Dynamic Asset Allocation in a Conditional Value-at-risk Framework

Lin Zhi Tan

Submitted by Lin Zhi Tan to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Finance in May 2013

This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University.

Signature: ...
Acknowledgements

My deepest gratitude goes first and foremost to Professor Richard Harris, my supervisor, for his encouragement and continuous support of my PhD research. He has guided me through all the stages of research and writing of this thesis. Without his consistent and illuminating instruction, this thesis could not have reached its present form. I am very lucky to have such an excellent supervisor and mentor for my PhD study.

I would like to acknowledge the Board of Examiners for their constructive comments and suggestions in my viva.

I would also like to express my gratitude to Dr. Jian Shen for her help with data and useful comments.

I am grateful to the staff at the University of Exeter Business School, the IT officers and the librarians for their help to support my research.

I gratefully acknowledge the financial support from the Business School of the University of Exeter to make me realise the doctoral dream.

This thesis is dedicated to my families. I would like to take this opportunity to say thank you to my beloved families for their loving consideration and encouragement through all these years. Without your support and encouragement, I could not afford to come to the UK and finish my PhD and master's degree in Exeter.

I would like to say thanks to my friends. I really enjoyed my time in Exeter with your company.
Abstract

The thesis first extends the original Black-Litterman model to dynamic asset allocation area by using the expected conditional equilibrium return and conditional covariances based on three volatility models (the DCC model, the EWMA model and the RW model) into the reverse optimisation of the utility function (the implied BL portfolio) and the maximised Sharpe ratio optimisation model (the SR-BL portfolio). The momentum portfolios are inputted as the view portfolios in the Black-Litterman model. The thesis compares performance of the dynamic implied BL portfolio and the dynamic SR-BL portfolio in the single period and multiple periods with in-sample analysis and out-of-sample analysis. The research finds that dynamic BL portfolios can beat benchmark in in-sample and out-of-sample analysis, the dynamic implied BL portfolio always show better performance than the dynamic SR-BL portfolio. The empirical VaR and CVaR of the dynamic SR-BL portfolios are much higher than that of the dynamic implied BL portfolio. The dynamic BL portfolios based on the DCC volatility model perform best in contrast to other two volatility models.

In the aim of improving performance of SR-BL portfolios, the thesis further constructs dynamic BL portfolios based on two new optimisation models including maximised reward to VaR ratio optimisation model (MVaR-BL portfolios) and maximised reward to CVaR ratio optimisation model (MCVaR-BL portfolios) with assumption of the normal distribution and the t-distribution at confidence levels of 99%, 95% and 90%. The thesis compares performance of the dynamic MVaR-BL portfolio and the dynamic MCVaR-BL portfolio in the single period and multiple periods with in-sample analysis and out-of-sample analysis. There are three main findings. Firstly, both the MVaR-BL portfolio and the MCVaR-BL portfolio could improve the dynamic SR-BL portfolio performance at moderate confidence levels. Secondly, the MVaR-BL portfolio and the MCVaR-BL portfolio show similar performance with normal distribution assumption, the MCVaR-BL portfolio performs better than the MVaR-BL with t-distribution assumption at certain confidence levels in single period and multiple periods. Thirdly, the performance of the DCC-BL portfolio with t-distribution assumption is superior to the performance of the DCC-BL portfolio with normal distribution assumption.
As the result of higher empirical VaR and CVaR of dynamic SR-BL portfolios, the thesis develops to constrain VaR and CVaR in construction of dynamic BL portfolios with assumption of the normal distribution and the t-distribution at confidence levels of 99%, 95% and 90%. The research studies the effect of assumptions of two distributions, three confidence levels and levels of the VaR constraint and the CVaR constraint on dynamic BL portfolios. Both in-sample performance and out-of-sample performance could be improved by imposing constraints, and they suggest adding moderate CVaR constraints to maximal Sharpe ratio optimisation model with t-distribution at certain confidence level could obtain the best dynamic DCC-BL portfolio performance in the single period and multiple periods. The performance evaluation criterion (higher Sharpe ratio, reward to VaR ratio, and reward to CVaR ratio) would affect the choice of optimisation models in dynamic asset allocation.
List of Contents

Acknowledgements .. 2
Abstract ... 3
List of Contents .. 5
List of Tables .. 10
List of Figures ... 14
List of Appendices ... 15
List of Abbreviations .. 17

