come to rest due a production of pairs
of surface excitations out of the vacuum state [6].

The physics of these phenomena been the subject of
recent controversy, with some debate concerning the re-
ality of quantum friction [7–11], as well as difficulty in
quantitatively interpreting the experimental observation
of the aforementioned Hawking like process [5, 12, 13]. It
seems like part of this discord arises from a lack of agree-
ment about the theory that should be used to describe
quantum electromagnetism interacting with a moving di-
electric. Aspects of the quantization of electromagnetism
in moving media have been considered before, initially by
Jauch and Watson [14], but as far as the author is aware,
there has been no canonical approach that includes the
effects of dispersion and dissipation [33]. Here we de-
velop a canonical theory that includes these effects and
we apply it to some simple physical scenarios.

The point of view taken here is that dispersion and
dissipation are not merely complications that somehow
superimpose onto a ‘clean’ case where a dielectric
can be represented by a refractive index, n that is
independent of frequency, but are in fact fundamental
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to the interaction between macroscopic objects and
the quantized electromagnetic field. After all, the
fluctuation–dissipation theorem tells us that for linear
dielectrics we can always understand the vacuum elec-
tromagnetic field as being produced by currents within
the dielectric that are in proportion to the square root
of the dissipative response times ~ [15]. To develop a
canonical theory of electromagnetism that is consistent
with this perspective, we use a method similar to that
of Huttner and Barnett [16], where a fictional reservoir
is added to the electromagnetic Hamiltonian to account
for both the absorbed field energy and the dispersive
response. Philbin has recently presented a modifica-
tion and generalization of this procedure that applies
to media that can be described by any ε(x, ω) and
µ(x, ω) that satisfy the Kramers–Kronig relations [17].
Philbin’s approach was extended within [18], where the
Lagrangian necessary to describe moving media was
derived, the quantization of which we now investigate.

II. CLASSICAL ELECTROMAGNETISM
INTERACTING WITH A MOVING MEDIUM

To begin, we give the form of the action necessary to
derive the classical equations for the electromagnetic field
interacting with a moving medium, as presented in [18].
This is given as the integral of a Lagrangian density over
space–time, S[Aµ,Xω,Y ω] =

∫
d4xL , where

L = LF + LR + LINT (1)

The part of the Lagrangian associated with the degrees
of freedom within the electromagnetic field is of the usual
Lorentz–invariant form

LF =
ε0
2

[
E2 − c2B2

]
(2)

where the fields are written in terms of the potentials
(ϕ,A) as E = −∇ϕ − Ȧ and B = ∇× A. The elec-
tromagnetic field is coupled to two continua of oscilla-
tors, Xω & Y ω that represent the collective degrees of
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freedom of the medium. The coupling of the field and
the oscillators is chosen so as to reproduce the experi-
mentally measured linear susceptibilities of the dielectric
from the equations of motion. For a dielectric moving
with velocity V , the part of the Lagrangian describing
the oscillators is modified from that of [17] due to the
Lorentz transformation of the time coordinate

LR =
1

2

∫ ∞
0

dω

{
γ2
[
Ẋω + (V · ∇)Xω

]2
− ω2X2

ω

}
+ (Xω → Y ω) (3)

where γ = (1 − V 2/c2)−1/2. Additionally, the transfor-
mation of the field amplitudes means that the coupling
between matter and electromagnetism involves tensors,
αEB & αBE, in addition to those of [17]

LINT = E ·
∫ ∞

0

dω [αEE ·Xω +αEB · Y ω]

+B ·
∫ ∞

0

dω [αBB · Y ω +αBE ·Xω] . (4)

where the α tensors are typically functions of ω, x, and t,
even if they are only functions of frequency and position
in the rest frame.

Considering the specific case where the medium is
described in terms of a scalar permittivity and per-
meability in the rest frame, and the motion is V =
V x̂, the coupling tensors take the form; αEE(x, ω, t) =
Λα(x′, ω); αBB(x, ω, t) = Λβ(x′, ω); αEB(x, ω, t) =
γβ(x′, ω)13 × V /c2; and αBE(x, ω, t) = −γα(x′, ω)13 ×
V , where α(x′, ω) =

√
2ωIm[χEE(x′, ω)]/π, β(x′, ω) =√

2ωIm[χBB(x′, ω)]/π, and Λ = diag(1, γ, γ). The sus-
ceptibilities, χEE & χBB are those of the medium in the
rest frame, and x′ is the rest frame spatial coordinate:
x′ = γ(x − V t); y′ = y; and z′ = z. As is well known
(e.g. [19]), this modification of the coupling tensors turns
an isotropic medium into an anisotropic one when it is in
motion. Furthermore, if the medium is inhomogeneous
in the rest frame, then it will be time dependent in the
laboratory frame. Only when the motion is along an axis
where the medium has translational symmetry will this
not be the case.

A. Solutions to the equations of motion

The solutions to the classical equations of motion of
(1) form the basis of the quantization procedure, and we
will expand the field operators in terms of these functions
in the next section.

The equations of motion for the continua of oscillators
can be found from the usual formulae,

∂

∂xµ

(
∂L

∂µXω

)
=

∂L

∂Xω
(5)

which gives[
γ2

(
∂

∂t
+ V · ∇

)2

+ ω2

]
Xω = αTEE ·E+αTBE ·B (6)

with the Y ω obeying the same equation after the substi-
tutions E ↔ B and X ↔ Y . Throughout the paper we
shall most often only explicitly write out the quantities
associated with the Xω and the polarization, P , but al-
ways with the understanding that the remaining results
can be obtained using this substitution.

The equations of motion for the electromagnetic field
are found to be the usual macroscopic equations

∇ · (ε0E + P ) = 0

∇×B − 1

c2
∂E

∂t
= µ0

(
∂P

∂t
+∇×M

)
(7)

where P =
∫∞

0
dω [αEE ·Xω +αEB · Y ω], andM takes a

similar form, but with the aforementioned substitutions.

FIG. 1: The electromagnetic field (E,B) is coupled to two
continua of oscillators (Xω,Y ω). The strength of the cou-
pling is given in terms of the set of α tensors within (4), and
the interaction of the field and these oscillators is such that
the correct constitutive relations emerge from the equations
of motion. In our case we are investigating a dielectric in mo-
tion along x̂, that is allowed to be inhomogeneous only as a
function of x‖.

With the simplification of translational symmetry
along the direction of motion, x̂ (see figure 1), the so-
lution of (6) becomes

X̃ω(k,x‖,Ω) =
αTEE(x‖, ω) · Ẽ +αTBE(x‖, ω) · B̃

(ω − Ω− − iη)(ω + Ω− + iη)

+ X̃0ω(k,x‖,Ω) (8)

the tilde indicating a Fourier transform with respect to
x, and t. In (8) we have introduced the following new

quantities: X̃0ω = 2π[δ(Ω− − ω)hXω (k,x‖) + δ(Ω− +
ω)h?Xω (−k,x‖)], Ω± = γ(Ω ± V · k), the vector x‖ is
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the coordinate in the y − z plane, and η is an infinites-
imal quantity that specifies the retarded solution of the
driven oscillator equation (6). The expression given by
(8) should be understood in the limit η → 0 and be evalu-
ated in terms of poles and principal parts. The (classical)
amplitudes, hXω may be freely specified, and represent
the motion of the oscillators that is not driven by the
electromagnetic field.

Inserting (8) into (7) we identify the electromagnetic
susceptibilities as follows

χEE(Ω−) =

∫ ∞
0

αEE(ω) ·αTEE(ω) +αEB(ω) ·αTEB(ω)

(ω − Ω− − iη)(ω + Ω− + iη)
dω

χEB(Ω−) =

∫ ∞
0

αEE(ω) ·αTBE(ω) +αEB(ω) ·αTBB(ω)

(ω − Ω− − iη)(ω + Ω− + iη)
dω

(9)

Notice that due to the additional terms depending on V
within (3), the Doppler shifted frequency, Ω− appears
within the susceptibilities. Furthermore, once (9) has
been expanded in terms of poles and principal parts, it is
found that the real and imaginary parts of these suscepti-
bilities are related by the Kramers–Kronig relations [18].
Using (8) and the counterpart expression for the Y ω,
the Xω & Y ω can be eliminated from (7). The Maxwell
equations then become those of macroscopic electromag-
netism in a moving dielectric, defined in terms of the
susceptibilities given in (9), and with ‘free’ current and
charge densities proportional to hXω & hYω . The for-
mal solution of these equations may be obtained through
finding an appropriate Green function. We thereby find
the following expression for the electric field

Ẽ(k,x‖,Ω) = iΩ

∫
d2x′‖G(k,x‖,x

′
‖,Ω) · j̃0(k,x′‖,Ω)

(10)
where the Green function, G(k,x‖,x

′
‖,Ω) is the solution

of (B8). The quantity appearing as a current in (10) is
given by

j̃0(k,x‖,Ω) = −iΩP̃ 0(k,x‖,Ω) +∇× M̃0(k,x‖,Ω)

where we have defined, P̃ 0 =
∫∞

0
dω[αEE · X̃0ω + αEB ·

Ỹ 0ω], and ∇ = kx̂+∇‖. To complete the specification
of the dynamics of the system, we can use the Maxwell
equation, ∇ × Ẽ = iΩB̃, and (10) to determine the
magnetic field.

B. Classical Hamiltonian

As the Lagrangian given in (1) is local and contains
only first order time derivatives, there therefore exists an
associated Hamiltonian which we now derive.

For the electromagnetic field the vector potential is
the only dynamical variable and the associated canonical

momentum density is given by

ΠA =
∂L

∂Ȧ
= −ε0E − P .

while the oscillators have the associated momenta

ΠXω =
∂L

∂Ẋω

= γ2[Ẋω + (V ·∇)Xω]. (11)

Due to the fact that electromagnetism has a gauge sym-
metry, the scalar potential has a canonical momentum
equal to zero, Πϕ = ∂L /∂ϕ̇ = 0, and is not a dynamical
field. We must therefore interpret the first of (7)—which
is not a dynamical equation—as a constraint that deter-
mines ϕ after some choice of gauge has been made.

From these quantities, we can form the Hamiltonian
density

H = ΠA · Ȧ+

∫ ∞
0

dω
[
ΠXω

· Ẋω + ΠY ω
· Ẏ ω

]
−L

(12)
which we give as the sum of two parts

H = HF + HR (13)

the first of these is

HF =
1

2ε0
(ΠA + P )

2 − (∇×A) ·M +
1

2µ0
(∇×A)

2

(14)
and the second is

HR =
1

2

∫ ∞
0

[
Π2

Xω

γ2
+ω2X2

ω−2V ·(∇⊗Xω)·ΠXω

]
dω

+ (Xω → Y ω). (15)

Expression (14) was obtained through neglecting a term
equal to a divergence (that will integrate to zero in the
Hamiltonian) and then setting ϕ∇ · ΠA = 0. This is
the aforementioned constraint on ϕ: ∇ · [ε0E + P ] = 0.
Finally the Hamiltonian, H = HF +HR is obtained from
the integral of (13) over all space. Notice that when V
is set to zero we obtain the Hamiltonian of [17].

The effect of the motion of the medium in (14–15) is
twofold. Firstly, within (14) the canonical field momen-
tum, ΠA is coupled to the Y ω by the velocity, and A
is similarly coupled to Xω. This is due to the Lorentz
transformation of the field amplitudes, and means that
the medium appears as a magnetoelectric (i.e. the elec-
tric polarization responds to the magnetic field as well as
the electric field).

Secondly, and more relevant to this discussion, the os-
cillator amplitudes within (15) are coupled to the asso-
ciated canonical momenta by the motion, via the term
∆H = −

∫∞
0
V · (∇⊗Xω) · ΠXω

dω + (Xω → Y ω).
This contribution has the physical meaning of the mov-
ing medium responding to the Doppler shifted frequen-
cies of the electromagnetic field. Indeed, if we want the
susceptibilities (9) to contain Ω− rather than Ω then we
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have no choice but to include ∆H in the expression for
the energy of the system [18]. Yet this term is peculiar,
and causes the Hamiltonian to lack a lower bound: the
spatial dependence of Xω can be made arbitrarily sharp
so as to reduce ∆H to an arbitrarily negative value with
no change in the rest of the Hamiltonian. Therefore, in
quantum theory we should expect that the zero particle
state will not be the lowest energy state of the system.
Indeed, when we come to describe the system with quan-
tum mechanics, we will find that even at T = 0K, it
is possible to extract energy from the vacuum fluctua-
tions of the electromagnetic field outside of a uniformly
moving dielectric. In appendix C it is demonstrated that
∆H is an accounting device that arises from enforcing a
non–zero and uniform velocity that disappears once we
include the centre of mass of the dielectric as a dynamical
variable. Throughout this work we take the simplest case
where we suppose that the velocity of the dielectric has
been fixed to some constant value by an external force.

As a final comment, we note that in reality the energy
of a moving dielectric interacting with the electromag-
netic field cannot be reduced to −∞. Spatial dispersion
would become relevant at some large enough magnitude
of ∆H, and provide a lower bound. Mathematically this
would be evident through a dependence on ∇ ⊗ Xω

in the rest of the Hamiltonian. This is an important
approximation that does not seem to be mentioned
within the existing literature. However, although this
warrants further investigation, here it does not alter our
conclusions so long as we are careful, it just means that

in reality for a large enough velocity the Hamiltonian
can be reduced to a very large negative value rather
than −∞. We can avoid this complication for the time
being so long as we ultimately avoid expressions that
depend on wavelengths of the electromagnetic field that
are comparable to, or smaller than the atomic spacing.