CHAPTER 1 INTRODUCTION ... 18
 1.1 Background and Rationale .. 18
 1.2 Research Aims and Questions .. 22
 1.3 The Contributions of this Thesis ... 23
 1.4 Structure of the Thesis ... 26

CHAPTER 2 ASSET ALLOCATION FRAMEWORK AND RISK MEASURES 28
 2.1 Mean-Variance Analysis and Modern Portfolio Theory 28
 2.1.1 Classical Mean-Variance Framework ... 28
 2.1.1.1 Assumptions ... 28
 2.1.1.2 Mathematical Model .. 29
 2.1.1.3 Efficient Frontier ... 31
 2.1.2 Mean-Variance Analysis with Risk-Free Asset and Capital Asset
 Pricing Model .. 32
 2.1.3 Criticisms of the Mean-Variance Approach 34
 2.1.4 Extension of the Traditional Mean-Variance Approach 37
 2.2 Risk Measures ... 39
 2.2.1 Value-at-Risk .. 40
 2.2.2 Conditional Value-at-Risk ... 42
 2.3 Conclusions .. 44

CHAPTER 3 LITERATURE REVIEW OF THE BLACK-LITTERMAN MODEL 49
 3.1 Introduction ... 49
 3.2 The Black-Litterman Model .. 50
 3.2.1 The Implied Equilibrium Return ... 52
 3.2.2 Investor Views .. 54
 3.2.3 Combination of Both Perspectives ... 57
 3.2.4 Unconstrained Optimal Portfolio ... 58
 3.3 Extensions of the Black-Litterman Model ... 60
 3.3.1 Incorporating Momentum Trading Strategies into the Black-Litterman
 Model .. 64
 3.3.2 Alternative Risk Measures in the Black-Litterman Approach 65
 3.3.3 A VaR Black-Litterman Model for the Construction of Absolute Return
 Fund-of-funds .. 67
CHAPTER 4 DATA AND METHODOLOGY .. 70

4.1 Data ... 71

4.2 Methodology .. 73

4.2.1 Estimation of Time-Varying Covariance ... 73

4.2.1.1 Covariance Matrix via Historical Rolling Window Estimators 73

4.2.1.2 Covariance Matrix via Exponential Weighted Estimators............ 74

4.2.1.3 Covariance Matrix via Dynamic Conditional Correlation Model .. 75

4.2.2 Dynamic BL Model ... 76

4.2.2.1 Conditional Equilibrium Return ... 77

4.2.2.2 Incorporating Momentum Strategies to Generate Views 78

4.2.2.3 Combining Conditional Equilibrium Returns and Views Together ... 78

4.2.3 Unconstrained Dynamic BL Portfolio .. 79

4.2.4 VaR-Constrained Dynamic BL Portfolio ... 81

4.2.5 CVaR-Constrained Dynamic BL Portfolio ... 82

4.2.6 BL Portfolio’s Performance Analysis .. 82

4.2.6.1 Single Period Optimisation Statistics .. 84

4.2.6.2 Performance Evaluation ... 84

4.3 Conclusions .. 86

CHAPTER 5 IN-SAMPLE DYNAMIC BLACK-LITTERMAN PORTFOLIOS ... 90

5.1 Construction of the Unconstrained Black-Litterman Portfolio 92

5.1.1 Benchmark Portfolio ... 92

5.1.2 Time-Varying Variance and Covariance Matrix 93

5.1.3 The Risk Aversion Coefficient .. 94

5.1.4 The Implied Equilibrium Return .. 95

5.1.5 Inputting Views with the Momentum Strategy 96

5.1.6 Black-Litterman Expected Return and Covariance Matrix 98

5.1.7 Comparison of Unconstrained Portfolio Optimisation Models 99

5.1.7.1 Unconstrained Black-Litterman Portfolio Frontier 99

5.1.7.2 Unconstrained Black-Litterman Portfolio Optimisation Statistics ... 100

5.1.8 Unconstrained Black-Litterman Portfolio 101

5.1.8.1 Construction of the Implied Black-Litterman Portfolio and the Sharpe Ratio Black-Litterman Portfolio .. 101

5.1.8.2 Construction of the MVAR-BL Portfolio 104

5.1.8.3 Effect of Distribution Assumption and Confidence Levels on DCC-MVAR-BL Portfolio ... 107

5.1.8.4 Construction of the MCVAR-BL Portfolio 108

5.1.8.5 Effect of Distribution Assumption and Confidence Levels on DCC-MCVAR-BL Portfolio .. 110
5.1.9 Performance Evaluation of the Unconstrained BL Portfolios