C. Hamiltonian along a classical trajectory

As in the vacuum theory of quantum electrodynam-
ics, it will be advantageous to expand our field operators,
(Â(x, t), Π̂A(x, t), X̂ω(x, t), Π̂Xω (x, t), . . . ) in terms of a
certain basis. This expansion will be carried out in terms
of the classical solutions given by (8) and (10). Explicitly,
the classical amplitudes hXω & hYω that act as sources
for the electromagnetic field (e.g. see (10)) will become

operators, analogous to the â(k) and â†(k) of the vac-
uum theory [20]. As we will be expanding the space–time
dependence of the field operators in terms of these clas-
sical solutions, we can use this to simplify the form of
the Hamiltonian. This simplification is equivalent to the
usual procedure of Fano diagonalization used in [16, 17].

It turns out that the most straightforward route to
simplify the Hamiltonian is to begin with the part as-
sociated with the continuum of oscillators, HR. After
applying (11), this is

HR =

∫
d2x‖

∫
dk

2π

∫
dΩ

2π

∫
dΩ′

2π
e−i(Ω+Ω′)t

∫ ∞
0

dω(ω2 − Ω+Ω′+)

[
X̃ω(k,Ω) · X̃ω(−k,Ω′) + Ỹ ω(k,Ω) · Ỹ ω(−k,Ω′)

]
(16)

Into (16) we insert (8) and its magnetic counterpart, to
which we apply the results, 2Ω2

− − Ω+Ω′+ − Ω−Ω′− =

2γΩ(Ω−−Ω
′

+), (A1), and (B8). After some lengthy ma-
nipulations this leads to

HR =

∫
d2x‖

∫
dk

2π

∫ ∞
0

2ωω+

∣∣hXγω (x‖, k)
∣∣2 dω

+ (X → Y )−HF (17)

where we have introduced ω± = γ(ω ± V k). The total
Hamiltonian is therefore equal to an integration over
the absolute squares of the amplitudes, hXγω & hYγω
multiplied by ωω+, which can be either positive or
negative. As in the previous section, it is clear that for
certain choices of the amplitudes, it is possible for this
classical Hamiltonian to take an arbitrarily negative
value.

III. QUANTIZED HAMILTONIAN

To quantize the Hamiltonian given by the sum, (17) +
HF, we take the usual approach of quantum field theory
and let the expansion coefficients become operators. In
this case the expansion coefficients are given by the hXω
and hYω , and we perform the following substitution

hXγω (x‖, k)→
√

~
2ω
ĈE(x‖, k, γω)

hYγω (x‖, k)→
√

~
2ω
ĈB(x‖, k, γω) (18)

where it is assumed that the Ĉ operators are bosonic[
Ĉλ(k,x‖,Ω), Ĉ

†
λ′(k

′,x′‖,Ω
′)
]

=

2π13δλλ′δ(Ω− Ω′)δ(k − k′)δ(2)(x‖ − x′‖) (19)
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The (normal ordered) Hamiltonian is then

Ĥ =
∑
λ=E,B

∫
d2x‖

∫
dk

2π

∫ ∞
0

dω~ω+Ĉ
†
λ(γω) · Ĉλ(γω)

(20)
where for brevity we have suppressed the arguments, k
and x‖ within the Ĉλ operators. As expected, the lack
of a lower bound for the classical Hamiltonian carries
over to the quantum case, the eigenstates of (20) having
eigenvalues from −∞ to ∞.

It is shown in appendix B that this specification of
operators and commutation relations is consistent with
the canonical commutation relations that must hold
between the fields and their conjugate momenta. It
might be objected that we have substituted (18) in
the final classical result (17), which itself assumes that
hXω & h?Xω commute. However, the Hamiltonian is
quadratic in all variables, so in doing this we have only
neglected a constant term which is equivalent to an
unobservable phase factor in the overall wave function,
and can therefore be dropped.

IV. DETECTOR COUPLED TO THE
ELECTROMAGNETIC FIELD

The Hamiltonian (20) is interesting, but at present it
is simply that of [17], described within a different frame
of reference. To demonstrate the physical effects of a rel-
atively moving dielectric, we must couple another system
to the electromagnetic field. As a model we consider a
point–like detector at a fixed position, x0, with an in-
ternal variable, x, and some internal energy states which
are the eigenfunctions of a Hamiltonian, ĤD.

The detector (atom) is coupled to the electromagnetic
field in the usual form dictated by minimal coupling [21].
The interaction terms are then transformed into a gauge
invariant form through a unitary transformation of the
operators, Ô = Û Ô′Û† where in the dipole approxima-
tion, Û ' exp( ie~ x · Â(x0)) [22, 23]. This then gives
the following familiar expression for the full (interaction
picture) Hamiltonian [34]

Ĥ = ĤD − d̂ · Ê(x0, t) + ĤM+F (21)

where d̂ = ex is the dipole operator that acts on the
internal state of the atom, ĤM+F is given by (20), and

the electric field operator, Ê(x0, t), is expanded as in
(B2), with the coefficients (B6).

We consider the Hamiltonian associated with the inter-
nal states of the atom to be in the form of equally spaced
energy levels, ĤD = ~ωâ†â, and the interaction to be of
the form, ĤI(t) = −iκ · Ê(x0, t)(âe

−iωt − â†eiωt), where
the â & â† are the usual raising and lowering operators,
and κ is a constant vector. Note that in the presence of
a lossy dielectric, the atom is coupled to the full electric
field, rather than just the transverse part [24, 25].

It is not possible to introduce a set of orthonormal
number states to use with the Ĉ operators. In vacuum
QED one would introduce periodic boundary conditions,
and the dispersion relation would then restrict both the
wave–vector and the frequency to discrete values so that
a set of such states could be introduced. In our case
the dissipation within the medium removes the dispersion
relation between the frequency and the wave–vector for
excitations within the medium, and this option is not
open to us. A straightforward alternative is to use a set
of orthogonal states with infinite norm, defined over a
continuum, as in [26]. However, here we use the approach
of [27], and work in terms of a new set of operators for
which number states can be introduced, labelled by four
integers (l,m, n, p),

ĉλ,σ(l,m, n, p) =

∫
dk

2π

∫
d2x‖

∫ ∞
0

dΩ

× φl,m,n,p(k,x‖Ω)Ĉλ,σ(k,x‖,Ω)

where we have expanded the normal mode operators in
terms of unit vectors, eσ: Ĉλ =

∑
σ eσĈλ,σ, and chosen

the orthonormal basis functions, φl,m,n,p∫
dk

2π

∫
d2x‖

∫ ∞
0

dΩφl1,m1,n1,p1φ
?
l2,m2,n2,p2

= δl1l2δm1m2δn1n2δp1p2

that form a complete set,∑
l,m,n,p

φl,m,n,p(k,x‖,Ω)φ?l,m,n,p(k
′,x′‖,Ω

′)

= 2πδ(k − k′)δ(2)(x‖ − x′‖)δ(Ω− Ω′) (22)

These new operators then satisfy the familiar commuta-
tion relations

[ĉλ1,σ1(l1,m1, n1, p1), ĉλ2,σ2(l2,m2, n2, p2)]

= δλ1λ2δσ1σ2δl1l2δm1m2δn1n2δp1p2

and we can use this fact to define number states,

|nλ,σ,i,j,k,l〉 =
1√
n!

[
ĉ†λ,σ(i, j, k, l)

]n
|0〉 (23)

If we suppose that the detector is initially in the ground
state and the combined system of field and dielectric
is in the zero particle state, |0〉 ⊗ |0〉, then to first or-
der in |κ| the only possible transition for the detector
is into the state |1〉, and the field–matter system into a
state, |1λ,σ,i,j,k,l〉. We therefore write the complete wave–
function as,

|ψ〉 = |0〉 ⊗ |0〉+
∑

λ,σ,i,j,k,l

ζλ,σ,i,j,k,l(t)|1〉 ⊗ |1λ,σ,i,j,k,l〉

The usual results of time–dependent perturbation the-
ory can now be applied [28]. The rate of change of the
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quantity ζλ,σ,i,j,k,l(t) is,

ζ̇λ,σ,i,j,k,l(t) = − i
~
〈1λ,σ,i,j,k,l| ⊗ 〈1|ĤI(t)|0〉 ⊗ |0〉 (24)

Inserting the expression for the interaction Hamiltonian,
along with the expansion of the electric field in terms of
(B6) and integrating over a time interval, [0, T ], gives
the amplitude for excitation after a time interval, T ,
ζλ,σ,i,j,k,l(T ). The rate of excitation of the detector, Γ0→1

is given by the absolute square of this amplitude summed
over all possible indices, and divided by the time inter-
val, T . We take T to infinity, and obtain the result that
would be expected from an application of Fermi’s golden
rule

Γ0→1 =
2ω2

~

∫ ∞
ω/V

κ · Im
[
G(−k,x‖0,x‖0,−ω)

]
· κ dk

2π

(25)
Full details of the derivation of this result can be found
in appendix D. In general the transition rate (25) is
non–zero, and it is therefore possible to extract energy
from the centre of mass motion of a moving dielectric
through coupling to the electromagnetic field within the
dielectric, or in its vicinity [35]. This is a physical effect
of the negative energy states within (20) that arises from
our description of dissipation.

Following the concluding discussion of section II B, it
is clear that for moderate velocities we can only rely on
(25) for low frequency excitations of the detector. For
instance, if we were to consider a dielectric moving at
1ms−1 then an optical excitation ω ∼ 1015Hz would cor-
respond to integrating over wave–vectors, k > 1015m−1

which is clearly far beyond a regime where the behaviour
of the dielectric can be described with a susceptibility like
(9). If the integrand in (25) decays rapidly (as it does in
(30)), then an ω in the GHz regime (k ∼ 109) appears to
be more appropriate. For relativistic velocities, (25) can
be applied to much higher frequency excitations. Usually
such velocities are completely inaccessible to experiment.
However, they are worth considering in this case, for in
experiments such as [5], a refractive index perturbation
is created that moves through a dielectric at a fraction
of the speed of light in vacuum. In the rest frame of the
perturbation we have the dielectric moving at a uniform
relativistic velocity that is subject to a weak stationary
perturbation. It is therefore likely that the experimen-
tally observed production of photons can be understood
with some analogous formula to (25). This will be the
subject of future work.

The transition rate (25) vanishes when V = 0. This
is because the argument of the delta function (D2) in
the derivation of (25) is never zero when V = 0 and so
Γ0→1 = 0. However—consistent with the concluding dis-
cussion of section II B—the way it tends to zero depends
on the response of the medium to large wave-vectors at
a fixed frequency. If the atom is embedded within a di-
electric medium this requires knowledge of the spatial
dispersion of the susceptibilities. Yet when the atom is

FIG. 2: As k is increased within the integrand of (25), the
poles at ±K0 in (27) move along the red dotted lines in the
directions indicated by red arrows. When V < c, K0 starts at
a point on the imaginary axis indicated by a blue cross and
moves vertically upwards. In the case when V = c, K0 starts
at the origin. Therefore, for sub–luminal propagation, the
poles never touch the real axis. Meanwhile, for super–luminal
propagation, K0 starts at some point on the real axis, moves
towards the origin, and then up the imaginary axis. In this
case there is an imaginary contribution to the integral along
positive Re[K] in (27) that comes from the need to negotiate
the pole at K0.

in a region of free space outside of a moving dielectric
medium (see section IV 2 below), this is not necessary
as the large wave-vector modes are very tightly bound
to the surface. Therefore in this case the transition rate
(30) falls to zero as V → 0 because the relevant modes
do not reach the atom (see (30)).

We now investigate (25) in two simple cases; free space,
and close to a surface.

1. Free space

Firstly, we show that Γ0→1 vanishes in free space. The
free space Green function is a function of the difference
in the positions, x & x′, and in k space is given by,

G(k, ω) = −µ0
k⊗ k − (ω/c)213

(ω/c)2(|k| − ω/c− iη)(|k|+ ω/c+ iη)
(26)

We transform this into the y–z plane of physical space,
G(k,x‖ − x′‖, ω) = (2π)−2

∫
G(k,K, ω) exp[iK · (x‖ −

x′‖)]d
2K, integrate over the polar angle in the K plane,

and find the result,

Im [G(k,0, ω)] = µ0

[
c2

ω2
(−k2x̂⊗ x̂+∇‖ ⊗∇‖) + 13

]
×Im

[∫ ∞
0

KdK

2π

J0(K|x‖ − x′‖|)
(K −K0 − iη)(K +K0 + iη)

]
x‖→x′‖

(27)
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FIG. 3: We consider the transition rate, Γ0→1 of a detector
from the ground state, |0〉 to an excited state |1〉 as a function
of the perpendicular distance, z0 from a surface moving along
the x axis at T = 0K. The rate of excitation is given by (30),
and decays with z0 at some rate (grey dashed line) determined
by an integration over the imaginary parts of the reflection
coefficients of the moving surface.

where K0 =
√

(ω/c)2 − k2, J0 is a zeroth order Bessel
function, and ∇‖ = ∂/∂x‖. Terms involving first order
derivatives in x‖ have been set to zero given that they
serve to replace the zeroth order Bessel function with a
first order Bessel function, which vanishes as x‖ → x′‖.

The only possible contribution to the imaginary part of
the integral in (27) would come from the need to ne-
gotiate the poles if they meet the real line as η → 0.
However, when k > ω/c then K0 is imaginary (see figure
2). In this case these poles never meet the real line, and
the right hand side of (27) vanishes. Therefore, so long
as V < c then (25) is zero in free space. This is consis-
tent with existing findings that the vacuum is unstable
to superluminal propagation (e.g. [29]).

2. Close to a surface

We now consider the possibility of exciting an internal
state of a system through interaction with the vacuum

electromagnetic field in the region of space outside of a
moving dielectric. The equivalent case of atoms moving
along surfaces has been investigated before (e.g. [10, 30]),
but usually the work is concerned with the drag force on
the atom due to the vacuum field. The author is not
aware of equation (25) being derived previously, or being
applied to the internal states of quantum systems moving
over surfaces.