5.1.9.1 Single Period Performance

5.1.9.2 Multiple Periods Performance

5.1.10 Conclusions

5.2 Value-at-Risk-Constrained Black-Litterman Portfolio

5.2.1 Construction of the VaR-Constrained BL Portfolio

5.2.1.1 VaR-Constrained BL Portfolio Frontier

5.2.1.2 Weights of VaR-Constrained BL Portfolios

5.2.2 Performance Evaluation

5.2.2.1 Single Period Performance

5.2.2.2 Multiple Periods Performance

5.2.3 Effects of VaR Constraints, Distributions and Confidence Levels

5.2.3.1 Effects on Optimisation Model

5.2.3.2 Effects on Weights Solutions

5.2.3.3 Effects on Portfolio Performance in the Single Period

5.2.3.4 Effects on Portfolio Performance in Multiple Periods

5.2.4 Conclusions

5.3 Conditional Value-at-Risk-Constrained Black-Litterman Portfolio

5.3.1 Construction of the CVaR-Constrained BL Portfolio

5.3.1.1 CVaR-Constrained BL Portfolio Frontier

5.3.1.2 Weights of CVaR-Constrained BL Portfolios

5.3.2 Performance Evaluation

5.3.2.1 Single Period Performance

5.3.2.2 Multiple Periods Performance

5.3.3 Effects of CVaR Constraints, Distributions and Confidence Levels

5.3.3.1 Effects on Optimisation Model

5.3.3.2 Effects on Weight Solutions

5.3.3.3 Effects on Portfolio Performance in the Single Period

5.3.3.4 Effects on Portfolio Performance in Multiple Periods

5.3.4 Conclusions

CHAPTER 6 OUT-OF-SAMPLE DYNAMIC BLACK-LITTERMAN PORTFOLIOS

6.1 Out-of-sample Dynamic Unconstrained BL Portfolios

6.1.1 Construction of Out-of-Sample Unconstrained BL Portfolio

6.1.1.1 Estimation of Implied Equilibrium Return

6.1.1.2 Estimation of Views Portfolio

6.1.1.3 Estimation of BL Expected Return in out of sample

6.1.1.4 Construction of Out-of-Sample Implied BL Portfolios and SR-BL Portfolios

6.1.1.5 Construction of the Out-of-Sample Unconstrained MVaR-BL Portfolios

6.1.1.6 Construction of Out-of-Sample MCVaR-BL Portfolios

6.1.2 Single Period Out-of-Sample Performance
6.1 Out-of-sample Dynamic VaR-Constrained BL Portfolios 239
6.1.1 Construction of VaR-Constrained BL Portfolios 239
6.1.2 Single Period Out-of-Sample VaR-Constrained BL Performance .. 240
6.1.3 Multiple Periods Out-of-Sample VaR-Constrained BL Performance .. 241
6.1.4 Effects of Distributions and Confidence Levels 242
 6.1.4.1 Effects on Weights of the Out-of-sample VaR-Constrained BL Portfolio .. 242
 6.1.4.2 Effects on the Out-of-sample VaR-Constrained BL Portfolios Performance in the Single Period ... 243
 6.1.4.3 Effects on the Out-of-sample VaR-Constrained BL Portfolios Performance in Multiple Periods ... 243
6.1.5 Conclusions ... 245

6.2 Out-of-sample Dynamic CVaR-Constrained BL Portfolios 246
6.2.1 Construction of Out-of-sample CVaR-Constrained BL Portfolios ... 246
6.2.2 Single Period Out-of-Sample CVaR-Constrained BL Portfolio Performance ... 248
6.2.3 Multiple Period Out-of-Sample Performance CVaR-Constrained BL Portfolio Performance .. 248
6.2.4 Effects on Out-of-sample CVaR-Constrained BL Portfolios Performance ... 250
 6.2.4.1 Effects on Weights of the Out-of-sample CVaR-Constrained BL Portfolio .. 250
 6.2.4.2 Effects on the out-of-sample CVaR-Constrained BL portfolios performance in the single period .. 251
 6.2.4.3 Effects on the out-of-sample CVaR-Constrained BL portfolios performance in multiple periods .. 252
6.2.5 Conclusions ... 254