For a detector situated outside of a moving dielectric
(see figure 3), we can obtain the expression for the Green
function through taking (26) and writing it in the follow-
ing form,

G(k,x‖,x
′
‖, ω) =

µ0c
2

ω2

∫
d2K

(2π)2
eiK·(x‖−x′‖)

×
[

|k|2
∑
λ êλ(k)⊗ êλ(k)

(|k| − ω/c− iη)(|k|+ ω/c+ iη)
− 13

]
(28)

where the ê1,2 represent the two unit vectors orthogonal

to k̂, the unit wave-vector. We take a dielectric moving
along x̂ and lying in the x–y plane with free space in
the region z > 0. The detector is positioned near to the
surface (z0 > 0). In this case when x′ is set as the detec-
tor position, only the first term within the integrand of
(28) is non zero at the surface. In satisfying the bound-
ary conditions at the interface we therefore ignore the
term proportional to 13. Performing one of the K in-
tegrals (say over kz) enforces the dispersion relation in
the remaining term, and (28) becomes an integral over
incident propagating waves. The boundary conditions at
z = 0 can then be fulfilled with the usual reflection coef-
ficients, rλλ′(k, ω), where λ and λ′ each take the values
1 or 2, with the meaning that polarization λ is incident,
and polarization λ′ is reflected (moving media mix po-
larizations [31])

G(k,x‖,x‖0, ω) = µ0

{∫ ∞
−∞

dky
2π

eiky(y−y0)

2ξ

[∑
λ

êλ(k, ky, isξ)⊗ êλ(k, ky, isξ)e
−sξ(z−z0)

+
∑
λλ′

êλ′(k, ky, iξ)⊗ êλ(k, ky,−iξ)rλλ′(k, ky,−iξ, ω)e−ξ(z+z0)

]
− c2

ω2
13δ

(2)(x‖ − x‖0)

}
(29)

where ξ =
√
k2 + k2

y − ω2/c2 and s = sign(z − z0). At x‖ = x‖0, the first term in the integrand of (29) becomes real
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due to quantities linear in s going to zero. Applying (25) to (29) then gives,

Γ0→1 =
µ0ω

2

~
∑
λ,λ′

∫ ∞
ω/V

dk

2π

∫ ∞
−∞

dky
2πξ

e−2ξz0Im

[
κ · êλ′(−k, ky, iξ)κ · êλ(−k, ky,−iξ)rλλ′(−k, ky,−iξ,−ω)

]
(30)

∼ µ0ω
2

~
∑
λ

∫ ∞
ω/V

dk

2π

∫ ∞
−∞

dky
2πξ

e−2ξz0 |κ · êλ(−k, ky, iξ)|2 Im

[
rλλ(−k, ky,−iξ,−ω)

]
(31)

where the second line is obtained through neglecting the
mixed reflection coefficients, r12 & r21, which are a fac-
tor of V/c smaller than r11 and r22. Something like ex-
pression (31) could have been anticipated from applying
the reasoning of [6] which contains very similar expres-
sions in the discussion of the phenomenon of quantum
friction, based not on canonical quantization but on the
fluctuation–dissipation theorem. For positive rest frame
frequencies, ω− > 0 the imaginary part of the reflection
coefficient is positive. The range of the integration over
k ensures that this is always the case. As the detector is
moved away from the surface, the exponential decay on
the right of (30) serves to reduce Γ0→1 to zero. However,
the dependence of this rate on the distance from the di-
electric depends on the dispersion of the medium. This
will be investigated in future work.

V. CONCLUSIONS

We have developed a formalism for the description of
uniformly moving media that includes a full account of

dispersion and dissipation. It was found that due to the
presence of dissipation, the Hamiltonian describing the
interaction between a uniformly moving dielectric and
the electromagnetic field lacks a lower bound (although
this statement should be qualified as in section II B). Fur-
ther to this it was shown that a stationary detector placed
inside or outside a moving medium has a finite probabil-
ity of excitation that depends on the specific dispersion of
the medium, and in the case of being outside the medium,
the distance from the surface.
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Appendix A: Integral identity for susceptibilities

To obtain expression (17) the following result must be applied,∫ ∞
0

dω
(ω2 − Ω+Ω′+)[αEE(ω) ·αT

EE
(ω) +αEB(ω) ·αT

EB
(ω)]

(ω − Ω− − iη)(ω + Ω− + iη)(ω − Ω′+ − iη)(ω + Ω′+ + iη)
=

(Ω2
− − Ω+Ω′+)χEE(Ω−)

(Ω− − Ω′+ − iη)(Ω− + Ω′+ + iη)

+
(Ω′+

2 − Ω+Ω′+)χEE(Ω′+)

(Ω′+ − Ω− − iη)(Ω′+ + Ω− + iη)
(A1)

along with similar expressions containing the susceptibilities, χEB, χBE, and χBB. The proof of (A1) is similar to that
of the usual Kramers–Kronig relations. We first expand the left hand side of (A1) in terms of residues at poles and a
principal part,∫ ∞

0

dω
(ω2 − Ω+Ω′+)[αEE(ω) ·αT

EE
(ω) +αEB(ω) ·αT

EB
(ω)]

(ω − Ω− − iη)(ω + Ω− + iη)(ω − Ω′+ − iη)(ω + Ω′+ + iη)
=

i
(Ω2
− − Ω+Ω′+)Im[χEE(Ω−)]

(Ω− − Ω′+ − iη)(Ω− + Ω′+ + iη)
+ i

(Ω′+
2 − Ω+Ω′+)Im[χEE(Ω′+)]

(Ω′+ − Ω− − iη)(Ω′+ + Ω− + iη)

+
2

π
P

∫ ∞
0

dω
ω(ω2 − Ω+Ω′+)Im[χEE(ω)]

(ω2 − Ω2
−)(ω2 − Ω′+

2)
(A2)
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where we have applied the result (see (9)) αEE ·αT

EE
+αEB ·αT

EB
= 2ωIm[χEE]/π.

Now consider the following integral of a function, f(z), that is analytic within a closed contour C,

1

2πi

∮
C

(z2 − a)f(z)dz

(z − z1)(z − z2)
=

(z2
1 − a)f(z1)− (z2

2 − a)f(z2)

(z1 − z2)
(A3)

where a is real. If f(z) is analytic throughout the upper half complex plane, then C may be taken as the real line plus
a semicircle at infinity, directed anticlockwise. If it is additionally supposed that f(z) is such that the integral over
this infinite semicircle is zero (it goes to zero faster than 1/R, where R is the radius of the infinite semicircle), then
(A3) may be written as,

1

2πi

∫ ∞
−∞

(x2 − a)f(z)dx

(x− x1 − iη)(x− x2 − iη)
=

(x2
1 − a)f(x1)− (x2

2 − a)f(x2)

(x1 − x2)
(A4)

where x1 & x2 are real, and η is as in the main text, an infinitesimal quantity that serves to shift the poles away from
the real line and into the upper half plane. Expanding the left hand side of (A4) into residues and a principal part

1

πi
P

∫ ∞
−∞

(x2 − a)f(x)dx

(x− x1)(x− x2)
=

(x2
1 − a)f(x1)− (x2

2 − a)f(x2)

(x1 − x2)
(A5)

we can obtain the following relation between the real and imaginary parts of f(z),

2

π
P

∫ ∞
0

x(x2 − a)Im[f(x)]dx

(x2 − x2
1)(x2 − x2

2)
=

(x2
1 − a)Re[f(x1)]− (x2

2 − a)Re[f(x2)]

(x2
1 − x2

2)
(A6)

when (A6) is applied to (A2) we obtain (A1).