6.3 Out-of-sample Risk-Adjusted BL Portfolio 255
6.3.1 Construction of the Risk-Adjusted BL Portfolio 255
 6.3.1.1 Estimation of Risk-Adjusted Implied Equilibrium Return 255
 6.3.1.2 Estimation of Risk-Adjusted BL Expected Return 257
 6.3.1.3 Construction of Unconstrained Risk-Adjusted BL Portfolios 257
6.3.2 Single Period Out-of-Sample Risk-Adjusted BL Portfolio Performance ... 259
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.3 Multiple-Period Out-of-Sample Risk-Adjusted BL Portfolio</td>
<td>260</td>
</tr>
<tr>
<td>Performance</td>
<td></td>
</tr>
<tr>
<td>6.4.4 Conclusions</td>
<td>262</td>
</tr>
<tr>
<td>CHAPTER 7 CONCLUSIONS</td>
<td>316</td>
</tr>
<tr>
<td>7.1 Conclusions</td>
<td>316</td>
</tr>
<tr>
<td>7.2 Limitations</td>
<td>320</td>
</tr>
<tr>
<td>7.3 Future Research</td>
<td>321</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>323</td>
</tr>
</tbody>
</table>
List of Tables

Table 4.1 Summary Statistics for the FTSE Sector Indices Excess Returns

Table 4.2 Time Series Property

Table 5.1.1 Benchmark Portfolio Performance and Tail Risk

Table 5.1.2 Risk Aversion Coefficient and Implied Equilibrium Return in August 1998

Table 5.1.3 The Views Portfolio Weights, Expected Return and Confidence Variance in August 1998

Table 5.1.4 The Views Portfolio Weights, Expected Return and Confidence Variance in November 1998

Table 5.1.5 Portfolio Performance of the Momentum Portfolio and Benchmark Portfolio

Table 5.1.6 The BL Expected Returns for Each Index in August 1998

Table 5.1.7 The BL Expected Returns for Each Index in November 1998

Table 5.1.8 Statistics for Unconstrained BL Portfolio Optimisation in August 1998

Table 5.1.9 Weights in the Unconstrained Implied BL Portfolio and the SR-BL Portfolio in August 1998

Table 5.1.10 Weights in the Unconstrained Implied BL Portfolio and the SR-BL Portfolio in November 1998

Table 5.1.11 Weights in the Unconstrained MVaR-BL Portfolio in August 1998

Table 5.1.12 Weights in the Unconstrained MVaR-BL Portfolio in November 1998

Table 5.1.13 Effect of Distribution Assumptions and Confidence Levels on MVaR-BL Portfolio Weights

Table 5.1.14 Weights in the Unconstrained MCVaR-BL Portfolio in August 1998

Table 5.1.15 Weights in the Unconstrained MCVaR-BL Portfolio in November 1998

Table 5.1.16 Effect of Distribution Assumptions and Confidence Levels on MCVaR-BL Portfolio Weights