Appendix B: Field commutation relations

Here we show that the substitution given in (18), plus the assumed commutation relations between Ĉ & C† (19) are
consistent with the commutation relations that must hold between the canonical momenta and the field amplitudes.
In the gauge where ∇ ·A = 0, these canonical commutation relations are given by [22],[

Â(x, t), Π̂A(x′, t)
]

= i~δ⊥(x− x′)[
X̂ω(x, t), Π̂Xω′ (x

′, t)
]

= i~13δ(ω − ω′)δ(3)(x− x′)[
Ŷ ω(x, t), Π̂Yω′ (x

′, t)
]

= i~13δ(ω − ω′)δ(3)(x− x′) (B1)

where δ⊥(x− x′) is the transverse delta function,

δ⊥(x− x′) =

∫
d3k

(2π)3k2

(
k213 − k⊗ k

)
eik·(x−x

′)

The vector potential operator is expanded in terms of the Ĉλ operators as follows,

Â(x, t) =
∑
λ

∫
dk

2π

∫
d2x′‖

∫ ∞
0

dΩ

√
~

2Ω

[
fλA(k,x‖,x

′
‖,Ω) · Ĉλ(k,x′‖, γΩ)ei(kx−(Ω+V k)t) + h.c.

]
(B2)

with similar expressions holding for the remaining field operators in (B1). To find these expansion coefficients, one
must solve the classical problem of section II A and then perform the substitution (18). Inserting the operators in the
form given by (B2) into (B1) we obtain the conditions that the expansion coefficients must satisfy in order that the
canonical commutation relations be satisfied,∑

λ

∫
dk

2π

∫
d2x‖1

∫ ∞
−∞

dΩ

2γΩ
eik(x−x′)fλA(k,x‖,x‖1,Ω) · fλ †ΠA

(k,x′‖,x‖1,Ω) = iδ⊥(x− x′) (B3)

∑
λ

∫
dk

2π

∫
d2x‖1

∫ ∞
0

dΩ

2γΩ
eik(x−x′)

[
fλXω (k,x‖,x‖1,Ω) · fλ †ΠX

ω′
(k,x′‖,x‖1,Ω)− c.c.

]
= i13δ(ω − ω′)δ(3)(x− x′)

(B4)
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where we have applied, fλA(−k,x‖,x′‖,−Ω) = fλ?A (k,x‖,x
′
‖,Ω) and a similar relation for fλΠA(k,x‖,x

′
‖,Ω). In this

case the expansion coefficients for the electromagnetic field operators are given by,

fλA(k,x‖,x‖1,Ω) = G⊥(k,x‖,x‖1,Ω + V k) · Ô
†
λ(k,x‖1,Ω) (B5)

fλE(k,x‖,x‖1,Ω) = i(Ω + V k)G(k,x‖,x‖1,Ω + V k) · Ô
†
λ(k,x‖1,Ω) (B6)

The electric field expansion coefficients (B6) are here given for reference. and in the above we define

Ôλ(k,x‖,Ω) = [i(Ω + V k)αTEλ(x‖, γΩ) +αTBλ(x‖, γΩ) · ∇×]

Ô
†
λ(k,x‖,Ω) = [−i(Ω + V k)αEλ(x‖, γΩ) +×

←
∇
?

·αBλ(x‖, γΩ)] (B7)

where, as in the main text we have ∇ = ikx̂ +∇‖ and the operation, G×
←
∇ is equivalent to the curl with respect

to the right hand index: G×
←
∇≡ eijk∂jGlk. The Green function within the above formulae is a solution of

∇×
[
µ−1(x‖,Ω−) · ∇×G(k,x‖,x

′
‖,Ω)

]
− Ω2ε(x‖,Ω−) ·G(k,x‖,x

′
‖,Ω)

+ iΩ[χEB(x‖,Ω−) · ∇×G(k,x‖,x
′
‖,Ω)−∇× (χBE(x‖,Ω−) ·G(k,x‖,x

′
‖,Ω))] = 13δ

(2)(x‖ − x′‖) (B8)

The susceptibilities are defined as in (9), with ε(x‖,Ω−) = ε013 + χEE(x‖,Ω−), and µ−1(x‖,Ω−) = µ−1
0 13 −

χBB(x‖,Ω−). We note that in a moving medium the Green function does not satisfy the reciprocity condition,

G(x,x′,Ω) 6= GT (x′,x,Ω) (B9)

and therefore GT does not satisfy (B8) with respect to its second argument, as is usually the case. Instead it satisfies
(B8) with V → −V (χEB → −χEB [36])[

G(k,x′‖,x‖,Ω)×
←−
∇? · µ−1(x‖,Ω−)

]
×
←−
∇? − Ω2G(k,x′‖,x‖,Ω) · ε(x‖,Ω−)

− iΩ[G(k,x′‖,x‖,Ω)×
←−
∇? · χBE(x‖,Ω−)− (G(k,x′‖,x‖,Ω) · χEB(x‖,Ω−))×

←−
∇?] = 13δ

(2)(x‖ − x′‖) (B10)

The transverse Green function which appears in the expansion of the vector potential operator is related to (B8) by

G⊥(k,x‖,x
′
‖,Ω) =

∫
d2x‖1δ̃⊥(k,x‖ − x‖1) ·G(k,x‖1,x

′
‖,Ω) (B11)

with, δ̃⊥(k,x‖ −x′‖) =
∫
dxδ⊥(x−x′)e−ik(x−x′). The following result will be important in proving that the commu-

tators take the correct form,∫
d2x‖1G(k,x‖,x‖1,Ω + V k) ·

∑
λ

Ô
†
λ(k,x‖1,Ω) · Ôλ(k,x‖1,Ω) ·G†(k,x′‖,x‖1,Ω + V k)

=
γΩ

πi

[
G(k,x‖,x

′
‖,Ω + V k)−G†(k,x′‖,x‖,Ω + V k)

]
(B12)

This can be proved from taking (B10) multiplied on the right by G†, subtracting the adjoint of (B10) multiplied on
the left by G, and integrating over x‖. This can then be seen to equal (B12) after and application of (B7) and (9).
Throughout these manipulations we must take care to remember that the symbol ∇ contains a component ikx̂ that
reverses sign relative to ∇‖ when integrating by parts. Explicitly if we take two vector fields, V (k,x‖) & W (k,x‖)

then, neglecting boundary terms,
∫
d2x‖V · ∇×W =

∫
d2x‖W · ∇? × V ≡

∫
d2x‖V ×

←−
∇? ·W .

The remaining expansion coefficients are as follows: the canonical electromagnetic field momentum expansion
coefficient is given by

fλΠA(k,x‖,x‖1,Ω) = −δ(2)(x‖ − x‖1)αEλ(x‖1, γΩ)

−
[
i(Ω + V k)ε(x‖, γΩ) + χEB(x‖, γΩ) · ∇×

]
·G(k,x‖,x‖1,Ω + V k) · Ô

†
λ(k,x‖1,Ω) (B13)
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the expansion coefficients for the oscillator field operators are

fλXω (k,x‖,x‖1,Ω) = 13δλEδ(γΩ− ω)δ(2)(x‖ − x‖1)

+

[
i(Ω + V k)αTEE(x‖, ω) +αTBE(x‖, ω) · ∇×

]
·G(k,x‖,x‖1,Ω + V k) · Ô

†
λ(k,x‖1,Ω)

(ω − γΩ− iη)(ω + γΩ + iη)
. (B14)

and the expansion coefficients for canonical momentum operator for the oscillator field are

fλΠXω (k,x‖,x‖1,Ω) = −iγ2ΩfλXω (k,x‖,x‖1,Ω). (B15)

We now insert (B5), (B13), (B14) & (B15) into (B3–B4). In the case of the canonical commutation relation for the
electromagnetic field (B3) this gives,∫ ∞

−∞

dk

2π
eik(x−x′)

∫ ∞
−∞

dΩ

2π

{
G⊥(k,x‖,x

′
‖,Ω + V k) ·

[
−i(Ω + V k)ε(x′‖, γΩ) +×

←
∇
?′
·χBE(x′‖, γΩ)

]
−G†⊥(k,x′‖,x‖,Ω + V k) ·

[
−i(Ω + V k)ε?(x′‖, γΩ) +×

←
∇
′
·χ?BE(x′‖, γΩ)

]}
?
= δ⊥(x− x′) (B16)

where we have applied (9) and (B12). The adjoint of the Green function, G† in (B16) is transverse with respect to
the left hand index.

The Green functions and the susceptibilities are both analytic functions of frequency in the upper half plane, with
the complex conjugates of these quantities being analytic in the lower half plane. Therefore we can split the integrand
of (B16) into two pieces—one analytic in the upper half plane, and one in the lower half. We can then deform the
integration contour over frequency from being along the real line, to following a semicircular path from −∞ to ∞,
in either the clockwise (C+) or anticlockwise (C−) sense, depending on where the integrand is analytic. Along C± we
have, |Ω| → ∞, where the Green function can be taken to satisfy the free space equation and is therefore equal to

G(k,x‖,x
′
‖,Ω)→ −µ0

∫
d2K

(2π)2

(
Ω2

c2 13 − k⊗ k
Ω2

c2

(
Ω2

c2 − k
2
) ) eiK·(x‖−x′‖) (B17)

where k = kx̂ +K. As k is a real vector, the denominator in (B17) is non–zero over the entire contour. Therefore,
G(k,x‖,x

′
‖,Ω)→ − 1

ε0Ω2 13δ
(2)(x‖ − x′‖), and (B16) simplifies to,∫ ∞

−∞

dk

2π
eik(x−x′)δ̃⊥(k,x‖ − x′‖)

[
−
∫
C+

dΩ

2πΩ
+

∫
C−

dΩ

2πΩ

]
?
= iδ⊥(x− x′) (B18)

writing Ω = |Ω|eiθ, and performing the two contour integrals in the square brackets gives a factor of i, and the equality
is fulfilled. Therefore the expansion of the electromagnetic field operators in the form (B2) with the coefficients (B5)
and (B13) is consistent with the canonical commutation relations.

For the oscillator fields, inserting (B14) and (B15) into (B4), we find that after applying (B12), all terms cancel in

the product [fλXω (k,x‖,x‖1,Ω) · fλ †ΠX
ω′

(k,x′‖,x‖1,Ω)− c.c.] except for the first involving products of delta functions.

We are then left with∑
λ

∫
dk

2π

∫
d2x‖1

∫ ∞
0

dΩ

2γΩ

[
iγ2Ωeik(x−x′)13δλEδλEδ(γΩ− ω)δ(γΩ− ω′)δ(2)(x‖ − x‖1)δ(2)(x′‖ − x‖1)− c.c.

]
?
= i13δ(ω − ω′)δ(3)(x− x′) (B19)

Performing the integrals and summation on the left of (B19) shows that the equality is fulfilled, and this completes
our demonstration that (18) is a canonical transformation.

Appendix C: Including the centre of mass as a dynamical variable

A natural reaction to a Hamiltonian for a quantum field that includes negative energy excitations, such as (20),
is that it is physically unacceptable. If the Hamiltonian included all of the possible dynamical degrees of freedom
as canonical variables then this would probably be true. However, in our case the centre of mass velocity of the
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dielectric medium is assumed to be fixed. We might therefore interpret the negative energy as an accounting device
for the external energy input required to keep the motion constant. To show that this interpretation is reasonable,
we now demonstrate that including the centre of mass as a dynamical variable removes the terms that cause (20) to
be unbounded from below.

We start from (1), adding in an extra term to represent the kinetic energy of the centre of mass. The centre of
mass is only a meaningful concept to first order in V /c, and we therefore assume a motion of the medium such that
we can set γ ∼ 1. For arbitrary motion we should use the centre of energy, and the treatment becomes much less
straightforward. To this order the total Lagrangian is,

L =
1

2
MV 2 +

∫
d3x [LF + LR + LINT]

For these purposes, we assume that V = V x̂ as in the main text, and construct the Hamiltonian as in section II B.
The canonical momentum associated with the centre of mass is,

P =
∂L

∂V
= MV +

∫
d3x

∫ ∞
0

dω
[
∇⊗Xω ·ΠXω − αEE(x‖, ω)Xω ×B + αBB(x‖, ω)Y ω ×E/c2

]
and therefore the Hamiltonian is,

H =
1

2
MV 2+

∫
d3x

{
ε0
2

(
E2 + c2B2

)
+

1

2

∫ ∞
0

dω
[
Π2
Xω + Π2

Yω + ω2
(
X2
ω + Y 2

ω

)
− αBB(ω)Y ω ·

(
B + V ×E/c2

)]}
(C1)

The term, V · (∇⊗Xω) ·ΠXω present in (15) has been removed from (C1) through the inclusion of the centre of
mass dynamics. As explained in the main text, it is this term that is responsible for the lack of a lower bound to the
Hamiltonian. It is not possible for (C1) to be decreased to an arbitrary negative value.