Table 5.1.17 Single Period Unconstrained BL Portfolio Performance Evaluation

Table 5.1.18 Unconstrained BL Portfolio Performance in Multiple Periods (Nov 94 – May 10)
Table 5.1.19 Unconstrained BL Portfolio Performance in a Sub-period (Aug 98 – May 10)
Table 5.2.1 Weights in the VaR-Constrained BL Portfolio in August 1998
Table 5.2.2 Weights in the VaR-Constrained BL Portfolio in November 1998
Table 5.2.3 VaR-Constrained BL Portfolio Performance in the Single Period
Table 5.2.4 VaR-Constrained BL Portfolio Performance in Multiple Periods
Table 5.2.5 Effects on the VaR-Constrained BL Portfolio Optimisation (Aug 1998)
Table 5.2.6 Effects on Weights of Out-of-Sample VaR-Constrained BL Portfolio (Aug 98)
Table 5.2.7 Effects on VaR-Constrained SR-BL Portfolio Performance Evaluation (Aug 98)
Table 5.2.8 Effects on VaR-Constrained SR-BL Portfolio Performance Evaluation (Nov 98)
Table 5.2.9 Effects on VaR-Constrained BL Portfolio Performance in Multiple Periods (Nov 94-May 10)
Table 5.2.10 Effects on VaR-Constrained BL Portfolio Performance in Sub-period (Aug 98-May 10)
Table 5.3.1 Weights in the CVaR-Constrained BL Portfolio in August 1998
Table 5.3.2 Weights in the CVaR-Constrained BL Portfolio in November 1998
Table 5.3.3 CVaR-Constrained BL Portfolio Performance in the Single Period
Table 5.3.4 CVaR-Constrained BL Portfolio Performance in Multiple Periods
Table 5.3.5 Effects on CVaR-Constrained BL Portfolio Optimisation (Aug 98)
Table 5.3.6 Effects on Weights of the CVaR-Constrained BL Portfolio (Aug 98)
Table 5.3.7 Effects on CVaR-Constrained SR-BL Portfolio Performance Evaluation (Aug 98)
Table 5.3.8 Effects on CVaR-Constrained SR-BL Portfolio Performance Evaluation (Nov 98)
Table 5.3.9 Effects on CVaR-Constrained BL Portfolio Performance in Multiple Periods (Nov 94-May 10)
Table 5.3.10 Effects on CVaR-Constrained BL Portfolio Performance in Sub-period (Aug 98-May 10)
Table 6.1.1 Out-of-sample Risk Aversion Coefficient and Implied Equilibrium Return in September 2003
Table 6.1.2 Out-of-Sample Views Portfolio Weights, Expected Return and Confidence Variance in September 2003
Table 6.1.3 Out-of-sample Portfolio Performance of the Momentum Portfolio and Benchmark Portfolio
Table 6.1.4 The Out-of-sample BL Expected Returns for Each Index in September 2003
Table 6.1.5 Weights in the Out-of-sample Unconstrained Implied BL Portfolio and a SR-BL Portfolio in September 2003
Table 6.1.6 Weights in the Out-of-sample Unconstrained MVaR-BL portfolio in September 2003
Table 6.1.7 Effect of Distribution Assumptions and Confidence Levels on out-of-sample MVaR-BL Portfolio Weights
Table 6.1.8 Weights in the Out-of-sample Unconstrained MCVaR-BL portfolio in September 2003
Table 6.1.9 Effect of Distribution Assumptions and Confidence Levels on out-of-sample MCVaR-BL Portfolio Weights
Table 6.1.10 Out-of-Sample Unconstrained BL Portfolios Performance Evaluation in Single Period
Table 6.1.11 Out-of-sample Unconstrained BL Portfolio Performance in Multiple Periods (Sep 03 – May 10)
Table 6.2.1 Weights in the Out-of-sample VaR-Constrained BL Portfolio in September 2003
Table 6.2.2 Out-of-sample VaR-Constrained BL Portfolio Performance in the Single Period
Table 6.2.3 Out-of-sample VaR-Constrained BL portfolio Performance in Multiple Periods
Table 6.2.4 Effects on Weights of VaR-Constrained BL Portfolio (Sep 03)
Table 6.2.5 Effects on out-of-sample VaR-constrained BL Portfolio Performance Evaluation (Sep 03)
Table 6.2.6 Effects on out-of-sample VaR-Constrained BL Portfolio Performance in Multiple Periods (Sep 03-May 10)
Table 6.3.1 Weights in the Out-of-sample CVaR-Constrained BL Portfolio in September 2003
Table 6.3.2 Out-of-sample CVaR-Constrained BL Portfolio Performance in the Single Period
Table 6.3.3 Out-of-sample CVaR-Constrained BL Portfolio Performance in Multiple Periods
Table 6.3.4 Effects on Weights of CVaR-Constrained BL Portfolio (Sep 03)
Table 6.3.5 Effects on Out-of-sample CVaR-Constrained SR-BL Portfolio Performance Evaluation (Sep 03)
Table 6.3.6 Effects on Out-of-sample CVaR-Constrained BL Portfolio Performance in Multiple Periods (September 03-May 10)
Table 6.4.1 Out-of-sample Risk Aversion Coefficient and Risk-Adjusted Implied Equilibrium Return in September 2003
Table 6.4.2 The Out-of-sample Risk-Adjusted BL Expected Returns for Each Index in September 2003
Table 6.4.3 Weights in the Out-of-sample Risk-Adjusted Unconstrained BL Portfolio in September 2003
Table 6.4.4 Out-of-Sample Risk-Adjusted Unconstrained BL Portfolio Performance Evaluation in the Single Period
Table 6.4.5 Out-of-sample Risk-Adjusted Unconstrained BL Portfolios Performance in Multiple Periods (Sep 03 – May 10)
List of Figures