Appendix D: The transition rate of a detector interacting with a moving medium

To find the transition rate, we first find the probability amplitude associated with the atom making a transition
into an excited state, given that the field is also in some given state. In (24) it was found that the rate of change of
this amplitude is given by

ζ̇λ,σ,l,m,n,p(t) =
1

~
〈1λ,σ,l,m,n,p|κ · Ê(x0, t)e

iωt|0〉

where the matrix element associated with the atomic transition has been calculated. To calculate the matrix element
associated with the combined system of the electromagnetic field and the dielectric medium we use the expansion of
the electric field in the form given in (B2). We then expand the Ĉλ operators in terms of the ĉσλ operators using
(22),

Ĉλ(k,x′‖, γΩ) =
∑
σ

eσ
∑

l,m,n,p

φ?l,m,n,p(k,x
′
‖, γΩ)ĉλ,σ(l,m, n, p)

The orthonormality of the number states given in (23) is then applied to give

ζ̇λ,σ,l,m,n,p(t) =
1

~
κ ·
∫

dk

2π

∫
d2x′‖

∫ ∞
0

dΩ

√
~

2Ω
fλE

?
(k,x‖0,x

′
‖,Ω) · eσφl,m,n,p(k,x′‖, γΩ)ei[−kx0+(Ω+V k+ω)t]

Integrating this over a time interval [0, T ], squaring the resulting expression and summing over all possible final states
then gives∑

λ,σ,l,m,n,p

|ζλ,σ,l,m,n,p(T )|2 =

∫
dk

2π

∫
d2x′‖

∫ ∞
0

dΩ
∑
λ

∣∣∣κ · fλE(k,x‖0,x
′
‖,Ω)

∣∣∣2 2 sin2[(Ω + V k + ω)T/2]

γ~Ω(Ω + V k + ω)2
(D1)

where we assume that the value of the expansion coefficient is equal to zero at t = 0, and we have applied the
completeness relation (22). Dividing (D1) by the time interval, T gives the transition rate, Γ0→1. As T →∞, we can
apply the identity

lim
T→∞

4 sin2[(Ω + V k + ω)T/2]

(Ω + V k + ω)2T
= 2πδ[(Ω + V k + ω)] (D2)



13

and the transition rate simplifies to

Γ0→1 = − 1

2~

∫ −ω/V
−∞

dk

∫
d2x‖

∑
λ

1

ω+

∣∣∣κ · fλE(k,x‖0,x‖,−ω − V k)
∣∣∣2 (D3)

Inserting (B6) and applying (B12) then gives the transition rate in terms of the Green function,

Γ0→1 = −2ω2

~

∫ ∞
ω/V

dk

2π
κ ·

G(k,x‖0,x‖0, ω)−G†(k,x‖0,x‖0, ω)

2i
· κ (D4)

When a medium is reciprocal then it satisfies (B9), and GT (k,x‖0,x‖0, ω) = G(k,x‖0,x‖0, ω). As stated in appendix
B, for moving media (B9) is not satisfied, and we might expect this is affect Γ0→1. Yet apparently the non–reciprocity
has no effect on the transition rate of interest here (D4), for we contract the indices of the Green tensor with the
symmetric tensor κ⊗ κ, which gives

Γ0→1 = −2ω2

~

∫ ∞
ω/V

dk

2π
κ · Im[G(k,x‖0,x‖0, ω)] · κ =

2ω2

~

∫ ∞
ω/V

dk

2π
κ · Im[G(−k,x‖0,x‖0,−ω)] · κ (D5)

which is the expression given in the text (25).
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[12] R. Schützhold and W. G. Unruh. Phys. Rev. Lett.,

107:149401, 2011.
[13] F. Belgiorno, S. L. Cacciatori, M. Clerici, V. Gorini,

G. Ortenzi, L. Rizzi, E. Rubino, V. G. Sala, and D. Fac-
cio. Phys. Rev. Lett., 107:149402, 2011.

[14] J. M. Jauch and K. M. Watson. Phys. Rev., 74:950, 1948.
[15] L. D. Landau and E. M. Lifshitz. Statistical Physics -

Part 1. Butterworth-Heinemann, Oxford, 2005.
[16] B. Huttner and S. M. Barnett. Phys. Rev. A, 46:4306,

1992.
[17] T. G. Philbin. New J. Phys., 12:123008, 2010.
[18] S. A. R. Horsley. Phys. Rev. A, 84:063822, 2011.
[19] R. Matloob. Phys. Rev. A, 71:062105, 2005.
[20] V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii.

Quantum Electrodynamics. Butterworth-Heinemann,
Oxford, 2004.

[21] D. P. Craig and T. Thirunamachandran. Molecular
Quantum Electrodynamics. Dover, New York, 1998.

[22] R. Loudon. The Quantum Theory of Light. Oxford Uni-

versity Press, 1983.
[23] J. R. Ackerhalt and P. W. Milonni. J. Opt. Soc. Am. B,

1:116, 1984.
[24] S. M. Barnett, B. Huttner, and R. Loudon. Phys. Rev.

Lett., 68:3698, 1992.
[25] S. M. Barnett, B. Huttner, R. Loudon, and R. Matloob.

J. Phys. B: At. Mol. Opt. Phys., 29:3763, 1996.
[26] H. T. Dung, L. Knoll, and D-G Welsch. Phys. Rev. A,

62:053804, 2000.
[27] K. J. Blow, R. Loudon, S. J. D. Phoenix, and T. J. Shep-

herd. Phys. Rev. A, 42(7):4102–4114, 1990.
[28] L. D. Landau and E. M. Lifshitz. Quantum Mechanics.

Butterworth-Heinemann, Oxford, 2003.
[29] A. G. Cohen and S. L. Glashow. Phys. Rev. Lett.,

107:181803, 2011.
[30] S. Scheel and S. Y. Buhmann. Phys. Rev. A, 80:042902,

2009.
[31] S. A. R. Horsley, M. Artoni, and G. C. La Rocca.

arXiv:1111.4352v1, 2011.
[32] M. Amooshahi. Eur, Phys. J. D, 54:115, 2009.
[33] An attempt to formulate such a theory was made in [32],

however this theory does not appear to correctly account
for the Doppler effect.

[34] Due to the unitary transformation, the ‘electric field op-
erator’ in (21) differs from the true electric field operator
by a term proportional to the dipole moment [23]. How-
ever this difference does not affect our calculation of the
transition rate.

[35] In the case of a detector embedded in a moving dielectric
one must introduce a correction factor to account for the
fact that the dipole moment couples to the local micro-
scopic electric field, rather than the macroscopic one. To
obtain a finite emission or absorption rate, one must also
find a way to regularize the coupling to the longitudinal
part of the electric field. A thorough discussion of these
issues is given within [25].



14

[36] To prove this take (B8) and write it as L̂x ·
G(k,x‖,x

′
‖,Ω) = 13δ

(2)(x‖−x′‖), where L̂x is an abbre-
viated notation for the linear operator on the left hand
side of the differential equation that acts on x. Form the
dot product between this equation and G(k,x′′‖ ,x‖,Ω)

and integrate over x‖,
∫
d2x‖G(k,x′′‖ ,x‖,Ω) · L̂x ·

G(k,x‖,x
′
‖,Ω) = G(k,x′′‖ ,x

′
‖,Ω). An integration by

parts can then shift the operation of the L̂x onto
G(k,x′′‖ ,x‖,Ω), and we can thereby infer the differential
equation satisfied by the second index of the transposed
Green function. The result is the same differential equa-
tion but with the velocity multiplied by −1.