Figure 2.1 Feasible Set and Markowitz Efficient Set

Figure 2.2 Capital Market Line and Efficient Frontier

Figure 2.3 Security Market Line

Figure 5.1.1 Monthly Volatility of the Benchmark Portfolio

Figure 5.1.2 Time-Varying Risk Aversion Coefficient

Figure 5.1.3 Accumulative Returns of the Benchmark Portfolio and the Momentum Portfolio

Figure 5.1.4 Comparison of Weights in August 1998

Figure 5.1.5 Comparison of Weights in November 1998

Figure 5.1.6 The Unconstrained BL Portfolio Frontier

Figure 5.2.1 The VaR-Constrained BL Portfolio Frontier

Figure 5.3.1 Comparison between VaR Constraints and CVaR Constraints on the BL Portfolio Frontier (Normal Distribution)

Figure 5.3.2 Comparison between VaR Constraints and CVaR Constraints on the BL Portfolio Frontier (t-Distribution)

Figure 6.1.1 Out-of-sample Monthly Volatility of Benchmark Portfolio

Figure 6.1.2 Out-of-Sample Time-Varying Risk Aversion Coefficient
List of Appendices

Appendix 5.1.1 Risk Aversion Coefficient and Implied Equilibrium Return in November 1998
Appendix 5.1.2 Denominators in Weights Solutions (Nov 94 – May 10)
Appendix 5.1.3 Weights in the Traditional Mean-Variance Portfolio (Nov 94 – May 10)
Appendix 5.1.4 Average Value of Weights in the Unconstrained Implied BL Portfolio and the SR-BL Portfolio (Nov 94 – May 10)
Appendix 5.1.5 Standard Deviation of Weights in the Unconstrained Implied BL Portfolio and the SR-BL Portfolio (Nov 94 – May 10)
Appendix 5.1.6 Average Value of Weights in the Unconstrained MVaR-BL Portfolio (Nov 94 – May 10)
Appendix 5.1.7 Standard Deviation of Weights in the Unconstrained MVaR-BL Portfolio (Nov 94 – May 10)
Appendix 5.1.8 Average Effect of Distribution Assumptions and Confidence Levels on MVaR-BL Portfolio Weights
Appendix 5.1.9 Average Value of Weights in the Unconstrained MCVaR-BL Portfolio (Nov 94 – May 10)
Appendix 5.1.10 Standard Deviation of Weights in the Unconstrained MCVaR-BL Portfolio (Nov 94 – May 10)
Appendix 5.1.11 Average Effect of Distribution Assumptions and Confidence Levels on MCVaR-BL Portfolio Weights
Appendix 5.2.1 Average Value of Weights in the VaR-Constrained BL Portfolio (Nov 94 – May 10)
Appendix 5.2.2 Standard Deviation of Weights in the VaR-Constrained BL Portfolio (Nov 94 – May 10)
Appendix 5.3.1 Average Value of Weights in the CVaR-Constrained BL Portfolio (Nov 94 – May 10)
Appendix 5.3.2 Standard Deviation of Weights in the CVaR-Constrained BL Portfolio (Nov 94 – May 10)
Appendix 6.1.1 Average Value of Weights in the Out-of-sample Unconstrained Implied BL Portfolio and the SR-BL Portfolio (Sep 03 – May 10)
Appendix 6.1.2 Standard Deviation of Weights in the Out-of-sample Unconstrained Implied BL Portfolio and the SR-BL Portfolio (Sep 03 – May 10)
Appendix 6.1.3 Average Value of Weights in the Out-of-sample Unconstrained MVaR-BL Portfolio (Sep 03 – May 10)

Appendix 6.1.4 Standard Deviation of Weights in the Out-of-sample Unconstrained MVaR-BL Portfolio (Sep 03 – May 10)

Appendix 6.1.5 Average Effect of Distribution Assumptions and Confidence Levels on out-of-sample unconstrained MVaR-BL Portfolio Weights

Appendix 6.1.6 Average Value of Weights in the Out-of-sample Unconstrained MCVaR-BL Portfolio (Sep 03 – May 10)

Appendix 6.1.7 Standard Deviation of Weights in the Out-of-sample Unconstrained MCVaR-BL Portfolio (Sep 03 – May 10)

Appendix 6.1.8 Average Effect of Distribution Assumptions and Confidence Levels on out-of-sample unconstrained MCVaR-BL Portfolio Weights

Appendix 6.2.1 Average Value of Weights in the Out-of-sample VaR-Constrained BL Portfolio (Sep 03 – May 10)

Appendix 6.2.2 Standard Deviation of Weights in the Out-of-sample VaR-Constrained BL Portfolio (Sep 03 – May 10)

Appendix 6.3.1 Average Value of Weights in the Out-of-sample CVaR-Constrained BL Portfolio (Sep 03 – May 10)

Appendix 6.3.2 Standard Deviation of Weights in the Out-of-sample CVaR-Constrained BL Portfolio (Sep 03 – May 10)

Appendix 6.4.1 Average Value of Weights in the Out-of-sample Risk-Adjusted Unconstrained BL Portfolio (Sep 03 – May 10)

Appendix 6.4.2 Standard Deviation of Weights in the Out-of-sample Risk-Adjusted Unconstrained BL Portfolio (Sep 03 – May 10)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL</td>
<td>Black-Litterman Portfolio</td>
</tr>
<tr>
<td>CSR</td>
<td>Conditional Sharpe Ratio</td>
</tr>
<tr>
<td>CVaR</td>
<td>Conditional Value-at-Risk</td>
</tr>
<tr>
<td>CVaR-adjusted BL</td>
<td>Black-Litterman Portfolio with CVaR Adjusted Equilibrium Return</td>
</tr>
<tr>
<td>CVaR-BL</td>
<td>Black-Litterman Portfolio with CVaR Constraint</td>
</tr>
<tr>
<td>DCC</td>
<td>Dynamic Constant Correlation Model</td>
</tr>
<tr>
<td>ECSR</td>
<td>Expected Conditional Sharpe Ratio</td>
</tr>
<tr>
<td>EWMA</td>
<td>Exponentially Weighted Moving Average Model</td>
</tr>
<tr>
<td>Implied BL</td>
<td>Black-Litterman Portfolio with Implied Reverse Optimisation</td>
</tr>
<tr>
<td>MCVaR-BL</td>
<td>Black-Litterman Portfolio with Maximal Reward to CVaR Ratio</td>
</tr>
<tr>
<td>MVaR-BL</td>
<td>Black-Litterman Portfolio with Maximal Reward to VaR Ratio</td>
</tr>
<tr>
<td>N</td>
<td>Normal Distribution</td>
</tr>
<tr>
<td>PT</td>
<td>Portfolio Turnover</td>
</tr>
<tr>
<td>RW110</td>
<td>Rolling Window Estimator with Window Length of 110</td>
</tr>
<tr>
<td>RW50</td>
<td>Rolling Window Estimator with Window Length of 50</td>
</tr>
<tr>
<td>SR-BL</td>
<td>Black-Litterman Portfolio with Maximal Sharpe Ratio</td>
</tr>
<tr>
<td>t</td>
<td>t-Distribution</td>
</tr>
<tr>
<td>VaR</td>
<td>Value-at-Risk</td>
</tr>
<tr>
<td>VaR-adjusted BL</td>
<td>Black-Litterman Portfolio with VaR Adjusted Equilibrium Return</td>
</tr>
<tr>
<td>VaR-BL</td>
<td>Black-Litterman Portfolio with the VaR Constraint</td>
</tr>
<tr>
<td>Variance-adjusted BL</td>
<td>Black-Litterman Portfolio with Variance-Adjusted Equilibrium Return</td>
</tr>
<tr>
<td>&/CVaR</td>
<td>Expected Excess Return to Conditional Value-at-Risk</td>
</tr>
<tr>
<td>&/VaR</td>
<td>Expected Excess Return to Value-at-Risk Ratio</td>
</tr>
</tbody>
</table>